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Heliaphen is an outdoor platform designed for high-throughput phenotyping. It allows
the automated management of drought scenarios and monitoring of plants throughout
their lifecycles. A robot moving between plants growing in 15-L pots monitors the
plant water status and phenotypes the leaf or whole-plant morphology. From these
measurements, we can compute more complex traits, such as leaf expansion (LE) or
transpiration rate (TR) in response to water deficit. Here, we illustrate the capabilities
of the platform with two practical cases in sunflower (Helianthus annuus): a genetic
and genomic study of the response of yield-related traits to drought, and a modeling
study using measured parameters as inputs for a crop simulation. For the genetic
study, classical measurements of thousand-kernel weight (TKW) were performed on
a biparental population under automatically managed drought stress and control
conditions. These data were used for an association study, which identified five
genetic markers of the TKW drought response. A complementary transcriptomic
analysis identified candidate genes associated with these markers that were differentially
expressed in the parental backgrounds in drought conditions. For the simulation study,
we used a crop simulation model to predict the impact on crop yield of two traits
measured on the platform (LE and TR) for a large number of environments. We
conducted simulations in 42 contrasting locations across Europe using 21 years of
climate data. We defined the pattern of abiotic stresses occurring at the continental
scale and identified ideotypes (i.e., genotypes with specific trait values) that are
more adapted to specific environment types. This study exemplifies how phenotyping
platforms can assist the identification of the genetic architecture controlling complex
response traits and facilitate the estimation of ecophysiological model parameters to
define ideotypes adapted to different environmental conditions.
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INTRODUCTION

Fertilizers, irrigation, and pesticides used to mitigate the effects
of climatic hazards had a large, positive impact on crop yields
between 1960 and 2000 (Tilman et al., 2002; Foley et al., 2005).
The current need to reduce inputs in agricultural systems while
coping with the climatic uncertainty caused by climate change
means that farming conditions have become more variable than
they were in the late 20th century. Strategies to develop highly
plastic crop genotypes or predict the best combinations of
genotypes and agro-management practices for local conditions
are therefore key targets. Regardless of the magnitude of changes
required in farming systems (Duru et al., 2015), achieving these
goals will require the characterization and elucidation of how
plants adapt to their environment.

Climate change scenarios indicate that summer precipitation
will substantially decrease in Southern and Central Europe,
and to a smaller degree in Northern Europe, in the future;
however, during spring and autumn, the precipitation change
should be marginal (Moriondo et al., 2010). Drought episodes
will therefore continue to occur, probably with increasing
variability from year to year. In an agricultural context,
a drought-tolerant plant is one that maintains growth and
production during gradual and moderate soil water deficits,
ideally without exhibiting protection mechanisms (Tardieu,
2011). Water deficit affects a large spectrum of plant functions,
such as transpiration, photosynthesis, leaf and root growth, and
reproductive development (Chaves et al., 2003), by impacting the
underlying physiological processes (e.g., cell division, primary
and secondary metabolism) (Tardieu et al., 2018). Drought
tolerance is the result of integrated processes taking place at
different timescales to produce a long-term impact on leaf growth
and transpiration (Tardieu et al., 2018).

In Europe, sunflower (Helianthus annuus) is largely a
rainfed crop, and water deficit is frequently the main factor
limiting its yields (Blanchet et al., 1981; Debaeke et al.,
2017). Sunflower drought responses have long been studied
at the physiological level, and more recently at the molecular
level. Different researchers have characterized the impact of
water deficit on leaf development, transpiration, photosynthesis,
and biomass allocation processes (Adiredjo et al., 2014a,b;
Andrianasolo et al., 2016a,b; Pereyra-Irujo et al., 2008; Velázquez
et al., 2017), revealing differences in these traits between
genotypes with lower and higher water use efficiencies. The
molecular pathways underpinning these processes have begun
to be described at the transcriptomic level, elucidating the
role of osmotic potential maintenance under both controlled
conditions and in the field (Rengel et al., 2012), the importance
of reactive oxygen species (ROS; Ramu et al., 2016), and
highlighting the role of phytohormone signaling pathways,
including abscisic acid (Rengel et al., 2012; Sarazin et al.,
2017), ethylene (Manavella et al., 2006), and jasmonate signaling
(Marchand, 2014; Andrade et al., 2017). In a holistic approach,
Marchand (2014) inferred a gene regulation network in the
drought response based on hormonal signaling pathways,
revealing the role of drought tolerance in the evolution of wild
sunflowers and in modern breeding. Also, Clauw et al. (2016);

Rymaszewski et al. (2017), and Tardieu et al. (2014) combined
genetical genomics approaches (mostly transcriptomics) to
eco-physiological description of drought stress response in
Arabidopsis to understand their genetic and molecular control.
The above ecophysiological and molecular insights are based
on simple drought stresses, mostly during early vegetative
development; therefore, it is vital to continue to develop our
knowledge using more complex and realistic scenarios, taking
into account the dynamic and organ-level impacts of drought
stresses and plant responses.

The different soils and climates of various cropping environ-
ments in combination with plant genotypes and the management
conditions used can generate highly diverse water deficit
scenarios (Chenu et al., 2013). A given trait can therefore have
positive, null, or even negative impacts on crop performance
in different drought scenarios (Casadebaig et al., 2016b; Millet
et al., 2016). Because plant traits of interest are context
dependent, we need tools to measure and integrate the multiple
overlapping mechanisms involved in plant responses to water
deficit, among which plant growth and transpiration are the
primary targets (Tardieu et al., 2018). Phenotyping platforms and
crop mathematical models can be used as complementary tools
to address this objective.

Driven by technological development, phenotyping platforms
are tools created to efficiently measure plant traits while
controlling cultivation conditions. Greenhouse-based platforms
allow a very fine control of the environment (light, water, and
nutrients; Granier et al., 2005; Pieruschka and Poorter, 2012;
Cobb et al., 2013), and have been successfully used to conduct
association genetic studies (Cabrera-Bosquet et al., 2012) and
derive plant trait ranges that can be used as inputs into crop
models (Steduto et al., 2009; Lenz-Wiedemann et al., 2010). The
design factors that are important for achieving high-throughput
phenotyping (small plots and plants) and a careful control
of environmental conditions (closed facility, artificial lighting)
mean that cultivation conditions can be quite different from
conditions in the field however, which may cause difficulties when
generalizing plant responses to agricultural conditions (Mittler,
2006).

Computer-based plant modeling approaches have recently
emerged as a method to complement and improve the
resource-limited experimental exploration of the adaptation
landscape (Chapman et al., 2003; Hammer et al., 2006; Messina
et al., 2006, 2011). These software models are based on
mathematical equations that represent the biological processes
linked to plant growth and development as a function of time,
environment (climate, soil, and management), and genotype-
dependent parameters. The genotype-dependent parameters
used are expected to be more heritable than complex traits,
which are generally more influenced by environmental variation
and genotype–environment interaction (Heslot et al., 2014).
Accordingly, simulations can be used as a tool to predict the
trait × trait and trait × environment interactions and facilitate
the assessment of the importance of a particular trait when
scaling up from the individual plant to a plant population (one
field) or to a crop population over several fields in a cropping
region. Simulations have been successfully used to assess resource
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availability over time and reveal stress scenarios at a continental
scale (Chenu et al., 2013), to search for traits adapted for specific
environment types (Chapman et al., 2002; Casadebaig et al.,
2016a), and to infer trait values beyond field experiments and
available genetic diversity (Martre et al., 2015; Casadebaig et al.,
2016b).

In this context, we aimed to characterize various sunflower
genotypes using a phenotyping platform measuring genotype-
dependent traits, thus enabling the simulation of genotype
performance in diverse abiotic stress scenarios. Ultimately,
linking phenotyping, crop modeling, and simulation would allow
us to design a decision support system to better select genotypes
most suited to a particular cropping environment, accounting for
climatic uncertainty.

To achieve this goal, we developed the Heliaphen phenotyping
platform to measure key phenotypic traits involved in the plant
response to water deficit across large panels of genotypes. In order
to study traits related to crop performance (e.g., seed number
and mass, seed oil content), the plants are grown in outdoor
conditions with automatically managed water deficit scenarios
and plant trait measurements. The use of daily measurements
of leaf and plant growth rates, plant transpiration rates (TRs),
and water deficit levels allowed the estimation of the phenotypic
response to water deficit (reaction norms). We also estimated
the parameters of the response curves of leaf expansion (LE)
and plant transpiration to varying water deficits using non-linear
regression, and used these genotype-dependent parameters in
a crop simulation model (SUNFLO; Casadebaig et al., 2011)
to simulate the performance of the phenotyped genotypes in
non-observed environments.

Here, we validated our ability to use the Heliaphen platform
to manage distinct drought scenarios impacting plant leaf area,
biomass, and yield-related traits (green box, Figure 1). Two
distinct approaches were then undertaken as case studies to
demonstrate the capabilities of the platform. The first approach
validated its use for genetic and genomic studies; the platform
data was used for an association study and transcriptomics
analysis to identify the genetic basis of the response of the yield-
related traits to water deficit (blue box, Figure 1). The second
study illustrated how the traits measured using the phenotyping
platform could be used in a crop simulation model to analyze
how they impact yields in diverse and non-observed cropping
conditions (pink box, Figure 1).

MATERIALS AND METHODS

Heliaphen Platform
Heliaphen is a 650 m2 outdoor phenotyping platform in which
a robot performs measurements and irrigates plants grown in
pots. Heliaphen can hold up to 1,300 plants spread over 13
blocks consisting of two rows of 50 15-L pots each (Figure 2A).
This outdoor platform is surrounded by nets to deflect wind
and prevent bird entry. In order to control the water balance
and manage water deficit scenarios, the pots are covered
with a cone-shaped cap to prevent rainwater from entering
the pot. Environmental conditions are recorded and logged,

including temperature, wind, precipitation, and evaporative
demand.

The robot (Figure 2B) is based on an electrical propulsion
system. Its batteries allow about 48 h of continuous function
before requiring recharging for about 4 h. It is equipped with a
60-L water tank used to manage irrigation. The robot’s navigation
within the platform and its management of water and electricity
use are fully autonomous. The robot is equipped with a clamp
to enable it to pick up pots, a digital scale (Midrics 1, Sartorius
Weighting Technology GmbH, Gettingen, Germany), and four
digital cameras (Prosilica GC650 with Sony ICX424 sensor
and 659 × 493 resolution). Weighing, irrigating, and image
acquisition for each plant lasts between 30 and 90 s, depending on
the amount of water required. The weight of the pots is recorded
before and after irrigation, and the plants are photographed using
the cameras.

The robot manages drought scenarios at the plant level, i.e.,
for each pot. Before the beginning of the stress period (early
vegetative stage), pots are irrigated to saturation, and after the
excess water has drained, the pots are weighed to estimate the
pot mass at full soil water capacity. For each plant, the planned
water deficit level, expressed as a fraction of transpirable soil
water (FTSW; Sinclair et al., 2005), is converted to a target
pot weight and logged into the Heliaphen software. For each
interaction of the robot with the plants, the robot navigates
the plant stand, picks up a pot using its clamp and weighs it,
then irrigates the plant according to the defined water deficit
scenario, which in practice means adding sufficient water to
correct the difference between the actual and target pot weights.
Both control and stressed plants are processed one to four times
per day by the robot to estimate plant transpiration according
to the experiment size and required phenotyping intensity. In
addition, an independent drip irrigation system is used to support
plant growth before robot-dependent, controlled irrigation
management. This allows different irrigation and fertilization
regimes using a liquid nutrient supply managed using a Dosatron
system (Dosatron International, Tresses, France).

