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Abstract The purpose of this study was to develop a

whole-body physiologically based pharmacokinetic (WB-

PBPK) model for ciprofloxacin for ICU patients, based on

only plasma concentration data. In a next step, tissue and

organ concentration time profiles in patients were predicted

using the developed model. The WB-PBPK model was

built using a non-linear mixed effects approach based on

data from 102 adult intensive care unit patients. Tissue to

plasma distribution coefficients (Kp) were available from

the literature and used as informative priors. The developed

WB-PBPK model successfully characterized both the typ-

ical trends and variability of the available ciprofloxacin

plasma concentration data. The WB-PBPK model was

thereafter combined with a pharmacokinetic–pharmaco-

dynamic (PKPD) model, developed based on in vitro time-

kill data of ciprofloxacin and Escherichia coli to illustrate

the potential of this type of approach to predict the time-

course of bacterial killing at different sites of infection. The

predicted unbound concentration–time profile in extracel-

lular tissue was driving the bacterial killing in the PKPD

model and the rate and extent of take-over of mutant

bacteria in different tissues were explored. The bacterial

killing was predicted to be most efficient in lung and kid-

ney, which correspond well to ciprofloxacin’s indications

pneumonia and urinary tract infections. Furthermore, a

function based on available information on bacterial killing

by the immune system in vivo was incorporated. This work

demonstrates the development and application of a WB-

PBPK–PD model to compare killing of bacteria with dif-

ferent antibiotic susceptibility, of value for drug develop-

ment and the optimal use of antibiotics .

Keywords Physiologically-based pharmacokinetic �
Antibiotic � Modeling � Bacterial infection �
Pharmacokinetic-pharmacodynamic � Fluoroquinolone �
Informative priors � NONMEM

Introduction

The time-course of the distribution of an antibiotic into an

infected tissue can be of critical importance for successful

therapy of the infection. Based on the physicochemical

properties of a drug and its interaction with different

transporters, the rate and extent of distribution differs

between tissues [1, 2]. Sub-therapeutic exposure of an

antibiotic at the site of infection may not only result in

treatment failure but also emergence of resistance, while

higher than therapeutic levels may result in toxicity. Typ-

ically, when pharmacokinetic–pharmacodynamic (PKPD)

relationships of antibiotics are evaluated, the bacterial

killing is assumed to be dependent on a summary variable

of the pharmacokinetic (PK) profile in plasma (e.g. peak
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plasma concentration, area under the plasma concentra-

tion–time curve or time period that the plasma concen-

tration exceeds the MIC) [3]. Using the plasma

concentration to monitor and drive the antimicrobial

effect is practical, but the plasma concentration is not

always reflecting the biophase antimicrobial concentra-

tion. In addition, the dynamics of the concentrations

during the initial treatment period may be critical for a

successful outcome. Overlooking that the time-course of

concentration in the infected tissue is what is driving the

bacterial killing could lead to suboptimal dosing in

patients. In the era of increasing antibiotic resistance, new

therapies need to be explored for previously untested

types of infections. To efficiently get an idea of the

potential of these therapies it is important to understand

the distribution and exposure time profile of antimicro-

bials in the target tissues.

Whole body physiologically based pharmacokinetic

(WB-PBPK) models encompass the distinct feature of

describing the distribution of a drug in different tissues and

blood in a mechanistic way [4–6]. Such models have long

been used in toxicological risk assessment for different

environmental contaminants [7]. In recent years they have

been increasingly applied in different stages of drug dis-

covery and development, and also recognized by regulatory

authorities as a valuable tool [1, 7–12]. WB-PBPK models

require two types of input data; physiological parameters

such as blood flows, organ volumes, tissue compositions

and drug related parameters like plasma protein binding,

clearance and tissue to plasma partition coefficients (Kp).

The Kp values reflect the distribution in the tissue in

comparison to plasma at steady state. It is tedious, time and

resource extensive to measure these values for each tissue

experimentally, and based on the physicochemical prop-

erties of a compound there are different methods proposed

to predict Kp values [10, 13–15]. Valuable information on

Kp values may also be collected from in vivo experiments

reported in the literature especially for antibiotics which

are used prophylactically before soft tissue surgery due to

different pathological indications.

