M. Anguita, N. Canibe, J. F. Pé-rez, and B. B. Jensen, Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation, Journal of animal science, vol.84, issue.10, pp.2766-2778, 2006.

R. Jha and J. D. Berrocoso, Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine, Animal, vol.9, issue.9, pp.1441-1452, 2015.

V. Müller, Bacterial Fermentation, 2001.

S. Cornick, A. Tawiah, and K. Chadee, Roles and regulation of the mucus barrier in the gut, Tissue Barriers, vol.3, issue.1-2, p.982426, 2015.

W. Zhao, Y. Wang, S. Liu, J. Huang, Z. Zhai et al., The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments, PLoS One, vol.10, issue.2, p.117441, 2015.

N. Mach, M. Berri, J. Estellé, F. Levenez, G. Lemonnier et al., Early-life establishment of the swine gut microbiome and impact on host phenotypes, Environmental Microbiology Reports, vol.7, issue.3, pp.554-569, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168456

R. Pedersen, A. D. Andersen, L. Mølbak, J. Stagsted, and M. Boye, Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs, BMC Microbiology, vol.13, issue.1, p.30, 2013.

Z. Durmic, D. W. Pethick, J. R. Pluske, and D. J. Hampson, Changes in bacterial populations in the colon of pigs fed different sources of dietary fibre, and the development of swine dysentery after experimental infection, Journal of Applied Microbiology, vol.85, issue.3, pp.574-582, 1998.

L. Xiao, J. Estellé, P. Kiilerich, Y. Ramayo-caldas, Z. Xia et al., A reference gene catalogue of the pig gut microbiome, Nature microbiology, vol.1, issue.12, p.16161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607746

Y. Ramayo-caldas, N. Mach, P. Lepage, F. Levenez, C. Denis et al., Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits, ISME J, vol.10, issue.12, pp.2973-2977, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637857

L. Floc, &. , N. Knudsen, C. Gidenne, T. Montagne et al., Impact of feed restriction on health, digestion and faecal microbiota of growing pigs housed in good or poor hygiene conditions. Animal, vol.8, pp.1632-1642, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210641

D. B. Holman and M. R. Chénier, Temporal changes and the effect of subtherapeutic concentrations of antibiotics in the gut microbiota of swine, FEMS Microbiology Ecology, vol.90, issue.3, pp.599-608, 2014.

S. N. Heinritz, E. Weiss, M. Eklund, T. Aumiller, S. Louis et al., Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet, PLoS One, vol.11, issue.4, 2016.

L. Verschuren, M. Calus, A. Jansman, R. Bergsma, E. F. Knol et al., Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex, Journal of animal science, vol.96, issue.4, pp.1405-1418, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626161

D. Haenen, J. Zhang, C. Souza-da-silva, G. Bosch, I. M. Van-der-meer et al., A Diet High in Resistant Starch Modulates Microbiota Composition, SCFA Concentrations, and Gene Expression in Pig Intestine, The Journal of Nutrition, vol.143, issue.3, pp.274-283, 2013.

D. Y. Kil, B. G. Kim, and H. H. Stein, Feed Energy Evaluation for Growing Pigs, Asian-Australasian Journal of Animal Sciences, vol.26, issue.9, pp.1205-1217, 2013.

J. Zhao, Q. Wang, L. Liu, Y. Chen, J. A. Liu et al., Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire×Jiaxing and Landrace×Yorkshire, Asian-Australas J Anim Sci, vol.31, issue.5, pp.721-728, 2018.

L. Goff, G. Noblet, and J. , Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows, Journal of animal science, vol.79, issue.9, pp.2418-2427, 2001.

A. Wilfart, L. Montagne, P. H. Simmins, J. Van-milgen, and J. Noblet, Sites of nutrient digestion in growing pigs: Effect of dietary fiber, Journal of animal science, vol.85, issue.4, pp.976-983, 2007.

L. Gall, M. Warpechowski, M. Jaguelin-peyraud, Y. Noblet, and J. , Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows, Animal, vol.3, issue.3, pp.352-359, 2009.

Q. Niu, P. Li, S. Hao, Y. Zhang, S. W. Kim et al., Dynamic Distribution of the Gut Microbiota and the Relationship with Apparent Crude Fiber Digestibility and Growth Stages in, Pigs. Sci Rep, vol.5, p.9938, 2015.

J. Noblet, X. S. Shi, and S. Dubois, Metabolic utilization of dietary energy and nutrients for maintenance energy requirements in sows: basis for a net energy system, British Journal of Nutrition, vol.70, issue.2, pp.407-419, 1993.

, Official methods of analysis. Whashington, DC, 1990.

P. J. Van-soest and R. H. Wine, Use of detergent in the analysis of fibrous feed. IV-Determination of plant cell walls constituents, J. Assoc. Agric. Chem, vol.50, pp.50-55, 1967.

T. Rognes, T. Flouri, B. Nichols, C. Quince, and F. Mahé, VSEARCH: a versatile open source tool for metagenomics, PeerJ, vol.4, p.2584, 2016.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Research, vol.41, issue.D1, pp.590-596, 2013.