In addition to the high-throughput automated measurements,
manual measurements are currently required for the assessment
of other plant traits in the Heliaphen, such as individual leaf area
and plant height. The platform was developed using sunflower
as a model species; however, maize (Zea mays), soybean (Glycine
max), and tomato (Solanum lycopersicum) have been successfully
tested on it.

Plant Material, Experiments, and
Multi-Environment Trials
Various panels of sunflower plant materials were used for
different experiments in this study (summarized in Table 1), and
are briefly described below, with the full description available in
the supplementary material provided by Badouin et al. (2017).
Each trial was assigned an identifier consisting of two numbers
denoting the year, followed by two letters encoding the location
(HP for experiments on the Heliaphen platform, or EX or RV
for field experiments), and two final numbers denoting the trial
number.
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FIGURE 1 | Overview of the approaches targeted with the Heliaphen phenotyping platform. This figure illustrates how we used the phenotyping platform to (1) grow
diverse genetic material under designed stress scenarios and measure key ecophysiological traits and plant water status (light beige box), (2) conduct genetic and
genomic studies on measured phenotypes (pink box) to identify gene functions, and (3) estimate crop simulation parameters based on the measured phenotypes to
be used in simulation studies. The simulation study allows the characterization of abiotic stress responses at the crop level (envirotyping) and the evaluation of
genotype value (performance and stress tolerance) in diverse cropping conditions (blue box). Water stress is indicated by the fraction of transpirable soil water
(FTSW). Codename of experiments are specified in the dotted boxes.
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FIGURE 2 | General view of the Heliaphen platform. (A) The Heliaphen platform comprises an area of 650 m2, containing 1,300 plants spread over 13 blocks
consisting of two rows of 50 pots each. (B) The Heliaphen robot is able to pick up pots, weigh and water them, and phenotype individual plants.

TABLE 1 | Plant material and experiments used in this study.

Genetic Genotype

Trial name Panel name characteristics number Replicates Phenotyped traits Environment

13HP05 INEDI RIL Backcrossed RILs 88 4 TKW, SFTSW Heliaphen

16HP07 NK KONDI Hybrid 1 6 Plant weight, seed
weight, TKW, SFTSW

Heliaphen

14HP10 SUNRISE hybrid panel Hybrids 429 1 Seed weight Heliaphen

14RV01, 13EX01, 13EX02,
13EX03, 13EX04, 13EX05,
14EX04, 14EX05, 15EX05,
15EX07

SUNRISE hybrid panel Hybrids 426 to 482 1 to 2 Seed weight Field

14HP09, 15HP04 Commercial varieties Hybrids 16 6 Transpiration rate, leaf
expansion rate

Heliaphen

13HP02 SUNRISE parent and
hybrid panel

Hybrids and
parental lines

2 out of 24 3 Transcriptome Heliaphen

S0531, S0631, S0634,
S0731, S0831, S1031

Post-inscription
commercial varieties

Hybrids 9 to 21 Transpiration rate, leaf
expansion rate

Greenhouse

General Validation of the Phenotyping Platform
The results of experiments performed on the Heliaphen platform
were validated by comparing performance-related traits between
plants grown in pots and in the field (comparison of trials 14HP10
and 14RV01). These two experiments were conducted using the
same genetic panel (490 hybrids; Table 1) sown at the same time
(April 30 and May 5, 2014) in the same geographical location (the
trials were 4.11 km apart). Other field experiments (13EX01 to
15EX07) were conducted on the same hybrid panel at different
locations and sown on different dates. The seed weights of plants
grown in the 14HP10 trial were estimated by sampling individual
plants from each plot, whereas in the other trials, it was computed
as the ratio of harvested seed weight to the number of plants per
plot.

The platform capacity to generate distinct water deficit levels
and measure their direct impacts on performance-related traits
was determined in trial 16HP07. This trial involved one genotype,
the commercial hybrid NK KONDI, subjected to different
drought scenarios. Seven different levels of water stress were
applied during the reproductive stage (flowering to harvest), with
six replicates for each stress. The target relative stress levels were
0.2, 0.3, 0.4, 0.6, 0.75, 0.9, and 1, expressed in FTSW, where 1

corresponds to the maximum amount of water available to plants
(meaning the plant is not water stressed).

Trials Used for Genetic and Genomic Studies
The genetic study was performed using the 13HP05 Heliaphen
trial. The tested panel was a recombinant inbred line (RIL)
population derived from the cross between lines XRQ/B (SF193)
and PSC8/R (SF326). To overcome disease-sensitivity issues
caused by the duration of the experiment and the sensitivity of the
PSC8 genotype to Verticillium and Alternaria fungi, and to avoid
branched plants, 84 RILs carrying the Rf1 fertility restoration
allele were backcrossed to the non-branched male-sterile parent
XRQ/A (SF193). Two drought scenarios were conducted; the
plants either received normal irrigation or a constant water deficit
level of FTSW = 0.4 from flowering to harvest. Four replicates
were used for each condition.

The transcriptomic study was performed on plants grown
in the 13HP02 Heliaphen trial. This trial was composed of
24 genotypes; four female lines, four male lines, and their 16
hybrids. The panel included the hybrid SF193 × SF326 and
its parental lines, the results of which are presented below.
Two drought scenarios were applied during the vegetative
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stage, a control (irrigated) and a progressive water deficit (non-
irrigated) scenario, with three replicates of each genotype for
each condition. The treatments started 35 days after germination,
when irrigation was stopped for the stress treatment plants. To
ensure a comparable level of water stress between individual
plants for the transcriptomic analysis, pairs of stressed and
control plants were harvested when the FTSW of the stressed
plant reached 0.1.

Trials Used for Crop Modeling and Simulation
The comparisons of the response traits of plants grown in the
Heliaphen platform and the greenhouse were performed using
trials 14HP09 and 15HP04 for the Heliaphen platform, and
greenhouse trials S0531, S0631, S0634, S0731, S0831, and S1031.
In these previous trials (Casadebaig et al., 2008), a total of 82
commercial sunflower hybrids were phenotyped to determine
their LE and TRs in response to water deficit. Only three
control genotypes were common among all trials; therefore, the
comparison was performed using the mean and the variance of
the traits across the trialed populations. To estimate the response
traits for any particular genotype, the leaf area expansion rate,
TR, and water deficit levels were measured for 12 plants growing
under two drought treatments (control – irrigated – and a
progressive water deficit – non-irrigated), defined during the
vegetative stage. Six replicates were performed for each scenario.
The response traits were determined as the regression of the
phenotype (expansion and transpiration) response (ratio of each
stressed plant to the average of the control plants) to the water
deficit level, described in full by Casadebaig et al. (2008).

QTL Detection
To demonstrate the capacity of identifying genetic markers
associated with the water stress response of a yield component,
a genetic study was performed using data generated in the
13HP05 trial. The observation of the thousand-kernel weights
(TKWs) achieved using the Heliaphen platform, together with
the available genotyping data for the population used in this trial
(from Badouin et al., 2017), enabled QTL detection using a model
based association method (Yu et al., 2006). The population of
RILs used in the 13HP05 trial was grown in control conditions
or submitted to drought stress (FTSW maintained at 1 or 0.4,
respectively, by the robot during the seed filling stage). To study
the impact of stress on TKW, the model below was used to
identify associated genetic markers:

TKWi = γi + αiSFTSW+ βSFTSW

where TKWi is the TKW for the ith genotype, SFTSW is an
indicator of the total water deficit during the trial (integration
of 1 − FTSW), γi is the genotypic effect associated with the ith
genotype plus the residual error, αi is the coefficient of the stress
response associated with the ith genotype, and the β coefficient
corresponds to the average response of TKW to SFTSW. We
performed association test on two traits, later referred as the
interaction effect (αi) and the total genetic effect (γi + αi).

Association tests were performed using a set of 2,240
independent markers corresponding to the individual genetic
bins discriminated in the 84 RILs used in this study.

These markers come from SNPs detected by genomic re-
sequencing and implemented on an Affymetrix AXIOM
genotyping array. All individuals were previously genotyped
using this array, which comprised 586,986 markers, and the
results were presented by Badouin et al. (2017). A total of 55,951
markers were used in the present study, which were homozygous
in SF193 (less than 10% heterozygosity or missing data) and
heterozygous in SF326 × SF193 (marker frequency between 40
and 60%). Carthagene (Givry et al., 2004) was used to identify
2,240 merged markers assigned to 17 linkage groups, which were
positioned on the sunflower genetic map (Badouin et al., 2017).

The association tests were performed using a multi-locus
mixed-model (MLMM) proposed by Segura et al. (2012). This
model is based on a classic genome wide association study
(GWAS) model (Yu et al., 2006), in which marker selection
is performed using a forward stepwise approach. At each step,
the SNP with the smallest p-value is added to the model, and
the p-values, as the residual variances, are re-estimated for
all cofactors. The forward selection analysis stops when the
proportion of variance explained by the model is close to zero.
The analysis was conducted using the MLMM code written by
Segura et al. (2012) and the ASReml-R package (Butler et al.,
2009), with modifications provided by Bonnafous et al. (2018).
The method used is available on CRAN in the mlmm.gwas
package.

Transcriptomics
A transcriptomic analysis was conducted on the 13HP02 trial
plants to identify the candidate genes underlying the previously
identified quantitative trait loci (QTLs). The analysis compared
the transcriptomes of the SF193 × SF326 hybrid and the SF193
parental line grown under two conditions, irrigated or non-
irrigated, as these genetic and stress conditions correspond to
the situation studied in the genetic study using the 13HP05 trial.
The transcriptome analysis was performed on plant pairs (stress-
control), when the FTSW of the stressed individual reached 0.1.

Leaves were harvested between 11:00 and 13:00 h. The total
number of leaves was estimated, and leaves at the position
corresponding to two-thirds of the total leaf number from
the bottom were tagged and termed the nth leaf. For the
transcriptomic studies, the leaf at position n+ 1 was used.

The leaf blades were detached from their petiole and
immediately frozen in liquid nitrogen. The samples were
ground using a ZM200 grinder (Retsch, Haan, Germany)
with a 0.5-mm sieve. Total RNA was extracted using the
QIAzol Lysis Reagent (Qiagen, Hilden, Germany), following
the manufacturer’s instructions. The RNA was checked on an
agarose gel using electrophoresis, and its quality and quantity
were assessed using the Agilent RNA 6000 Nano Kit (Agilent
Technologies, Santa Clara, CA, United States). Paired-end
libraries were generated using the TruSeq sample preparation
kit (Illumina, San Diego, CA, United States) according to
manufacturer’s instructions, and were sequenced (2 × 100 bp,
oriented) on an Illumina HiSeq 2000 by DNAVision (Charleroi,
Belgium).