During recent years, there have been different PKPD-

models proposed to understand and quantify the time-

course of bacterial killing [3, 16]. Such models may sub-

sequently be linked to a PK model to predict the bacterial

killing following different antibiotic dosing regimens

[17, 18]. In this way, complex kinetic profiles, such as

multiple compartment kinetics (e.g. gentamicin) and for-

mation from prodrugs (e.g. colistin) can be mimicked

without a range of extensive new time-kill experiments.

Typically, the unbound concentration in the central com-

partment (e.g. plasma) has been used to drive the killing of

the bacteria in the PKPD-models, i.e. a sepsis situation has

been simulated.

In a patient the clinical outcome of the therapy will also

be influenced by the presence of the immune system. Guo

et al. has proposed a model for the quantitative impact of

neutrophils on bacterial clearance in mice where the bac-

terial killing was dependent on the grade of immunosup-

pression, i.e. the absolute neutrophil count [19]. Further,

Drusano et al. have shown in mice that the bacterial

clearance by the immune cells is saturable and a model was

proposed where the bacterial killing was dependent on the

bacterial burden [20]. The time-course of the efficiency of

the immune system to clear the infection is however most

likely dependent on both the number of bacteria at the site

of infection and the competence of the immune system.

Ciprofloxacin belongs to the fluoroquinolone class of

antimicrobials and has been extensively used the last two

decades in the clinic because of its broad spectrum against

bacteria [21]. Fluoroquinolones are associated with rapid

emergence of resistance and hence appropriate therapeutic

use of this class is prime to keep their effectiveness. As

ciprofloxacin has been used for many years it is also pos-

sible to collect information on Kp values based on clinical

samples. Therefore, ciprofloxacin can serve as an example

on how in vitro, in vivo and literature information can be

integrated into a whole-body PBPK model to predict

unbound concentrations in different tissues and organs.

Recently a PKPD model was developed by Khan et al.

based on data from time-kill experiments with constant

ciprofloxacin experiments [22]. The model describes the

growth and killing kinetics of a wild-type Escherichia coli

strain, and six well-characterized mutants thereof, with

different degree of resistance, during exposure to various

ciprofloxacin concentrations.

In this study we aimed to develop a WB-PBPK model

for predictions of the tissue/organ concentration–time

profiles of ciprofloxacin in patients. In a next step the

model was combined with a PKPD model, describing

bacterial growth and ciprofloxacin killing kinetics, as well

as a model characterizing the effect of the immune system.

The combined model was used to illustrate the potential

value of this approach to predict the time-course of bac-

terial killing for infections with E. coli strains with dif-

ferent levels of resistance.

Methods

WB-PBPK model building

A WB-PBPK model for ciprofloxacin was developed based

on plasma concentration data from 102 adult patients

admitted to the Intensive Care Unit (ICU) for different

indications. The data has earlier been used to develop a

2-compartment population PK model [23]. There were 27
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women and 75 males in the patient population with an

average±SD total body weight of 77±16 kg and an aver-

age age of 60±17 years. Measured creatinine clearance

(CRCL) was 82±51 ml min-1. All patients were

mechanically ventilated and were on ciprofloxacin infusion

therapy during their stay in the ICU. Among the 102

patients included in the study 86 received 400 mg cipro-

floxacin as a 1 h infusion twice a day, 9 patients received

400 mg three times a day, 6 patients received 200 mg

twice a day (30 min infusion), and 1 patient received

600 mg twice a day [23]. Duration of treatment ranged

from 3 to 21 days (average = 12 days). In total 588

plasma concentrations were available, with on average 5.8

samples from each patient. Samples were taken on different

days where one occasion was defined to be one dose

administration interval (average = 3.1 occasions/patients).

A population modeling approach was applied to fit WB-

PBPK models to the plasma PK data using NONMEM

version 7.3 with first order conditional estimation [24]. All

plasma concentrations from patients were transformed into

natural logarithms before the data analysis. An additive

error model was used on log-transformed data. During the

estimation process the only dependent variable was the

plasma concentrations.