J. Noblet, H. Gilbert, Y. Jaguelin-peyraud, and T. Lebrun, Evidence of genetic variability for digestive efficiency in the growing pig fed a fibrous diet, Animal, vol.7, issue.8, pp.1259-1264, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01210432

D. B. Holman, B. W. Brunelle, J. Trachsel, and H. K. Allen, Meta-analysis To Define a Core Microbiota in the Swine Gut, mSystems, vol.2, issue.3, pp.4-17, 2017.

T. Looft, H. K. Allen, B. L. Cantarel, U. Y. Levine, D. O. Bayles et al., phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations, ISME J, vol.8, issue.8, pp.1566-1576, 2014.

J. Noblet and X. S. Shi, Effect of body weight on digestive utilization of energy and nutrients of ingredients and diets in pigs, Livestock Production Science, vol.37, issue.3, pp.323-338, 1994.

C. M. Grieshop, D. E. Reese, and G. Fahey, Nonstarch polysaccharides and oligosaccharides in swine nutrition, Swine Nutrition, p.107, 2001.

L. Montagne, I. Cré-vieu-gabriel, R. Toullec, and J. P. Lallès, Influence of Dietary Protein Level and Source on the Course of Protein Digestion Along the Small Intestine of the Veal Calf, Journal of Dairy Science, vol.86, issue.3, pp.934-943, 2003.

E. Neis, C. Dejong, and S. S. Rensen, The Role of Microbial Amino Acid Metabolism in Host Metabolism, Nutrients, vol.7, issue.4, pp.2930-2946, 2015.

K. E. Bach-knudsen, The nutritional significance of "dietary fibre" analysis, Animal Feed Science and Technology, vol.90, issue.1, pp.3-20, 2001.

O. Theander, E. Westerlund, P. Åman, and H. Graham, Plant cell walls and monogastric diets, Animal Feed Science and Technology, vol.23, issue.1, pp.205-225, 1989.

G. Stanogias and G. R. Pearce, The digestion of fibre by pigs: 3. Effects of the amount and type of fibre on physical characteristics of segments of the gastrointestinal tract, British Journal of Nutrition, vol.53, issue.3, pp.537-548, 1985.

M. M. Rijnen, M. W. Verstegen, M. J. Heetkamp, J. Haaksma, and J. W. Schrama, Effects of dietary fermentable carbohydrates on energy metabolism in group-housed sows, Journal of animal science, vol.79, issue.1, pp.148-154, 2001.

L. Goff, G. Van-milgen, J. Noblet, and J. , Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows, Animal Science, vol.74, issue.3, pp.503-515, 2002.

G. A. Spiller, J. A. Story, L. G. Wong, J. D. Nunes, A. M. Petro et al., Effect of Increasing Levels of Hard Wheat Fiber on Fecal Weight, Minerals and Steroids and Gastrointestinal Transit Time in Healthy Young Women, The Journal of Nutrition, vol.116, issue.5, pp.778-785, 1986.

T. Ngoc, T. Hong, N. T. Len, and J. E. Lindberg, Effect of Fibre Level and Fibre Source on Gut Morphology and Micro-environment in Local (Mong Cai) and Exotic (Landrace×Yorkshire) Pigs, Asian-Australasian Journal of Animal Sciences, vol.25, issue.12, pp.1726-1733, 2012.

S. N. Heinritz, E. Weiss, M. Eklund, T. Aumiller, C. Heyer et al., Impact of a High-Fat or High-Fiber Diet on Intestinal Microbiota and Metabolic Markers in a Pig Model, Nutrients, vol.8, issue.5, p.317, 2016.

A. W. Walker, J. Ince, S. H. Duncan, L. M. Webster, G. Holtrop et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota, ISME J, vol.5, issue.2, pp.220-230, 2011.

G. D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y. Chen et al., Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes, Science, vol.334, issue.6052, pp.105-108, 2011.

W. Chung, A. W. Walker, P. Louis, J. Parkhill, J. Vermeiren et al., Modulation of the human gut microbiota by dietary fibres occurs at the species level, BMC Biology, vol.14, issue.1, p.3, 2016.

K. Scott, S. H. Duncan, and H. Flint, Dietary fibre and the gut microbiota, Nutrition bulletin, vol.33, issue.3, pp.201-211, 2008.

H. L. Simpson and B. J. Campbell, Review article: dietary fibre-microbiota interactions, Alimentary Pharmacology & Therapeutics, vol.42, issue.2, pp.158-179, 2015.

J. Park, T. Kotani, T. Konno, J. Setiawan, Y. Kitamura et al., Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids, PLoS One, vol.11, issue.5, p.156334, 2016.

R. Corrêa-oliveira, J. L. Fachi, A. Vieira, F. T. Sato, and M. Vinolo, Regulation of immune cell function by short-chain fatty acids, Clinical & Translational Immunology, vol.5, issue.4, p.73, 2016.