The transcriptomic study was performed using the EdgeR
package version 3.16.5 (Robinson et al., 2010) on R version 3.3.3
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(Another Canoe) (R Core Team, 2017). A gene was considered
to be expressed if it was detected with at least two counts per
million (CPM) in three libraries out of a larger experimental
design including 142 samples. This larger experiment included
142 plants (two died prematurely) representing 24 genotypes,
two water statuses and three replicates. The CPM values were
computed with the cpm function in the edgeR package. A total
of 27,279 genes were found to have a CPM of at least two in
three libraries. Count normalization was performed as described
in the edgeR user guide, using the TMM method (trimmed
mean normalization) and the calcNormFactors function. Unless
otherwise stated, the subsequent computation and analyses
were performed on the filtered and normalized values. The
experimental data and design are summarized in the data paper
of Blanchet et al. (2018).

To identify differentially expressed genes (DEGs) between
SF193 and SF193 × SF326, the generalized linear model
pipeline in edgeR was used as described in the user manual.
Contrasts were created using the makeContrasts function, with
the genotypic interaction calculated as: “(SF193× SF326.stress−
SF193 × SF326.ctrl) − (SF193.stress − SF193.control).” The
p-values were corrected using the false discovery rate method,
with a cutoff of 0.05.

Crop Modeling and Simulation
Model Parameterization and Evaluation
Crop modeling and simulations were used to predict the
grain yield of genotypes phenotyped in the Heliaphen platform
in non-observed field environments. SUNFLO is a process-
based simulation model for sunflower that was developed to
simulate grain yield and oil concentration as a function of time,
environment (soil and climate), and crop management practice
including cultivars (Casadebaig et al., 2011; Lecoeur et al., 2011).
Predictions made using the model are restricted to obtainable
yield (Van Ittersum and Rabbinge, 1997), and only the major
limiting abiotic factors (temperature, light, water, and nitrogen)
are included in the algorithm.

The model simulates the main soil and plant functions: root
growth, soil water and nitrogen content, plant transpiration and
nitrogen uptake, LE and senescence, and biomass accumulation.
Globally, the SUNFLO crop model has about 50 equations and
64 parameters: 43 plant-related traits, among which eight are
genotype-dependent, and 21 environment-related parameters.
The equations and parameters used in the model are summarized
in the supplementary information provided by Picheny et al.
(2017). The source code is available on the INRA software
repository.1 The INRA VLE-RECORD software environment
(Quesnel et al., 2009; Bergez et al., 2013) was used as the
simulation platform.

The model inputs are split into four categories: genotype,
climate and soil, management actions, and initial conditions.
In the model, a genotype is represented by a combination of
eight genotype-dependent parameters whose values are assumed
to be constant among environments, thus mimicking genetic
information (Boote et al., 2003; Jeuffroy et al., 2013). All but

1https://forgemia.inra.fr/record/sunflo.git

two of the parameters were directly measured in the field
trials, while the responses of LE and stomatal conductance
to water deficit necessitated controlled-condition experiments
(methods described by Casadebaig et al., 2016a). In this study,
the measurement protocol for the Heliaphen platform was the
same as in the greenhouse experiments (Casadebaig et al., 2008).
The aim was to evaluate whether this new phenotyping platform
could affect the prediction accuracy of the simulation model.

Four climatic variables were used as daily inputs for the
simulation: mean air temperature (◦C at 2 m above the ground),
global incident radiation (MJ.m−2), potential evapotranspiration
(mm, estimated using the Penman–Monteith equation), and
precipitation (mm). The properties of the soil were defined
by its texture, depth, and mineralization, while the initial soil
conditions were defined by the residual nitrogen level and
initial water content. The management practices accounted for
included sowing date, planting density, irrigation, and nitrogen
fertilization.

The SUNFLO simulation model was evaluated using both
specific research trials (40 trials, 110 plots) and agricultural
extension trials that were representative of its targeted use
(96 trials, 888 plots). Using these two datasets, the model
simulated the significant genotype × environment interactions
and ranked the performance of the genotypes (Casadebaig et al.,
2011, 2016a). The prediction error for grain yield was 15.7%
when estimated across all data (9–30% in individual trials). From
these two evaluations, the model was considered accurate enough
to discriminate between two given genotypes and be used in
simulation studies.

Impact of Parameterization Method on Model
Accuracy
The impact on model accuracy was evaluated when using the
Heliaphen phenotyping platform to estimate the value of two
genotype-dependent parameters; the response of LE and plant
transpiration to water deficit. In the parameterization dataset,
three genotypes were common between the two field experiments
and six glasshouse experiments (Casadebaig et al., 2008). The
test dataset was a subset of these three genotypes from a multi-
environmental network (described in Section “Plant Material,
Experiments, and Multi-Environment Trials”), for which grain
yield was observed in 10 locations. The prediction capacity of
the model was assessed using the bias, root-mean-squared errors
(RMSE), and relative RMSE (rRMSE) values, which are different
metrics commonly used to evaluate the predicting ability of
models. The prediction capacity of the model was compared
when using the test datasets for two sets of simulations: one
where genotypes were parameterized using the reference method
(greenhouse experiments) and one with parameters measured
using the Heliaphen phenotyping platform.

Simulation of Genotypes in a European Trial Network
A factorial design was created using four commercial hybrids
with contrasting response traits, 42 locations sampled from
sunflower cropping areas in continental Europe, and 21 years of
historical climate data. The genotypes were selected according
to their contrasting regulation of LE and transpiration in
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response to water stress, based on data from trials 14HP09
and 15HP04 (Table 1). The following genotypes were selected:
MAS86OL (rapid transpiration and LE responses to water stress),
LG5450HO (rapid transpiration response and slow LE response
to water stress), MAS89M (slow transpiration response and rapid
LE response to stress), and SY EXPLORER (slow transpiration
and LE responses to water stress).

Soil property data were obtained from a local soil analysis
in 13 of the 42 trials, and completed using the European
soil database (ESDAC2; Panagos et al., 2012; Hiederer, 2013).
The climatic dataset was obtained from the Agri4cast data
portal (Gridded Agro-Meteorological Data in Europe). For each
location considered in the study, meteorological data from 1996
to 2016 from the nearest grid point (25 km× 25 km) were used.

For each genotype× location× year combination (n = 3528),
six output variables were simulated in the crop model: seed yield
at harvest, oil content at harvest, and four time-series estimates
of the impact of the selected abiotic stress (water stress, nitrogen
deficiency, low temperature stress, or high temperature stress) on
the simulated photosynthesis rate.

Clustering of Environmental Time Series
To group environments (location × year combinations) with
similar abiotic stress patterns, each simulated time series was
summarized by integrating the value of the considered abiotic
stress variable over the crop cycle, thus defining a vector of
four stress indicators. The water stress indicator was described
by the integration of the fraction of transpirable soil water over
time (SFTSW). The nitrogen deficiency indicator was defined by
the integration of the nitrogen nutrition index (SNNI; Lemaire
and Meynard, 1997). The low and high temperature stress
indicators (SLT and SHT) were defined by the integration of
the photosynthesis response curve to temperature over time.
The HCPC function of factomineR (Husson et al., 2010) was
then used to make a hierarchical classification of environments
based on the simulated stress indicators (3528 environments× 4
indicators).

RESULTS

Phenotyping for Plant Breeding
Drought Stress Management Using Heliaphen
The aim of creating the Heliaphen platform was to precisely
control the level and duration of water deficit experienced by
plants at different stages of the crop cycle. Using the 16HP07 trial
investigating the response of plants to water stress as an example,
the Heliaphen platform was successfully used to apply different
stress levels to sunflower plants of the commercial genotype NK
KONDI over 40 days, from anthesis to harvest (Figure 3A). The
impacts of the integrated drought stress indicator (SFTSW) on
the TKW value, seed weight, and plant biomass are illustrated
in Figures 3B–D, respectively. When modeling the phenotype
response to water deficit using the model Y = (a+bSFTSW)

(1+cSFTSW) , the
rRMSE values were 4.06, 0.20, and 0.07%, respectively.

2esdac.jrc.ec.europa.eu

Comparison Between Phenotypes Observed Using
the Heliaphen Platform and in the Field
We also evaluated how traits measured on the Heliaphen
platform correlated to those observed in field conditions. For
this purpose, we compared the weight of seeds produced by each
plant grown in the trials conducted on the Heliaphen platform
(14HP10 trial) and in the field (14RV01 trial). The plants used
in both trials shared the same genetic material (SUNRISE hybrid
genotype panel), growing period, and environmental conditions.
The seed weight measurements between the two tests were
significantly correlated (R = 0.23, p-value < 0.001; Figure 4A).
This population was also evaluated in eight other trials in a
European network over 3 years (trials 13EX01–04, 14EX04–05,
15EX05, and 15EX07). The average correlation between the field
trials was 0.22 (Figure 4B), which was similar to the correlation
level found between platform and field trials grown concurrently
(14HP10 and 14RV01). The Heliaphen trial was also significantly
correlated to two other field trials [14EX04 (R = 0.17) and 15EX07
(R = 0.13)].

Figure 4B shows that, although the pedoclimate has a strong
impact on the seed production of the sunflower panel, resulting
in significant differences between the variances and means of
the different trials, the seed weight distribution measured on the
platform is within the same range as the field trials.

Association Genetic Analysis of the Phenotypes
Measured on the Heliaphen Platform
We performed a GWAS on the response of seed weight
to a constant water deficit during the reproductive phase
(FTSW = 0.4) in a population of RILs (13HP05 trial). The genetic
markers associated with the TKW response to drought stress were
modeled using the linear model described in Section “Genetic
Association Study” of Section “Materials and Methods.” In order
to identify markers associated with this response, an association
test (MLMM) was performed on the genetic coefficient of the
stress response (αi, interaction effect) and on the sum between
the stress response coefficient and the genetic effect (γi + αi,
total genetic effect). Using this approach, we selected a set of
markers that together explained the genetic variance of the
studied characters. Four markers were found to be associated
with the coefficient of the response to drought stress and one to
the sum of the stress response coefficient and the genetic effect
(Table 2). All markers were positioned on the sunflower genetic
map; the Manhattan plots in Figure 5 enable the visualization of
the p-values calculated for the first MLMM step corresponding to
the classical model of GWAS (Yu et al., 2006).

Transcriptomic Analysis
In order to identify the best candidate genes carrying the
polymorphisms responsible for the differing responses to the
water deficit, we studied gene expression in both the homozygote
SF193 and the heterozygous SF193/SF326 backgrounds, the
same genotypes used for the QTL detection. The transcriptomic
analysis revealed that on the 27,278 expressed genes, 1284 are
differentially expressed in interaction (Genotype × Treatment)
and 555 and 1659 are, respectively, differentially expressed in
SF193 and SF193 × SF326 as a function of the treatment
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FIGURE 3 | Long-term daily monitoring of water status and its impact on yield and biomass traits using the Heliaphen platform. (A) After anthesis (day 0), sunflower
plants (NK KONDI genotype) were exposed to different water deficit levels, expressed as different fractions of transpirable soil water (FTSW; dark to light blue
corresponding respectively to FTSW values from 0.2 to 1). Points correspond to the average FTSW values for six plants per stress treatment, and lines correspond
to the fit of the points for each stress, calculated using the LOESS regression method. (B) Thousand-kernel weight (TKW) in response to changes in SFTSW
(integration of 1 – FTSW) for each plant. (C) Seed weight (per plant) in response to changes in SFTSW. (D) Biomass in response to changes in SFTSW. rRMSE,
relative root mean square error of the polynomial ratio model.

conditions (Supplementary Data Sheet S1 in Supplementary
Material). An analysis of enrichment in gene ontology terms
(GO) was performed using the approach proposed by AgriGO
(Du et al., 2010) on the sets of DEGs. Results are available
in Supplementary Material (Supplementary Data Sheet S2–S4
and Supplementary Figures S1–S8 in Supplementary Material).
The pathways identified in response to drought in our study
correspond to those previously described by Rengel et al. (2012)
such as auxin signaling, response to abiotic stimulus, cell wall
organization, and biogenesis as well as water transport processes
(Kiani et al., 2007). Based on the hypothesis that the causal
polymorphism would influence the expression of the candidate
gene, we searched for genes around the associated markers
(±5 Mb) whose expression levels showed significant interaction
(FDR < 0.05) between drought stress and genotype in the
transcriptomic experiment (13HP02 trial). The expressions of the
most significant genes in those regions are shown in Figure 6.