Typical population ciprofloxacin tissue to plasma dis-

tribution coefficients (Kp) for 10 different tissues including

lung, muscle, kidney and adipose were taken from clinical

studies available in the literature and used as informative

priors while estimating the tissue Kp values [25–32]. Kp

values are determined from the ratio of total tissue and

plasma concentrations and described according to Eq. (1).

Kp ¼ CTissue=CPlasma ð1Þ

when a Kp value was not directly reported from a study

(spleen, heart and brain) the value was calculated by using

the ratio of the reported tissue and plasma concentrations.

A ‘‘Rest’’ compartment represented other parts of the body

for which no Kp is defined, and for this compartment the

typical Kp was set to the average of all Kp values for other

tissues.

A frequentist prior approach, using the normal-Wishart

prior subroutine (NWPRI) in NONMEM, was applied.

With this approach, uncertainty in the prior Kp values can

be considered in the estimation. An uncertainty of 25 %

around the typical prior values was applied for each tissue

and implemented as a normal distribution on log-scale [33].

A generic structure of a WB-PBPK model was adopted

assuming perfusion limited drug distribution in all tissues

(Fig. 1) [34]. Different physiological parameters including

blood flow to different organs (Q) as well as organ volumes

(V) were taken from the literature [35, 36], and incorpo-

rated in the model as a function of weight and gender of the

individual patient. Instead of using the typical weight of

70 kg individual patient weights were used to calculate the

Fig. 1 Structure of the WB-

PBPK model developed for

ciprofloxacin. Volumes of

different tissue compartments

(V) and blood flows to tissues

(Q) were described on the basis

of individual weight and gender
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volume of different tissues as fraction of total body weight.

Gender based differences in the body composition were

also accounted for when defining the tissue volumes and

blood flows (see NONMEM code in online appendix)

[35, 36].

Clearance (CL) of ciprofloxacin was divided into renal

and non-renal clearance in the WBPBPK model (Eq. 2).

For a typical patient with a CRCL of 120 ml min-1

approximately 45 % of ciprofloxacin is excreted by the

kidneys [37], resulting in a prior mode for non-renal

clearance (CLNR) of 7.17 l h-1 and for fraction secretion

(fsecretion) of 0.57. Individual CRCL values were used to

calculate the renal clearance (CLR) according to Eq. (3)

CL ¼ CLR þ CLNR ð2Þ
CLR ¼ CRCL� fu;plasma � 1þ fSecretionð Þ ð3Þ

where fu,plasma is the fraction unbound of ciprofloxacin in

plasma (fu = 0.65) [37] and fSecretion is the here estimated

fraction of the ciprofloxacin renal clearance that is

dependent on secretion from blood to renal tubules.

Unexplained inter-individual variability (IIV) was explored

without applying a prior.

The differential equations describing the mass transfer

in the WBPBPK model are illustrated in the NONMEM

code (see online appendix). CL and Kp values were esti-

mated on the log-scale.

Model predictions

During all predictions the doses of ciprofloxacin was kept

at 400 mg b.i.d. and administered intravenously as a 1 h

infusion. To predict unbound ciprofloxacin concentration–

time profiles in different tissues, the total concentrations of

ciprofloxacin predicted by the WB-PBPK model were

converted to unbound concentrations by using Eq. (4)

where the unbound fraction in extracellular fluid (fue) is

defined [38].

fue ¼ 1= 1þ E=P� 1� fu; plasmað Þ=fu; plasmað Þ ð4Þ

E/P is the ratio of albumin in extracellular fluid to plasma.

E/P values for each organ or tissue was taken from litera-

ture values reported for rats [14].