A. Gorvitovskaia, S. P. Holmes, and S. M. Huse, Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle, Microbiome, vol.4, p.27068581, 2016.

P. Kovatcheva-datchary, A. Nilsson, R. Akrami, L. Ying, S. et al., Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella, Cell Metabolism, vol.22, issue.6, pp.971-982, 2015.

S. Mignon-grasteau, A. Narcy, N. Rideau, C. Chantry-darmon, M. Boscher et al., Impact of Selection for Digestive Efficiency on Microbiota Composition in the Chicken, PLoS One, vol.10, issue.8, p.135488, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02635647

P. C. Kashyap, A. Marcobal, L. K. Ursell, M. Larauche, H. Duboc et al., Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice, Gastroenterology, vol.144, issue.5, pp.967-977, 2013.

J. Liu, J. Wang, W. Zhu, Y. Pu, L. Guan et al., Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR, FEMS Microbiology Ecology, vol.87, issue.3, pp.576-585, 2013.

B. Tilocca, K. Burbach, C. Heyer, L. E. Hoelzle, R. Mosenthin et al., Dietary changes in nutritional studies shape the structural and functional composition of the pigs' fecal microbiome-from days to weeks, Microbiome, vol.5, issue.1, p.29078812, 2017.

E. D. Sonnenburg, S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. Wingreen et al., Diet-induced extinctions in the gut microbiota compound over generations, Nature, vol.529, issue.7585, pp.212-215, 2016.

R. N. Carmody, G. K. Gerber, J. M. Luevano, D. M. Gatti, L. Somes et al., Diet dominates host genotype in shaping the murine gut microbiota, Cell Host & Microbe, vol.17, issue.1, pp.72-84, 2015.

M. J. Dalby, A. W. Ross, A. W. Walker, and P. J. Morgan, Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice, Cell Reports, vol.21, issue.6, pp.1521-1533, 2017.

E. F. Murphy, P. D. Cotter, S. Healy, T. M. Marques, O. O'sullivan et al., Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, Gut, vol.59, issue.12, pp.1635-1642, 2010.

V. H. Varel, A. J. Richardson, and C. S. Stewart, Degradation of barley straw, ryegrass, and alfalfa cell walls by Clostridium longisporum and Ruminococcus albus, Appl Environ Microbiol, vol.55, issue.12, pp.3080-3084, 1989.

A. Biddle, L. Stewart, J. Blanchard, and S. Leschine, Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities, Diversity, vol.5, issue.3, p.627, 2013.

S. Dou, P. Gadonna-widehem, V. Rome, D. Hamoudi, L. Rhazi et al., Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea, PLoS One, vol.12, issue.1, p.169851, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525331

E. L. Emerson and P. J. Weimer, Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures, Applied Microbiology and Biotechnology, vol.101, issue.10, p.28180916, 2017.

J. M. Larsen, The immune response to Prevotella bacteria in chronic inflammatory disease, Immunology, vol.151, issue.4, pp.363-374, 2017.

J. U. Scher, A. Sczesnak, R. S. Longman, N. Segata, C. Ubeda et al., Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, eLife, vol.2, 2013.

S. Vigors, J. V. O'doherty, A. K. Kelly, O. Shea, C. J. Sweeney et al., The Effect of Divergence in Feed Efficiency on the Intestinal Microbiota and the Intestinal Immune Response in Both Unchallenged and Lipopolysaccharide Challenged Ileal and Colonic Explants, PLoS One, vol.11, issue.2, p.148145, 2016.

H. F. Yu, A. N. Wang, X. J. Li, and S. Y. Qiao, Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs, Journal of Animal and Feed Sciences, vol.17, issue.1, pp.61-69, 2008.

R. Lan, J. Koo, and I. Kim, Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs, Journal of the Science of Food and Agriculture, vol.97, issue.4, pp.1310-1315, 2017.

M. Le, S. Galle, Y. Yang, J. L. Landero, E. Beltranena et al., Effects of feeding fermented wheat with Lactobacillus reuteri on gut morphology, intestinal fermentation, nutrient digestibility, and growth performance in weaned pigs, Journal of animal science, vol.94, issue.11, pp.4677-4687, 2016.

R. Dowarah, A. K. Verma, and N. Agarwal, The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review, Animal Nutrition, vol.3, issue.1, pp.1-6, 2017.

C. Hou, X. Zeng, F. Yang, H. Liu, and S. Qiao, Study and use of the probiotic Lactobacillus reuteri in pigs: a review, Journal of Animal Science and Biotechnology, vol.6, issue.1, p.25954504, 2015.

E. C. Martens, E. C. Lowe, H. Chiang, N. A. Pudlo, M. Wu et al., Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts, PLOS Biology, vol.9, issue.12, p.1001221, 2011.

N. Rolhion and B. Chassaing, When pathogenic bacteria meet the intestinal microbiota, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.371, 1707.
URL : https://hal.archives-ouvertes.fr/hal-02637409