On chromosome 12, we identified a marker significantly
associated with the drought stress coefficient. The effect of the
alternative allele in SF326 on the coefficient of the stress response

was 0.084, providing this genotype with drought tolerance.
We were able to identify the gene HanXRQChr12g0385481,
situated about 1.2 Mb upstream of the marker. The protein
encoded by this gene shares sequence similarity (54% of
protein identity) with the Arabidopsis thaliana protein UDP-
GLYCOSYLTRANSFERASE 90A1 (UGT90A1). The UDP
glycosyltransferases are a large protein family, some of which
are involved in abiotic stress (including drought) responses in
Arabidopsis (Li et al., 2016a,b, 2017).

We identified two markers associated with the drought stress
coefficient on chromosome 14. The effects of the alternative
alleles in SF326 on the coefficient of the stress response were 0.118
and −0.106, providing tolerance and sensitivity, respectively.
We identified the gene HanXRQChr14g0445121 located 1.4 Mb
upstream of one of the markers. This product of this gene shared
47.71% of the sequence of the Arabidopsis protein RING-H2
FINGER PROTEIN ATL54, which is involved in the formation
of the secondary cell wall (Noda et al., 2013). The second
gene identified on chromosome 14 was HanXRQChr14g0459681,
situated 20 kb upstream of the other marker. This gene encodes
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FIGURE 4 | Comparison of seed weights per plant measured on the Heliaphen phenotyping platform and in field conditions. (A) Correlation matrix between the seed
dry weights of the SUNRISE hybrid panel (n = 426) grown on the platform (14HP10, highlighted in the gray box) and the nine field trials (14RV01, 13EX01–04,
14EX04–05, 15EX05, and 15EX07). The correlation coefficients are indicated in the upper right section of the panel, with significant differences indicated by asterisks
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001). (B) Boxplot of the seed dry weights observed for the SUNRISE panel.

TABLE 2 | Markers associated with the thousand-kernel weight response to drought stress, and the nearby candidate genes with differential expression in droughted
and irrigated plants of the RIL population parents.

Trait Marker LG Position (bp) Effect Gene Distance (bp)

αi AX-105774006 12 164538019 0.08 HanXRQChr12g0385481 1258962

αi AX-105362253 14 123649962 0.12 HanXRQChr14g0445121 1443617

αi AX-105376351 14 167871915 −0.11 HanXRQChr14g0459681 20774

αi AX-105568999 15 92795704 0.08 HanXRQChr15g0486311 2980461

αi + γi AX-105798220 1 61598886 2.74 HanXRQChr01g0009921 4628392

Trait column is based on the modeled response of thousand-kernel weight to water stress with the traits used in association defined as the interaction effect (αi) and the
total genetic effect (γi + αi). Positions, names, and distances are based on the HanXRQv1 genome.

a protein that shares 38.45% of its identity with the Arabidopsis
protein SMAX1-LIKE 7 (SMXL7), which is involved in the
regulation of shoot development (Liang et al., 2016).

On chromosome 15, one marker was found to be associated
with the drought stress coefficient. The effect of the alternative
allele in SF326 on the coefficient of the stress response was
0.085, providing tolerance. The gene HanXRQChr15g0486311
was found to be 2.9 Mb upstream of this marker. Its product
shares 52.81 and 46.80% of its sequence with the Arabidopsis
transcription factors TCP19 and TCP9, respectively. These
transcription factors are involved in the control of leaf senescence
and the regulation of jasmonic acid (Danisman et al., 2012,
2013), processes which have been widely reported to be linked to
the drought stress response in many different species, including
sunflower (Marchand, 2014; Andrade et al., 2017).

One marker on chromosome 1 was associated with the total
genetic effect (sum of the drought stress genetic coefficient and
the genetic effect). The effect of the alternative SF326 allele on
the total genetic effect was 2.737, providing drought tolerance to
this genotype. We identified the gene HanXRQChr01g0009921,

situated 4.6 Mb upstream of this marker, which encodes a
protein sharing 66.47% of its sequence with the monofunctional
riboflavin biosynthesis protein RIBA3 in Arabidopsis. This
protein is involved in the biosynthesis of riboflavin (Hiltunen
et al., 2012), which is believed to alleviate ROS production during
osmotic stress (Deng et al., 2013).

The Heliaphen platform allowed us to successfully identify
genomic regions associated with the water deficit stress response
affecting yield traits. We could compare these data with other
studies to identify candidate genes putatively involved in the
response to drought stress. Further studies are required to
elucidate the involvement of these candidate genes in the changes
in yield-related traits caused by water stress, but the platform was
instrumental in generating these promising results.

Phenotyping for Crop Modeling
Impact of Parameterization Method on Crop Model
Accuracy
The SUNFLO crop model (Casadebaig et al., 2011) uses
phenotypic traits as genotype-dependent input parameters.
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FIGURE 5 | Manhattan plots of the GWAS performed for two traits related to drought stress tolerance. (A) Results of the GWAS performed on the genetic coefficient
of stress response. (B) Results of the GWAS performed on the sum of the coefficients for the stress response and the genotypic effect (total genetic effect). The
markers found to be associated with each effect using the MLMM method are highlighted in red. The p-values on the graph correspond to those obtained using a
classical GWAS model, performed during the first step of the MLMM method.

Two of these describe the response of LE and transpiration
to water stress, requiring dynamic leaf area measurements and
the assessment of water deficit at the plant level, respectively.
Here, we compare how the model accuracy is affected by the
measurement of these parameters using the Heliaphen platform
or the reference method based on greenhouse experiments
(Casadebaig et al., 2008).

We first compared the standard error of the parameter
estimations performed using measurements of commercial
hybrids taken in either the Heliaphen or greenhouse conditions
(Figure 7). Lower parameter values indicate that the genotypes
started to regulate either LE or transpiration at lower FTSW
values, indicating that the genotype maintains its carbon
assimilation at greater water deficits. In comparison with
measurements performed on greenhouse experiments, those on
the Heliaphen platform resulted in similar errors in parameter
estimation for the transpiration response (∼1.1 SD for both
conditions), but halved the error in the estimated LE response
(0.3 SD in the Heliaphen measurements vs. 0.7 SD in the
greenhouse ones). Additionally, the estimation errors in the
Heliaphen measurements were not dependent on the parameter
value, as was the case for the greenhouse measurements. Because
these traits are used as input values in the simulation model and
have an impact on yield prediction, we also evaluated how the
model prediction accuracy was impacted when using different
parameterization conditions. The rRMSE values for the yield
prediction were equivalent (13%) between the simulations made

from the data obtained from the Heliaphen platform trials and
from the greenhouse trials. We can therefore conclude that the
accuracy of predictions made using measurements taken using
the Heliaphen platform is conserved, and that this platform
facilitates greater precision in the measurement of two input
parameters, LE and transpiration.

Integrating Traits Measured Using the Heliaphen
Platform to Simulate Genotype–Environment
Interactions
The Heliaphen platform enables the automated measurement of
the genotype-dependent traits of plant varieties. This information
can be fed into a simulation model to estimate their productivity
in different types of environments. To illustrate this approach,
we selected four genotypes with contrasting responses to water
deficit stress (Table 3), and used a computational experiment to
compare them in a trial network representative of sunflower-
growing regions in Europe. The selected genotypes were
simulated using the SUNFLO crop model in 42 locations over 21
climatic years, from 1996 to 2016. We defined an environment as
the combination of a location and a year (42 locations× 21 years
gives a total of 882 environments). Simulations were performed
for each genotype in each of the environments, and the
average abiotic stress indicators of the four genotypes in each
environment were calculated.

Figure 8A depicts a principal component analysis (PCA) in
which each point depicts the average stress indicators in one
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FIGURE 6 | Expression levels of genes in close proximity to SNPs associated with the stress response. Expression levels of differentially expressed genes within 5 Mb
of the SNPs associated with the drought stress response in the backcrossed RIL population [SF193 × (SF193 × SF326)]. Expression levels (count per million, CPM)
were evaluated in SF193 and the SF193 × SF326 plants grown under water stress (stress, dark gray) or normal irrigation (control, light gray), with three replicates.
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FIGURE 7 | Drought response parameters of the SUNFLO crop model measured for different commercial hybrids in a greenhouse environment and using the
Heliaphen platform. Points correspond to the value of the parameter for each genotype. Ranges indicated with dark lines correspond to the standard error of the
estimated parameter. Ranges indicated with shading correspond to the standard deviation for the population phenotyped in the greenhouse (n = 32) or Heliaphen
platform (n = 82).
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TABLE 3 | Response parameters of genotypes used for the simulation.

Genotype Transpiration rate Leaf expansion rate

LG 5450H0 −9.66 (+) −4.94 (−)

MAS 86OL −7.64 (+) −2.40 (+)

MAS89M −13.98 (−) −2.15 (+)

SY Explorer −13.08 (−) −4.96 (−)

(+) indicates and early response of the process to water stress (occurring at low
water deficit level), and (−) indicates a late response (occurring at high water deficit).

environment. Five environment clusters were defined, and each
group (or environment type; Chenu et al., 2013) was labeled
following the projection of stress indicators in the PCA plane. For
each environment types, the frequency for which each genotype

ranked the most highly is represented in Figure 8B. Finally,
the relative frequencies of each environment type could then be
mapped to the corresponding geographical locations (Figure 8C)
to illustrate the most frequent abiotic stress factors in the different
sunflower-growing regions across Europe; for example, the high
frequency of drought stress in France could be explained by the
impact of the shallower soil depths in these locations.

We also aimed to identify environment types where specific
genotypes would perform better than others, and therefore
adjusted the simulated yields by the average yield of each
genotype and ranked the genotypes on this index for each
environment (Figure 8B). Thus, we could characterize the abiotic
stress tolerance profiles of each genotype, revealing the types
of environment that maximize the yield of each genotype in
comparison with the others. Based on this method, we revealed

FIGURE 8 | Use of simulation modeling to characterize the stresses in 42 European sunflower cropping environments. (A) Clustering of environments (year-location)
by the principal components of average simulated stresses for four sunflower genotypes. The PCA was performed using parameters for high temperature stress
(SHT), low temperature stress (SLT), water stress (SFTSW), and nitrogen deficit (SNNI). Variables are represented with red arrows. The environments are clustered
into five groups; four are associated with a specific stress and named accordingly, and the one without any obvious stress influence was named “Optimal.”
(B) Standardized yields of each genotype ranked for each simulated environment group, with the frequency of the highest ranked genotype for each environment
cluster reported inside the bars. (C) Map of Europe with a barplot at each location. The colors of the barplots indicate the occurrence of the location in the different
environment clusters.
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that LG5450HO displayed a balanced tolerance profile (relatively
good yields in each environment type), SY EXPLORER
was particularly adapted to heat-stressed environments while
MAS86OL was more adapted to cold-stressed environments,
and MAS89M was adapted to nitrogen stress and water-stressed
environments. The Heliaphen platform could therefore provide
key phenotyping information for these sunflower genotypes,
which would enable us to better select cultivars suited to a
particular environment and identify the areas where they could
potentially perform best.