The final WB-PBPK model was coupled to a PKPD

model of ciprofloxacin for E. coli [22] to quantitatively

predict the time-course of the bacterial killing in the dif-

ferent tissues. The details of the PKPD model have earlier

been described and the differential equations are included

in the NONMEM code (online appendix). In brief, the

model includes parameters for natural growth (1.70 h-1)

and death (0.179 h-1), a structure that allows for charac-

terization of a maximum bacterial concentration, an Emax-

model for the ciprofloxacin-induced rate of killing, the

presence of a less susceptible subpopulation (0.819 bacteria

per 106 CFU ml-1 start inocula), and a 5.34 h time period

where the bacteria were susceptible to ciprofloxacin-in-

duced filament formation and hence not countable when

plated. The predicted unbound ciprofloxacin concentrations

in the extracellular space of the various tissues and organs

were in this step used to drive the concentration-dependent

rate constant of bacterial killing. The extracellular con-

centrations were used to drive the effect due to the fact that

E. coli are assumed to be in the extracellular space. Pre-

dictions were made for different E. coli strains (LM347,

LM202, LM378, LM625, LM693 and LM707) of variable

resistance levels (MIC ranging from 0.023 to 48 mg l).

When two strains were combined to explore the rate and

extent of mutant take-over, each strain had a starting bac-

teria concentration of 5�106 CFU ml-1.

In a next step, the effect of the immune response on the

bacterial clearance was added. In accordance to previous

publications [19, 20], the killing by neutrophils was here

assumed to be dependent on both the neutrophil count and

the number of bacteria in the tissue and a term (Eq. 5) for

the immune response was added to all bacterial compart-

ments (see online appendix)

dB=dt ¼ . . .� Kkill ANC � ANC= ANCþ ANC50ð Þð Þ
� 1� B= Bþ B50ð Þð Þ � B:

ð5Þ

The term in Eq. (5) describes the bacterial kill by the

immune system which is dependent on both the number of

neutrophils and the bacterial burden. B is the bacterial

concentration (CFU ml-1), Kkill_ANC describes the

maximum rate at which neutrophils can kill the pathogens

(1.74 h-1), ANC is the absolute neutrophil count (here

assumed a constant value of 2500 cells ll-1), ANC50 is

the number of neutrophils required to achieve 50 % of

maximum killing by immune cells (190.8 cells ll-1), and

B50 is concentration of bacteria required to saturate the

immune cell response by 50 % (430 9 104 CFU ml-1).

Using this model, the bacterial killing by the immune cells

will be according to a first order process (according to

Kkill_ANC) at low bacterial concentrations. However,

when approaching higher bacterial concentrations satura-

tion will occur and the killing will approach a zero order

process (constant killing rate). The immune response was

assumed to affect all bacteria similarly, regardless of the

susceptibility and growth state of the bacteria (see online

appendix).

Software

Perl speaks NONMEM (PsN) was used to facilitate exe-

cution, to summarize results and to evaluate the models. A
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more complex model was selected when the difference in

the Objective Function Value reported by NONMEM

reduced at least 10.83 units (p\ 0.001, for one degree of

freedom). To evaluate the typical trends predicted by the

model, as well as the model’s ability to describe the vari-

ability, prediction corrected Visual predictive checks

(VPCs) were performed. Piraña, Xpose and R (ggplot)

were also used for plotting and analyzing the results from

different models and predictions [39–42].

Results

Development of the WB-PBPK model

for ciprofloxacin

A WB-PBPK model characterizing both the typical trends

and variability of the available ciprofloxacin plasma con-

centration data was successfully developed as illustrated in

the VPC (Fig. 2). Inclusion of the clinical Kp values as

priors was needed to stabilize the WB-PBPK model and the

parameter estimates including clearance and tissue Kp

values were comparable to the literature values (Table 1).

The estimate for the Kp value in muscle deviate the most

(except for ‘‘Rest’’) and was estimated to be 60 % higher

than the literature prior value. The renal clearance was for a

typical patient with a CRCL of 110 ml min-1, estimated to

be 49 % of the total clearance, while for a patient with a

CRCL of 50 ml min-1 renal clearance was predicted to

constitute 13 % of the total clearance. The final model

included IIV for clearance and for Kp values (a common

value for all).

Model predictions of unbound concentrations

Profiles of unbound ciprofloxacin concentration in different

tissues were predicted from the developed WB-PBPK

model (Fig. 3). Kidney and lung were predicted to have

higher exposures as compared to the other organs while

muscle, brain and adipose were predicted to have relatively

low exposures to ciprofloxacin. Cmax was achieved at the

end of the 1 h constant rate infusion in plasma as well as in

all other tissues and organs, depicting the rapid distribution

of ciprofloxacin.