DISCUSSION

In order to characterize sunflower genotypes for their response
to drought stress, we developed the Heliaphen high-throughput
phenotyping platform. This facility allows different water stress
scenarios to be applied to plants, and the subsequent evaluation
of the effects of these stresses on the overall sunflower yield
and its component traits. Results obtained on the platform
confirmed its reliability in implementing water stress on large
panels of plants, and its automatic measurement of specific
plant traits for use as input parameters in crop simulation
models.

The Heliaphen platform is a unique automated phenotyping
facility. Most phenotyping platforms rely on strongly controlled
environmental conditions and are operated inside greenhouse
or growth chambers, and mainly target the vegetative part
of the plant cycle because of the space required by mature
crop plants (Granier et al., 2005; Pereyra-Irujo et al., 2012;
Honsdorf et al., 2014; Cabrera-Bosquet et al., 2016). These
facilities make it possible to control the biotic and abiotic
environment more finely but consequently move away from
the more variable light spectra and climatic conditions in
the field. By contrast, phenotyping tools such as unmanned
aerial vehicles (Sankaran et al., 2015; Hu et al., 2018) or
robots (Deswarte et al., 2015; Underwood et al., 2017) can
measure plants in actual agricultural conditions, although with
little control over climate scenarios. The Heliaphen platform
provides a more realistic environment than other automated
phenotyping platforms within glasshouses, while still enabling
climate factors such as water and nutrient availability to be tightly
controlled.

Automated phenotyping tools for the Heliaphen platform
are continuously under development. Different sensor types
are currently being developed to monitor new sunflower traits;
for example, ultrasonic sensors to monitor plant height, laser
scanners to measure the stem diameter, and a light curtain
sensor (Rapidoscan RS-C-025-768-ECT) to phenotype the leaf
area profile. The analysis of the growth of organs (stem, petiole,
and leaf blade) over time has been greatly improved by the
development of an image analysis algorithm, in which a 3D point
cloud is computed using structure from motion techniques based
on RGB images of the plant. The 3D cloud is then segmented into
organs whose area, length, and volume can be estimated (Gélard
et al., 2017). In addition to sunflower, we have successfully used
the platform to monitor the growth and development of other

species such as soybean, maize, and tomato. It would also be
possible to conduct trials combining several stresses, for example,
to study how plant responses to nutrient stress interact with their
response to a water deficit.

We first aimed to validate the possibility of employing
specific drought scenarios and comparing the responses of yield-
related traits assessed on the platform to field conditions. We
successfully applied different stress intensities over various time
scales, including the entire grain-filling period (about 40 days).
In addition, the comparison of seed production between field
trials and a Heliaphen platform trial showed a relatively poor
but significant (because of the power of the statistical design)
correlation between the observed seed weights. This highlights
the importance of genotype–environment interactions and the
difficulty of predicting them and therefore to identify stable QTLs
across environment scenarios. Meanwhile, we can also consider
that this correlation indicates the potential of the Heliaphen
facility to produce phenotypes relevant to agronomic conditions
in the field. It is therefore possible to study and identify genes
putatively controlling drought tolerance in yield traits using the
Heliaphen platform.

Identifying Genes Controlling Drought
Tolerance in Sunflower Yields
We subjected a RIL population to different drought stress
scenarios and conducted a genetic study, identifying a total
of five genomic regions associated with the response of
seed weight to water stress. The transcriptomes of both the
homozygous line SF193 and the heterozygous SF193/SF326
hybrid were assessed in both stressed and unstressed conditions.
Following the hypothesis that the causal polymorphisms
would influence gene expression, we looked for the most
significant DEGs in the region surrounding the identified
markers.

Among the identified genes, several stood out as potential
drought-response candidate genes. One encodes a protein
belonging to the large UDP glycosyltransferase family, some of
which are involved in the responses to abiotic stress (including
drought) in Arabidopsis (Li et al., 2016a,b, 2017). We also
detected a putative TCP transcription factor homologous to
AtTCP19, which is reported to be involved in the control of leaf
senescence and the regulation of jasmonic acid metabolism in
Arabidopsis (Danisman et al., 2012, 2013). The TCP transcription
factors have been linked to the drought responses of many plant
species, including sunflower (Marchand, 2014; Andrade et al.,
2017). Another candidate gene encodes a protein homologous
to riboflavin RIBA3. In Arabidopsis, this protein is involved in
the biosynthesis of riboflavin (Hiltunen et al., 2012), which is
suggested to relieve the production of ROS during osmotic stress
(Deng et al., 2013).

In our study, the distances between the identified genes and
the positions of the markers were sometimes very large; for
example, the marker detected on chromosome 1 is more than
4 Mb away from the putative candidate gene identified. The
association markers represent genomic regions between two
recombination points, so it is not surprising to have a large
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distance between the markers and the DEGs. Extra care must
be taken when selecting candidate genes at a relatively large
distance from the genetic marker of a trait; however, selecting a
gene whose expression regulation by drought stress is different
in the two parental backgrounds and is positioned near the
polymorphic marker associated with the drought response does
constitute an efficient method by which to identify a small
number of relevant genes of interest.

The Heliaphen platform allowed us to identify genomic
regions associated with the water deficit stress response affecting
yield traits, that we must consider with great care given
the small size of the population and the reduced statistical
power of the association analysis. Future studies should aim to
identify the genomic regions associated with the physiological
or developmental responses to drought stress in other organs
or over alternative growth periods, such as the vegetative
stage or in the developing seeds, and combine this with a
transcriptomic analysis to identify the responsible genes. The
Heliaphen platform can also be used for functional studies,
such as broad transcriptomic analyses (Badouin et al., 2017)
to identify DEGs under water stress conditions and other
omics techniques combined with manual descriptions of classical
physiological traits, such as photosynthesis, transpiration, and
osmotic adjustment.

Using Simulation to Predict
Genotype-Environment Interactions
The other major goal of developing the platform was to integrate
ecophysiology and crop modeling. Physiological traits such as
water deficit levels, leaf area, and water loss dynamics were
more precisely measured in the Heliaphen platform than in
the greenhouse and could be successfully used as parameters
in a crop simulation model. The accuracy of the SUNFLO
model was similar using the reference measurements taken
in the greenhouse or those obtained using the platform.
The platform setup is easier and more efficient than making
manual greenhouse measurements, and therefore facilitates
the evaluation of stress response traits in a large number of
genotypes each year, keeping pace with the development of new
varieties.

For the sunflower crop, while low-throughput phenotyping
enabled the link between crop physiology and modeling, we
showed in this study that the automation allowed us to use
functional genomics tool to better study the genetic basis of
complex traits (Yin et al., 2018). While other phenotyping
platforms are focused on this goal, such as the PHENOARCH
platform (Cabrera-Bosquet et al., 2016) recently used by Chen
et al. (2018) to estimate genotype-specific radiation use efficiency
in complex canopies through reverse modeling; platforms
operating in outdoor conditions are not frequent (Araus et al.,
2018). The LeasyScan platform (Vadez et al., 2015), which
combine 3D imaging and lysimetry, rely on a similar strategy
to assess canopy traits affecting water use. Overall, whether in
indoor or outdoor conditions, platforms bridging phenotyping
and modeling are very recent tools and it still speculative to
consider that semi controlled (as the Heliaphen platform) or

controlled greenhouse environment limits the transferability of
results to agricultural field conditions.

We also expanded the scope of our study by designing a
simulation experiment where the phenotyped genotypes could be
used to reveal abiotic stresses occurring at the plant level in a large
range of environments. Similar cropping conditions could then
be grouped together to identify broad environment types with
more predictable stress dynamics (also known as envirotyping;
Xu, 2016). Using this method, we identified the major stresses
occurring in the various sampled locations. These type of
environments matched the cropping conditions targeted when
designing the experimental network: more optimal cropping
conditions in Eastern Europe, cold-stress in continental and
northern locations, and drought stress caused by shallow soils in
South-West France.

The accuracy of this method depends on the quality of
the data used to describe the locations, including the climate,
soil properties, and crop management systems. We found that
the method was particularly sensitive to the estimation of the
water capacity of the soil. As finer environmental descriptions
become available in the future, we hope to increase the
resolution and span of the simulations, which could be used
to extend the classical evaluations of new varieties and enable
a better recommendation of their growing range based on the
environment types identified in the simulation studies. Although
the variety recommendation method performed in this study
only illustrated abiotic stress tolerances and does not constitute
an operational selection method for use by growers (as genotypes
can greatly differ from their potential yields), this is an important
step to link plant phenotyping platforms and previous model-
based variety recommendations (Casadebaig et al., 2016a).
In addition, model-based environmental characterization was
previously shown to be a powerful technique for the genetic
study of yield responses to combined abiotic stresses (Mangin
et al., 2017) because simulated abiotic stresses variables were
closer (more related to yield) to the plant stress, and therefore
gene action, than variables derived from pedoclimatic data (Lasky
et al., 2015; Rasheed et al., 2017).

A challenge for plant breeders is to predict the performance
of novel genetic materials in different pedoclimatic environments
and under different crop management strategies. To achieve this,
predictive approaches bridging quantitative genetics and crop
modeling are currently being developed to scale traits from the
molecular level to the crop level (Bustos-Korts et al., 2016). One
option is to process the data in two steps, first using genomic
predictions to estimate the genotype-dependent parameters
(traits assumed to be more heritable) of a crop simulation model
and then using the model to predict performance-related traits
(assumed to handle genotype-environment interactions) as a
function of the environmental data [e.g., Chenu et al., 2009 for
maize; Quilot-Turion et al., 2016 for peach (Prunus persica)]. The
first step, involving the genetic analysis of the input parameters
of the model either to estimate the allelic effects of a QTL
or to train a genomic selection population, largely relies on
phenotyping capacity (Cooper et al., 2014). Such analyses can
be performed using the Heliaphen platform, which illustrates its
potential for accelerating the enhancement of our understanding
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of the genetic control of drought stress plasticity, as well as
characterizing complex response traits in a variety of genotypes.
It also enables crop model-based approaches to characterizing
and clustering cropping environments, leading to a better match
between genotypes and their optimal growing conditions.

AUTHOR CONTRIBUTIONS

NB, DV, PB, DC, CC, J-FL, GT, PV, PC, and NL designed
the presented idea. FG, LG, BM, PC, and NL developed the
theory and performed the computations. FG, PC, and NL wrote
the manuscript with input from all authors. PV, PC, and NL
conceived the study and were in charge of overall direction and
planning.

FUNDING

Research grants were provided by the French Ministry of
Research (ANR SUNRISE ANR-11-BTBR-0005). FG’s Ph.D.
studentship was funded by MAS Seeds and Caussade Semences.

ACKNOWLEDGMENTS

We thank all partners of the SUNRISE project of the French
National Research Agency (Biogemma, Caussade Semences, Mas
Seeds, RAGT 2n, Soltis, Syngenta, and Terres Inovia) for assisting
us with field trials and the provision of genetic materials. We
especially thank Stéphane Muños for the provision of the genetic
map of the RIL population. We are also grateful to the students
(Claire Barbet-Massin, Ewen Gery, Bertrand Haquin) and staff
(Michel Labarrère, Pierre Maury, Colette Quinquiry) of INRA-
ENSAT who helped us to develop the phenotypic database, and
to the RECORD team at INRA who helped with the modeling
and simulations. We are also grateful to Kathleen Farquharson
for her insightful inputs while editing the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2018.01908/
full#supplementary-material

REFERENCES
Adiredjo, A. L., Navaud, O., Grieu, P., and Lamaze, T. (2014a). Hydraulic

conductivity and contribution of aquaporins to water uptake in roots
of four sunflower genotypes. Bot. Stud. 55:75. doi: 10.1186/s40529-014-
0075-1

Adiredjo, A. L., Navaud, O., Muños, S., Langlade, N. B., Lamaze, T., and Grieu, P.
(2014b). Genetic control of water use efficiency and leaf carbon isotope
discrimination in sunflower (Helianthus annuus l.) subjected to two drought
scenarios. PLoS One 9:e101218. doi: 10.1371/journal.pone.0101218

Andrade, A., Escalante, M., Vigliocco, A., del Carmen Tordable, M., and
Alemano, S. (2017). Involvement of jasmonates in responses of sunflower
(Helianthus annuus) seedlings to moderate water stress. Plant Growth Regul.
83, 501–511. doi: 10.1007/s10725-017-0317-9

Andrianasolo, F. N., Casadebaig, P., Langlade, N., Debaeke, P., and Maury, P.
(2016a). Effects of plant growth stage and leaf ageing on transpiration and
photosynthesis response to water stress in sunflower. Funct. Plant Biol. 43,
797–805. doi: 10.1071/FP15235

Andrianasolo, F. N., Champolivier, L., Debaeke, P., and Maury, P. (2016b). Source
and sink indicators for determining nitrogen, plant density and genotype effects
on oil and protein contents in sunflower achenes. Field Crops Res. 192, 33–41.
doi: 10.1016/j.fcr.2016.04.010

Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., and Cairns, J. E. (2018).
Translating high-throughput phenotyping into genetic gain. Trends Plant Sci.
23, 451–466. doi: 10.1016/j.tplants.2018.02.001

Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., et al. (2017).
The sunflower genome provides insights into oil metabolism, flowering and
asterid evolution. Nature 546:148. doi: 10.1038/nature22380

Bergez, J., Chabrier, P., Gary, C., Jeuffroy, M., Makowski, D., Quesnel, G., et al.
(2013). An open platform to build, evaluate and simulate integrated models of
farming and agro-ecosystems. Environ. Modell. Softw. 39, 39–49. doi: 10.1016/
j.envsoft.2012.03.011

Blanchet, N., Casadebaig, P., Debaeke, P., Duruflé, H., Gody, L., Gosseau, F.,
et al. (2018). Data describing the eco-physiological responses of twenty-four
sunflower genotypes to water deficit. Data Brief. 21, 1296–1301. doi: 10.1016/j.
dib.2018.10.045

Blanchet, R., Marty, J. -R., Merrien, A., and Puech, J. (1981). “Main factors limiting
sunflower yield in dry areas,” in Production and Utilization of Protein in Oilseed
Crops, ed. E. S. Bunting (Berlin: Springer), 205–226. doi: 10.1007/978-94-009-
8334-2_18

Boote, K. J., Jones, J. W., Batchelor, W. D., Nafziger, E. D., and Myers, O.
(2003). Genetic coefficients in the CROPGRO-soybean model: links to field
performance and genomics. Agron. J. 95, 32–51. doi: 10.2134/agronj2003.
0032

Bonnafous, F., Fievet, G., Blanchet, N., Boniface, B.-C., Carrère, S., Gouzy, J., et al.
(2018). Comparison of GWAS models to identify non-additive genetic control
of flowering time in sunflower hybrids. Theor. Appl. Genet. 131, 319–332. doi:
10.1007/s00122-017-3003-4

Bustos-Korts, D., Malosetti, M., Chapman, S., and van Eeuwijk, F. (2016).
“Modelling of genotype by environment interaction and prediction of complex
traits across multiple environments as a synthesis of crop growth modelling,
genetics and statistics,” in Crop Systems Biology, eds X. Yin and P. C. Struik
(Berlin: Springer), 55–82. doi: 10.1007/978-3-319-20562-5_3

Butler, D., Cullis, B., Gilmour, A., and Gogel, B. (2009). ASReml-r Reference
Manual. Brisbane, QLD: Queensland Department of Primary Industries.

Cabrera-Bosquet, L., Crossa, J., Zitzewitz, J., von, Serret, M. D., and Araus, J. L.
(2012). High-throughput phenotyping and genomic selection: the frontiers of
crop breeding ConvergeF. J. Integr. Plant Biol. 54, 312–320. doi: 10.1111/j.1744-
7909.2012.01116.x

Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., and
Tardieu, F. (2016). High-throughput estimation of incident light, light
interception and radiation-use efficiency of thousands of plants in a
phenotyping platform. New Phytol. 212, 269–281. doi: 10.1111/nph.14027

Casadebaig, P., Debaeke, P., and Lecoeur, J. (2008). Thresholds for leaf expansion
and transpiration response to soil water deficit in a range of sunflower
genotypes. Eur. J. Agron. 28, 646–654. doi: 10.1016/j.eja.2008.02.001

Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L.,
and Debaeke, P. (2011). SUNFLO, a model to simulate genotype-specific
performance of the sunflower crop in contrasting environments. Agric. For.
Meteorol. 151, 163–178. doi: 10.1016/j.agrformet.2010.09.012

Casadebaig, P., Mestries, E., and Debaeke, P. (2016a). A model-based approach
to assist variety assessment in sunflower crop. Eur. J. Agron. 81, 92–105.
doi: 10.1016/j.eja.2016.09.001

Casadebaig, P., Zheng, B., Chapman, S., Huth, N., and Faivre, R. (2016b).
Assessment of the potential impacts of wheat plant traits across environments
by combining crop modeling and global sensitivity analysis. PLoS One
11:e0146385. doi: 10.1371/journal.pone.0146385

Chapman, S., Cooper, M., and Hammer, G. (2002). Using crop simulation to
generate genotype by environment interaction effects for sorghum in water-
limited environments. Austr. J. Agric. Res. 53, 379–389. doi: 10.1071/AR01070

Frontiers in Plant Science | www.frontiersin.org 17 January 2019 | Volume 9 | Article 1908

https://www.frontiersin.org/articles/10.3389/fpls.2018.01908/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2018.01908/full#supplementary-material
https://doi.org/10.1186/s40529-014-0075-1
https://doi.org/10.1186/s40529-014-0075-1
https://doi.org/10.1371/journal.pone.0101218
https://doi.org/10.1007/s10725-017-0317-9
https://doi.org/10.1071/FP15235
https://doi.org/10.1016/j.fcr.2016.04.010
https://doi.org/10.1016/j.tplants.2018.02.001
https://doi.org/10.1038/nature22380
https://doi.org/10.1016/j.envsoft.2012.03.011
https://doi.org/10.1016/j.envsoft.2012.03.011
https://doi.org/10.1016/j.dib.2018.10.045
https://doi.org/10.1016/j.dib.2018.10.045
https://doi.org/10.1007/978-94-009-8334-2_18
https://doi.org/10.1007/978-94-009-8334-2_18
https://doi.org/10.2134/agronj2003.0032
https://doi.org/10.2134/agronj2003.0032
https://doi.org/10.1007/s00122-017-3003-4
https://doi.org/10.1007/s00122-017-3003-4
https://doi.org/10.1007/978-3-319-20562-5_3
https://doi.org/10.1111/j.1744-7909.2012.01116.x
https://doi.org/10.1111/j.1744-7909.2012.01116.x
https://doi.org/10.1111/nph.14027
https://doi.org/10.1016/j.eja.2008.02.001
https://doi.org/10.1016/j.agrformet.2010.09.012
https://doi.org/10.1016/j.eja.2016.09.001
https://doi.org/10.1371/journal.pone.0146385
https://doi.org/10.1071/AR01070
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01908 January 16, 2019 Time: 13:10 # 18

Gosseau et al. Outdoor High-Throughput Phenotyping Platform

Chapman, S., Cooper, M., Podlich, D., and Hammer, G. (2003). Evaluating plant
breeding strategies by simulating gene action and dryland environment effects.
Agron. J. 95, 99–113. doi: 10.2134/agronj2003.0099

Chaves, M. M., Maroco, J. P., and Pereira, J. S. (2003). Understanding plant
responses to drought-from genes to the whole plant. Funct. Plant Biol. 30,
239–264. doi: 10.1071/fp02076

Chen, T.-W., Cabrera-Bosquet, L., Alvarez Prado, S., Perez, R., Artzet, S., Pradal, C.,
et al. (2018). Genetic and environmental dissection of biomass accumulation in
multi-genotype maize canopies. J. Exp. Bot. ery309. doi: 10.1093/jxb/ery309

Chenu, K., Chapman, S., Tardieu, F., McLean, G., Welcker, C., and Hammer, G.
(2009). Simulating the yield impacts of organ-level quantitative trait loci
associated with drought response in maize: a" gene-to-phenotype" modeling
approach. Genetics 183:1507. doi: 10.1534/genetics.109.105429

Chenu, K., Deihimfard, R., and Chapman, S. C. (2013). Large-scale characterization
of drought pattern: a continent-wide modelling approach applied to the
Australian wheatbelt–spatial and temporal trends. New Phytol. 198, 801–820.
doi: 10.1111/nph.12192

Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S., et al.
(2016). Leaf growth response to mild drought: natural variation in Arabidopsis
sheds light on trait architecture. Plant Cell 28, 2417–2434. doi: 10.1105/tpc.16.
00483

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., and McCouch, S. (2013).
Next-generation phenotyping: requirements and strategies for enhancing our
understanding of genotype-phenotype relationships and its relevance to crop
improvement. Theor. Appl. Genet. 126, 867–887. doi: 10.1007/s00122-013-
2066-0

Cooper, M., Messina, C. D., Podlich, D., Totir, L. R., Baumgarten, A., Hausmann,
N. J., et al. (2014). Predicting the future of plant breeding: complementing
empirical evaluation with genetic prediction. Crop Pasture Sci. 65, 311–336.
doi: 10.1071/cp14007

Danisman, S., Dijk, A. D. J., van Bimbo, A., van der Wal, F., Hennig, L., de Folter, S.,
et al. (2013). Analysis of functional redundancies within the arabidopsis TCP
transcription factor family. J. Exp. Bot. 64, 5673–5685. doi: 10.1093/jxb/ert337

Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A.,
et al. (2012). Arabidopsis class i and class II TCP transcription factors regulate
jasmonic acid metabolism and leaf development antagonistically. Plant Physiol.
159, 1511–1523. doi: 10.1104/pp.112.200303