Combining the WBPBPK with the PKPD model

When the predicted PK profile of unbound ciprofloxacin

from the WB-PBPK model was driving the PKPD model,

the rate and extent of take-over of mutant bacteria in dif-

ferent tissues could be predicted and compared. For kidney,

representing a scenario of pyelonephritis, the 400 mg b.i.d.

dosing regimen was predicted to be high enough to clear

the bacterial population of not only wild type but also

mutants of E. coli with intermediate level of resistance (i.e.

MIC\ 10 mg l-1) (Fig. 4a, b). However the highly resis-

tant strains (MIC[ 25 mg l-1) were not killed off despite

the high ciprofloxacin exposures in kidney (Fig. 4c, d).

Similarly, when the bacteria time-course of the E. coli

strain LM625 (MIC = 0.50 mg l-1) was predicted with the

different tissue exposures the bacteria was eliminated from

the brain, muscle and skin while re-growth was evident in

adipose tissue (Fig. 5).

Addition of neutrophil effect on WBPBPK-PKPD

model

Lastly the effect of neutrophils was added to the model and

predictions were made for the wild type and the most

resistant E. coli strain, LM707 (MIC = 48 mg l-1) in lung

and kidney. For the wild-type bacteria, it was predicted that

the combination of high exposures of ciprofloxacin and

bacterial killing by neutrophils will quickly result in total

bacterial eradication. For the resistant strain, the combi-

nation was predicted to eliminate the resistant bacteria

from kidney in contrast to ciprofloxacin exposure alone

(Fig. 6a). In lung, which had the second highest exposure

of ciprofloxacin relative to kidney, even adding the effect

of immune response was not enough to eliminate the

resistant strain and the model predicted re-growth

(Fig. 6b).

Discussion

A WB-PBPK model was successfully developed based on

plasma concentration data of ICU patients. The model did

not only capture the trends in the observed data but also

described the variability in the data as shown in the VPC

(Fig. 2). By using clinical Kp values for different tissues as

priors a full WB-PBPK model could be developed based on

plasma concentration data only. A similar strategy has also

been successfully applied for CMS and colistin [43].

This work is the first example of a WB-PBPK model for

ciprofloxacin which was implemented using non-linear

mixed effects modeling and frequentist priors ($PRIOR in

NONMEM). Using informative priors on clinical Kp val-

ues, and information on blood flows and tissue volumes

from the literature, the full WB-PBPK model could weigh

the individual information from the available plasma con-

centration data to characterize the PK in the study popu-

lation. Using priors is a good way to provide supportive

information from earlier studies and to stabilize a WB-

PBPK model in NONMEM [33].

Estimated Kp values were in good agreement with the

priors (Table 1). There are some notable variations; e.g.
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muscle, which is a relatively big tissue compartment, had a

60 % higher Kp estimate as compared to what has been

reported in the literature. One reason could be the relatively

bigger size of muscle in comparison to other tissues, and a

deviation from the prior can thereby have a clear impact on

the PK profile. Kp values for relatively small organs e.g.

spleen and pancreas were unchanged from the prior,

reflecting that either there is not enough information in the

data to drive them away from the prior values or estimates

and observed values are well in agreement. Also the esti-

mated lung and kidney Kp values relies primarily on the

experimentally determined Kp values rather than on the

plasma concentration data since the deviations from the prior

was small, and the uncertainty was the same. Furthermore,

there have been some indications of involvement of active

efflux transporters, e.g. P-gp and BCRP, on ciprofloxacin

distribution in different tissues. There is however limited

evidence of any significant impact of these active trans-

porters in vivo for ciprofloxacin [44, 45]. Due to lack of

specific data the current model does not account for active

processes and perfusion limited drug distribution was

assumed in all tissues. Renal clearance was dependent on the

kidney function and with decreased CRCL of 50 ml min-1

renal clearance was reduced to 16 % of total clearance.

Fig. 2 Visual predictive check

for the WB-PBPK model.

Dotted red lines are the median

and the 5th and 95th percentiles

of the observed plasma-

concentration data. Shaded

areas represent the 95 %

confidence interval around the

median and the 5th and 95th

percentiles based on simulations

from the model (n = 500)

(Color figure online)
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Based on the developed model, the concentration time

profile of ciprofloxacin was predicted in different tissues.

The highest unbound concentrations were observed in

kidney and lung, which is in line with the ciprofloxacin

treatment indications of pneumonia and urinary tract

infections. The NONMEM implementation allowed for

connecting the WB-PBPK model to an in vitro based

PKPD model, where the predicted unbound concentration

in extracellular fluid was driving the bacterial killing. It

was also illustrated how a function for the immune

response could be added to investigate the impact on the

rate and extent of bacterial killing.

During recent years, the use of PBPK models has

become an integral tool in drug development. Here we

suggest a framework in which a WB-PBPK model is

combined with a PKPD model that can describe the time-

Fig. 3 Predicted extracellular

tissue concentration–time

profiles of unbound

ciprofloxacin following a dosing

regimen of 400 mg b.i.d

Table 1 Prior values applied based on clinical data from the literature and the here estimated parameters of the developed WB-PBPK model

Prior values normal scale (uncertainty) Model estimate log-scale (±SE) Model estimate normal scale (RSE)

CLNR (l h-1) 7.17 (25 %) 2.60 ± 0.14 13.5

fsecretion 0.57 (25 %) 0.674 (26 %)

Kp,lung 3.3 (25 %) 1.20 ± 0.25 3.32

Kp,brain 0.771 (25 %) -0.257 ± 0.25 0.773

Kp,heart 3.67 (25 %) 1.30 ± 0.25 3.67

Kp,skin 0.718 (25 %) -0.335 ± 0.24 0.715

Kp,muscle 1.6 (25 %) -0.0229 ± 0.16 0.977

Kp,adipose 0.449 (25 %) -0.885 ± 0.23 0.413

Kp,spleen 1.954 (25 %) 0.668 ± 0.25 1.95

Kp,GIT 3.39 (25 %) 1.21 ± 0.23 3.35

Kp,liver 3.67 (25 %) 1.27 ± 0.23 3.56

Kp,kidney 8.2 (25 %) 2.09 ± 0.25 8.09

Kp,rest 2.77 (25 %) 1.35 ± 0.11 3.86

IIV CL (CV %) – 56 (9.3 %)

IIV Kp (CV %) – 55 (15 %)

Proportional residual error (%) – 33 (7.1 %)

fsecretion and CLNR represent the fraction of ciprofloxacin renal clearance which relies on secretion into renal tubules and non-renal clearance,

respectively
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Fig. 4 Predictions of the time

course of bacterial killing of

different E. coli strains in

the extracellular compartment

of kidney following a

ciprofloxacin dose of 400 mg

b.i.d. Grey lines represents the

resistant bacterial strain while

black lines represent wild type

bacterial strain (LM347,

MIC = 0.023 mg l-1). Please

note that in A the two strains are

overlapping

Fig. 5 Predictions of the time

course of bacterial killing of

E. coli strains LM347 (black)

and LM625 (grey) in the

extracellular compartment of

different tissues (brain, muscle,

adipose and skin) following a

ciprofloxacin dose of 400 mg

b.i.d
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course of bacterial growth and kill. Thereby the relative

kill of different dosing regimens and bacterial strains can

be compared for different tissues. In the in vitro PKPD

model drug concentration in the test tube was used to

drive the bacterial killing while here the predicted

unbound drug concentration–time profile in different tis-

sues was replacing the static test tube concentration in the

Emax-model. Similar predictions based on unbound plasma

concentrations in plasma have earlier been used to support

treatment regimens of e.g. gentamicin, colistin and mer-

openem [46].