Debaeke, P., Casadebaig, P., Flenet, F., and Langlade, N. (2017). Sunflower
and climate change in europe: crop vulnerability, adaptation, and mitigation
potential. Oilseeds Fats Crops Lipids 24:D102. doi: 10.1051/ocl/2016052

Deng, B., Jin, X., Yang, Y., Lin, Z., and Zhang, Y. (2013). The regulatory role
of riboflavin in the drought tolerance of tobacco plants depends on ROS
production. Plant Growth Regul. 72, 269–277. doi: 10.1007/s10725-013-9858-8

Deswarte, J.-C., Beauchene, K., Arjaure, G., Jezequel, S., Meloux, G., Flodrops, Y.,
et al. (2015). Platform development for drought tolerance evaluation of wheat
in france. Proc. Environ. Sci. 29, 93–94. doi: 10.1016/j.proenv.2015.07.176

Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis
toolkit for the agricultural community. Nucleic Acids Res. 38(Suppl. 2), W64–
W70. doi: 10.1093/nar/gkq310

Duru, M., Therond, O., Martin, G., Martin-Clouaire, R., Magne, M.-A., Justes, E.,
et al. (2015). How to implement biodiversity-based agriculture to enhance
ecosystem services: a review. Agron. Sustain. Dev. 35, 1259–1281. doi: 10.1007/
s13593-015-0306-1

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al.
(2005). Global consequences of land use. Science 309, 570–574. doi: 10.1126/
science.1111772

Gélard, W., Devy, M., Herbulot, A., and Burger, P. (2017). “Model-based
segmentation of 3D point clouds for phenotyping sunflower plants,” in
Proceedings of the 12th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISAPP 2017). Porto,
Portugal, 459–467. doi: 10.5220/0006126404590467

Givry, S., de Bouchez, M., Chabrier, P., Milan, D., and Schiex, T. (2004). CARHTA
GENE: multipopulation integrated genetic and radiation hybrid mapping.
Bioinformatics 21, 1703–1704. doi: 10.1093/bioinformatics/bti222

Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S. J., Dauzat, M., Hamard, P.,
et al. (2005). PHENOPSIS, an automated platform for reproducible
phenotyping of plant responses to soil water deficit in Arabidopsis thaliana
permitted the identification of an accession with low sensitivity to soil
water deficit. New Phytol. 169, 623–635. doi: 10.1111/j.1469-8137.2005.
01609.x

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., Eeuwijk, F., et al.
(2006). Models for navigating biological complexity in breeding improved
crop plants. Trends Plant Sci. 11, 587–593. doi: 10.1016/j.tplants.2006.
10.006

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J.-L. (2014). Integrating
environmental covariates and crop modeling into the genomic selection
framework to predict genotype by environment interactions. Theor. Appl.
Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5

Hiederer, R. (2013). Mapping Soil Properties for Europe: Spatial Representation
of Soil Database Attributes. Luxembourg: Publications Office of the European
Union.

Hiltunen, H.-M., Illarionov, B., Hedtke, B., Fischer, M., and Grimm, B. (2012).
Arabidopsis RIBA proteins: two out of three isoforms have lost their
bifunctional activity in riboflavin biosynthesis. Int. J. Mol. Sci. 13, 14086–14105.
doi: 10.3390/ijms131114086

Honsdorf, N., March, T. J., Berger, B., Tester, M., and Pillen, K. (2014).
High-throughput phenotyping to detect drought tolerance QTL in wild
barley introgression lines. PLoS One 9:e97047. doi: 10.1371/journal.pone.
0097047

Hu, P., Chapman, S. C., Wang, X., Potgieter, A., Duan, T., Jordan, D., et al. (2018).
Estimation of plant height using a high throughput phenotyping platform
based on unmanned aerial vehicle and self-calibration: example for sorghum
breeding. Eur. J. Agron. 95, 24–32. doi: 10.1016/j.eja.2018.02.004

Husson, F., Lê, S., and Pagès, J. (2010). Exploratory Multivariate Analysis by
Example Using r. Boca Raton, FL: CRC Press. doi: 10.1201/b10345

Jeuffroy, M.-H., Casadebaig, P., Debaeke, P., Loyce, C., and Meynard, J.-M. (2013).
Agronomic model uses to predict cultivar performance in various environments
and cropping systems. A review. Agron. Sustain. Dev. 34, 121–137. doi: 10.1007/
s13593-013-0170-9

Kiani, S. P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., and Sarrafi, A.
(2007). Genetic variability for physiological traits under drought conditions and
differential expression of water stress-associated genes in sunflower (Helianthus
annuus L.). Theor. Appl. Genet. V114, 193–207.

Lasky, J. R., Upadhyaya, H. D., Ramu, P., Deshpande, S., Hash, C. T., Bonnette, J.,
et al. (2015). Genome-environment associations in sorghum landraces predict
adaptive traits. Sci. Adv. 1:e1400218. doi: 10.1126/sciadv.1400218

Lecoeur, J., Poiré-Lassus, R., Christophe, A., Pallas, B., Casadebaig, P., Debaeke, P.,
et al. (2011). Quantifying physiological determinants of genetic variation for
yield potential in sunflower. SUNFLO: a model-based analysis. Funct. Plant
Biol. 38, 246–259. doi: 10.1071/fp09189

Lemaire, G., and Meynard, J. M. (1997). “Use of the nitrogen nutrition index for
the analysis of agronomical data,” in Diagnosis of the Nitrogen Status in Crops,
ed. G. Lemaire (Berlin: Springer), 45–55. doi: 10.1007/978-3-642-60684-7_2

Lenz-Wiedemann, V., Klar, C., and Schneider, K. (2010). Development and test of
a crop growth model for application within a global change decision support
system. Ecol. Modell. 221, 314–329. doi: 10.1016/j.ecolmodel.2009.10.014

Li, P., Li, Y.-J., Wang, B., Yu, H.-M., Li, Q., and Hou, B.-K. (2016a). TheArabidopsis
UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the
plant adaptation to abiotic stresses. Physiol. Plant. 159, 416–432. doi: 10.1111/
ppl.12520

Li, P., Li, Y.-J., Zhang, F.-J., Zhang, G.-Z., Jiang, X.-Y., Yu, H.-M., et al.
(2016b). The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3,
contribute to cold, salt and drought stress tolerance via modulating anthocyanin
accumulation. Plant J. 89, 85–103. doi: 10.1111/tpj.13324

Li, Q., Yu, H.-M., Meng, X.-F., Lin, J.-S., Li, Y.-J., and Hou, B.-K. (2017). Ectopic
expression of glycosyltransferase UGT76E11 increases flavonoid accumulation
and enhances abiotic stress tolerance in Arabidopsis. Plant Biol. 20, 10–19.
doi: 10.1111/plb.12627

Liang, Y., Ward, S., Li, P., Bennett, T., and Leyser, O. (2016). SMAX1-LIKE7 signals
from the nucleus to regulate shoot development inArabidopsis via partially EAR
motif-independent mechanisms. Plant Cell 28, 1581–1601. doi: 10.1105/tpc.16.
00286

Manavella, P. A., Arce, A. L., Dezar, C. A., Bitton, F., Renou, J.-P., Crespi, M.,
et al. (2006). Cross-talk between ethylene and drought signalling pathways is
mediated by the sunflower hahb-4 transcription factor. Plant J. 48, 125–137.
doi: 10.1111/j.1365-313x.2006.02865.x

Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.-C., Carrère, S.,
et al. (2017). Genetic control of plasticity of oil yield for combined abiotic
stresses using a joint approach of crop modeling and genome-wide association.
Plant Cell Environ. 40, 2276–2291. doi: 10.1111/pce.12961

Frontiers in Plant Science | www.frontiersin.org 18 January 2019 | Volume 9 | Article 1908

https://doi.org/10.2134/agronj2003.0099
https://doi.org/10.1071/fp02076
https://doi.org/10.1093/jxb/ery309
https://doi.org/10.1534/genetics.109.105429
https://doi.org/10.1111/nph.12192
https://doi.org/10.1105/tpc.16.00483
https://doi.org/10.1105/tpc.16.00483
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.1007/s00122-013-2066-0
https://doi.org/10.1071/cp14007
https://doi.org/10.1093/jxb/ert337
https://doi.org/10.1104/pp.112.200303
https://doi.org/10.1051/ocl/2016052
https://doi.org/10.1007/s10725-013-9858-8
https://doi.org/10.1016/j.proenv.2015.07.176
https://doi.org/10.1093/nar/gkq310
https://doi.org/10.1007/s13593-015-0306-1
https://doi.org/10.1007/s13593-015-0306-1
https://doi.org/10.1126/science.1111772
https://doi.org/10.1126/science.1111772
https://doi.org/10.5220/0006126404590467
https://doi.org/10.1093/bioinformatics/bti222
https://doi.org/10.1111/j.1469-8137.2005.01609.x
https://doi.org/10.1111/j.1469-8137.2005.01609.x
https://doi.org/10.1016/j.tplants.2006.10.006
https://doi.org/10.1016/j.tplants.2006.10.006
https://doi.org/10.1007/s00122-013-2231-5
https://doi.org/10.3390/ijms131114086
https://doi.org/10.1371/journal.pone.0097047
https://doi.org/10.1371/journal.pone.0097047
https://doi.org/10.1016/j.eja.2018.02.004
https://doi.org/10.1201/b10345
https://doi.org/10.1007/s13593-013-0170-9
https://doi.org/10.1007/s13593-013-0170-9
https://doi.org/10.1126/sciadv.1400218
https://doi.org/10.1071/fp09189
https://doi.org/10.1007/978-3-642-60684-7_2
https://doi.org/10.1016/j.ecolmodel.2009.10.014
https://doi.org/10.1111/ppl.12520
https://doi.org/10.1111/ppl.12520
https://doi.org/10.1111/tpj.13324
https://doi.org/10.1111/plb.12627
https://doi.org/10.1105/tpc.16.00286
https://doi.org/10.1105/tpc.16.00286
https://doi.org/10.1111/j.1365-313x.2006.02865.x
https://doi.org/10.1111/pce.12961
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01908 January 16, 2019 Time: 13:10 # 19

Gosseau et al. Outdoor High-Throughput Phenotyping Platform

Marchand, G. (2014). Etude des Réseaux de Régulation Impliqués Dans la Réponse
au Stress Hydrique: Caractérisation, Contrôle Génétique et rôle au cours de
l’évolution du Tournesol Cultivé, Helianthus Annuus. PhD thesis, Université de
Toulouse, Toulouse.

Martre, P., He, J., Le Gouis, and J., Semenov, M.A. (2015). In silico system analysis
of physiological traits determining grain yield and protein concentration for
wheat as influenced by climate and crop management. J. Exp. Bot. 66, 3581–
3598. doi: 10.1093/jxb/erv049

Messina, C., Boote, K., Loffler, C., Jones, J., and Vallejos, C. (2006). “Model-
assisted genetic improvement of crops,” in Working with Dynamic Crop Models:
Evaluation, Analysis, Parameterization, and Applications, eds F. Brun, D.
Wallach, D. Makowski, and J. W. Jones (Amsterdam: Elsevier), 309–335.