It should be noted that there are several assumptions in

the predictions illustrated. For example, the predictions

assume that in vivo bacterial growth and killing with the

antibacterial will be similar to the in vitro test tube situa-

tion. This work is however one step closer to the in vivo

situation compared to the test tube situation as we use the

predicted time course of unbound ciprofloxacin at potential

infection sites based on clinical data. The predicted con-

centration–time profiles are most likely a better represen-

tation of the concentration in the extracellular tissue fluids

than the plasma concentration time-profiles that are typi-

cally used to illustrate bacterial killing in in vitro kinetic

systems. This modeling framework illustrates a way of

combining PK and PKPD information from in vitro, in vivo

and clinical data to make a best guess. Once the separate

model components have been developed and connected,

different scenarios can be simulated and different hypoth-

esis be tested. For example, the framework could be

applied for comparing dosing regimens between different

study populations with different PK, and different types of

bacteria and/or infection sites. The model could also be

used to explore the potential for new indications, i.e. dif-

ferent infection sites where the drug concentrations are

predicted to be sufficiently high for a good bactericidal

effect. Here we explored the bacterial killing using dif-

ferent bacterial strains with different degree of drug sus-

ceptibility, but also the impact of e.g. a lower fitness or

growth rate in the tissues could be tested.

The immune response is an important factor for the

outcome of an antibacterial therapy. An extreme example

of the complications with immunodeficiency is HIV

patients who require higher doses and combination

antibiotic treatment as compared to an immunocompetent

patients [47, 48]. Most often the efficacy of antibacterials is

estimated based on the data from in vitro time kill curve

experiments and/or in vivo studies using neutropenic mice,

thus ignoring the role of neutrophils and other immune

cells. Recently, Lyons et al. described a physiologically

based PKPD model of rifampin therapy in a mouse

tuberculosis infection model also accounting for dynamics

for host immune response to Mycobacterium tuberculosis

infection [49]. In this work we wanted to also illustrate how

this type of framework can be used to explore the relative

response of the immune system and drug treatment. With

the addition of immune response, the highly resistant

strain, LM707, was predicted to be eliminated from kidney

while in lung, which had slightly lower levels of cipro-

floxacin, addition of an immune response was not enough

to eliminate the bacteria (Fig. 6b). The equation applied for

the immune response was based on two in vivo studies

quantifying the effect of neutrophils and bacterial burden

(Eq. 5). It should be noted that these predictions are based

on the effect as quantified in mice experiments and that

further studies to elucidate the quantitative impact of the

immune cells are warranted.

In this project we suggest a framework where data from

different sources and different models are integrated to

simulate the time course of unbound concentration and

bacterial killing at the site of drug action. This approach

represents a possibility to predict the therapy outcome in

different patient populations by combining the information

from different sources. In its present state this framework is

based on strong assumptions as, for example, there is

limited information available on possible differences in

bacterial growth rates and inoculum sizes at different

infection sites, and data on the impact of the immune

system is sparse. Despite its limitations it represents a show

Fig. 6 Predictions of the time

course of bacterial killing of

E. coli strains LM347 (black)

and LM707 (grey) in lung and

kidney following administration

of ciprofloxacin 400 mg b.i.d.

with (dashed lines) and without

(solid lines) addition of function

for immune response
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case and a step in the direction of model-informed drug

discovery and development (MID3) [11] by incorporating

information from several sources and the application of

translational approaches. This type of WB-PBPKPD

modeling framework has thereby the potential to help

guiding drug development of antimicrobials. The approach

can especially be valuable given that we are rapidly facing

an era of increasing resistance, where there is an urgent

need for new antimicrobial agents and effective drug

combinations. Given the parameterization of the WB-

PBPK model into volumes and flows, the framework can

also be extended and adapted to other patient populations

where differences in drug disposition is expected, such as

for pediatric and septic shock patients.

Conclusion

The developed WB-PBPK model successfully described the

plasma concentration profile data from patients by charac-

terizing both typical trends and variability where parameter

estimation was based on plasma concentrations combined

with prior information on ciprofloxacin Kp values and clear-

ance. Linking the predicted unbound extracellular concen-

tration–time profiles from theWB-PBPKmodel with a PKPD

model developed based on in vitro data is a promising

approach for predicting infection site specific time courses of

bacterial killing. This type of framework can be applied to

support treatment strategies for selection of antibiotics for

different indications and investigate the impact of different

levels of drug susceptibility for the bacteria.
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