Messina, C. D., Podlich, D., Dong, Z., Samples, M., and Cooper, M. (2011). Yield–
trait performance landscapes: from theory to application in breeding maize for
drought tolerance. J. Exp. Bot. 62, 855–868. doi: 10.1093/jxb/erq329

Millet, E., Welcker, C., Kruijer, W., Negro, S., Nicolas, S., Praud, S., et al. (2016).
Genome-wide analysis of yield in Europe: allelic effects as functions of drought
and heat scenarios. Plant Physiol.172, 749–764. doi: 10.1104/pp.16.00621

Mittler, R. (2006). Abiotic stress, the field environment and stress combination.
Trends Plant Sci. 11, 15–19. doi: 10.1016/j.tplants.2005.11.002

Moriondo, M., Bindi, M., Kundzewicz, Z. W., Szwed, M., Chorynski, A.,
Matczak, P., et al. (2010). Impact and adaptation opportunities for european
agriculture in response to climatic change and variability. Mitigation Adapt.
Strategies Global Change 15, 657–679. doi: 10.1007/s11027-010-9219-0

Noda, S., Yamaguchi, M., Tsurumaki, Y., Takahashi, Y., Nishikubo, N., Hattori, T.,
et al. (2013). ATL54, a ubiquitin ligase gene related to secondary cell wall
formation, is transcriptionally regulated by MYB46. Plant Biotechnol. 30, 503–
509. doi: 10.5511/plantbiotechnology.13.0905b

Panagos, P., Van Liedekerke, M., Jones, A., and Montanarella, L. (2012). European
soil data centre: response to european policy support and public data
requirements. Land Policy 29, 329–338. doi: 10.1016/j.landusepol.2011.07.003

Pereyra-Irujo, G. A., Gasco, E. D., Peirone, L. S., and Aguirrezábal, L. A. N. (2012).
GlyPh: a low-cost platform for phenotyping plant growth and water use. Funct.
Plant Biol. 39, 905. doi: 10.1071/fp12052

Pereyra-Irujo, G. A., Velázquez, L., Lechner, L., and Aguirrezábal, L. A. (2008).
Genetic variability for leaf growth rate and duration under water deficit in
sunflower: analysis of responses at cell, organ, and plant level. J. Exp. Bot. 59,
2221–2232. doi: 10.1093/jxb/ern087

Picheny, V., Casadebaig, P., Trépos, R., Faivre, R., Da Silva, D., Vincourt, P., et al.
(2017). Using numerical plant models and phenotypic correlation space to
design achievable ideotypes. Plant Cell Environ. 40, 1926–1939. doi: 10.1111/
pce.13001

Pieruschka, R., and Poorter, H. (2012). Phenotyping plants: genes, phenes and
machines. Funct. Plant Biol. 39, 813. doi: 10.1071/fpv39n11_in

Quesnel, G., Duboz, R., and Ramat, É. (2009). The virtual laboratory environment –
An operational framework for multi-modelling, simulation and analysis
of complex dynamical systems. Simul. Modell. Pract. Theory 17, 641–653.
doi: 10.1016/j.simpat.2008.11.003

Quilot-Turion, B., Génard, M., Valsesia, P., and Memmah, M.-M. (2016).
Optimization of allelic combinations controlling parameters of a peach quality
model. Front. Plant Sci. 7:1873. doi: 10.3389/fpls.2016.01873

R Core Team (2017). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Ramu, V. S., Paramanantham, A., Ramegowda, V., Mohan-Raju, B.,
Udayakumar, M., and Senthil-Kumar, M. (2016). Transcriptome analysis
of sunflower genotypes with contrasting oxidative stress tolerance reveals
individual-and combined-biotic and abiotic stress tolerance mechanisms. PLoS
One 11:e0157522. doi: 10.1371/journal.pone.0157522

Rasheed, A., Mujeeb-Kazi, A., Ogbonnaya, F. C., He, Z., and Rajaram, S. (2017).
Wheat genetic resources in the post-genomics era: promise and challenges.Ann.
Bot. 121, 603–616. doi: 10.1093/aob/mcx148

Rengel, D., Arribat, S., Maury, P., Martin-Magniette, M., Hourlier, T., Laporte, M.,
et al. (2012). A gene-phenotype network based on genetic variability for
drought responses reveals key physiological processes in controlled and natural
environments. PLoS One 7:e45249. doi: 10.1371/journal.pone.0045249

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). EdgeR: a bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Rymaszewski, W., Vile, D., Bediee, A., Dauzat, M., Luchaire, N., Kamrowska, D.,
et al. (2017). Stress-related gene expression reflects morphophysiological
responses to water deficit. Plant Physiol. 174, 1913–1930. doi: 10.1104/pp.17.
00318

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R.,
Vandemark, G. J., et al. (2015). Low-altitude, high-resolution aerial imaging
systems for row and field crop phenotyping: a review. Eur. J. Agron. 70, 112–123.
doi: 10.1016/j.eja.2015.07.004

Sarazin, V., Duclercq, J., Guillot, X., Sangwan, B., and Sangwan, R. S. (2017).
Water-stressed sunflower transcriptome analysis revealed important molecular
markers involved in drought stress response and tolerance. Environ. Exp. Bot.
142, 45–53. doi: 10.1016/j.envexpbot.2017.08.005

Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012).
An efficient multi-locus mixed-model approach for genome-wide association
studies in structured populations. Nat. Genet. 44, 825–830. doi: 10.1038/ng.2314

Sinclair, T., Hammer, G., and van Oosterom, E. (2005). Potential yield and water-
use efficiency benefits in sorghum from limited maximum transpiration rate.
Funct. Plant Biol. 32, 945–952. doi: 10.1071/FP05047

Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E. (2009). AquaCropThe FAO
crop model to simulate yield response to water: I. Concepts and underlying
principles. Agron. J. 101:426. doi: 10.2134/agronj2008.0139s

Tardieu, F. (2011). Any trait or trait-related allele can confer drought tolerance: just
design the right drought scenario. J. Exp. Bot. 63, 25–31. doi: 10.1093/jxb/err269

Tardieu, F., Parent, B., Caldeira, C. F., and Welcker, C. (2014). Genetic and
physiological controls of growth under water deficit. Plant Physiol. 164, 1628–
1635. doi: 10.1104/pp.113.233353

Tardieu, F., Simonneau, T., and Muller, B. (2018). The physiological basis of
drought tolerance in crop plants: a scenario-dependent probabilistic approach.
Annu. Rev. Plant Biol. 69, 733–759. doi: 10.1146/annurev-arplant-042817-
040218

Tilman, D., Cassman, K., Matson, P., Naylor, R., and Polasky, S. (2002).
Agricultural sustainability and intensive production practices. Nature 418,
671–677. doi: 10.1038/nature01014

Underwood, J., Wendel, A., Schofield, B., McMurray, L., and Kimber, R. (2017).
Efficient in-field plant phenomics for row-crops with an autonomous ground
vehicle. J. Field Robot. 34, 1061–1083. doi: 10.1002/rob.21728

Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S. K., and Hash, C. T.
(2015). LeasyScan: a novel concept combining 3D imaging and lysimetry for
high-throughput phenotyping of traits controlling plant water budget. J. Exp.
Bot. 66, 5581–5593. doi: 10.1093/jxb/erv251

Van Ittersum, M., and Rabbinge, R. (1997). Concepts in production ecology for
analysis and quantification of agricultural input-output combinations. Field
Crops Res. 52, 197–208. doi: 10.1016/S0378-4290(97)00037-3

Velázquez, L., Alberdi, I., Paz, C., Aguirrezábal, L., and Pereyra Irujo, G. (2017).
Biomass allocation patterns are linked to genotypic differences in whole-plant
transpiration efficiency in sunflower. Front. Plant Sci. 8:1976. doi: 10.3389/fpls.
2017.01976

Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants.
Theor. Appl. Genet. 129, 653–673. doi: 10.1007/s00122-016-2691-5

Yin, X., van der Linden, C. G., and Struik, P. C. (2018). Bringing genetics and
biochemistry to crop modelling, and vice versa. Eur. J. Agron. 100, 132–140.
doi: 10.1016/j.eja.2018.02.005

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Gosseau, Blanchet, Varès, Burger, Campergue, Colombet, Gody,
Liévin, Mangin, Tison, Vincourt, Casadebaig and Langlade. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | www.frontiersin.org 19 January 2019 | Volume 9 | Article 1908

https://doi.org/10.1093/jxb/erv049
https://doi.org/10.1093/jxb/erq329
https://doi.org/10.1104/pp.16.00621
https://doi.org/10.1016/j.tplants.2005.11.002
https://doi.org/10.1007/s11027-010-9219-0
https://doi.org/10.5511/plantbiotechnology.13.0905b
https://doi.org/10.1016/j.landusepol.2011.07.003
https://doi.org/10.1071/fp12052
https://doi.org/10.1093/jxb/ern087
https://doi.org/10.1111/pce.13001
https://doi.org/10.1111/pce.13001
https://doi.org/10.1071/fpv39n11_in
https://doi.org/10.1016/j.simpat.2008.11.003
https://doi.org/10.3389/fpls.2016.01873
https://doi.org/10.1371/journal.pone.0157522
https://doi.org/10.1093/aob/mcx148
https://doi.org/10.1371/journal.pone.0045249
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1104/pp.17.00318
https://doi.org/10.1104/pp.17.00318
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.1016/j.envexpbot.2017.08.005
https://doi.org/10.1038/ng.2314
https://doi.org/10.1071/FP05047
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1093/jxb/err269
https://doi.org/10.1104/pp.113.233353
https://doi.org/10.1146/annurev-arplant-042817-040218
https://doi.org/10.1146/annurev-arplant-042817-040218
https://doi.org/10.1038/nature01014
https://doi.org/10.1002/rob.21728
https://doi.org/10.1093/jxb/erv251
https://doi.org/10.1016/S0378-4290(97)00037-3
https://doi.org/10.3389/fpls.2017.01976
https://doi.org/10.3389/fpls.2017.01976
https://doi.org/10.1007/s00122-016-2691-5
https://doi.org/10.1016/j.eja.2018.02.005
https://doi.org/10.1038/ng1702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Heliaphen, an Outdoor High-Throughput Phenotyping Platform for Genetic Studies and Crop Modeling
	Introduction
	Materials and Methods
	Heliaphen Platform
	Plant Material, Experiments, and Multi-Environment Trials
	General Validation of the Phenotyping Platform
	Trials Used for Genetic and Genomic Studies
	Trials Used for Crop Modeling and Simulation

	QTL Detection
	Transcriptomics
	Crop Modeling and Simulation
	Model Parameterization and Evaluation
	Impact of Parameterization Method on Model Accuracy
	Simulation of Genotypes in a European Trial Network
	Clustering of Environmental Time Series


	Results
	Phenotyping for Plant Breeding
	Drought Stress Management Using Heliaphen
	Comparison Between Phenotypes Observed Using the Heliaphen Platform and in the Field
	Association Genetic Analysis of the Phenotypes Measured on the Heliaphen Platform
	Transcriptomic Analysis

	Phenotyping for Crop Modeling
	Impact of Parameterization Method on Crop Model Accuracy
	Integrating Traits Measured Using the Heliaphen Platform to Simulate Genotype–Environment Interactions


	Discussion
	Identifying Genes Controlling Drought Tolerance in Sunflower Yields
	Using Simulation to Predict Genotype-Environment Interactions

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


