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Abstract

Background: The assessment and characterization of the gut microbiome has become a focus of research in the
area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence
showed that ankylosing spondylitis may be a microbiome-driven disease.

Results: To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative
metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211
Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant
between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial
dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the
ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri,
and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is
commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were
established using a subset of these gut microbial biomarkers.

Conclusions: Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our
data suggest biomarkers identified in this study might participate in the pathogenesis or development process of
ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.
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Background
Ankylosing spondylitis (AS) is a systemic, chronic, in-
flammatory autoimmune disease characterized by the in-
flammation of the axial skeleton, the peripheral joints,
and the attachments of ligaments and entheses. Preva-
lence of AS is 0.2–0.54% in the ethnic Han Chinese

population [1] and approximately 0.5% in the USA [2].
AS mainly affects the physical function, quality of life,
and the working ability of young men and consequently
imposes a considerable burden on both the patients and
society [3]. The delay between the onset of symptoms
and diagnosis is up to 8–10 years due to the insidi-
ous progression of AS. The most effective current
medication, tumor necrosis factor (TNF) blockade,
does not seem to work in all patients to arrest bone
erosion or syndesmophyte formation. Considering the
diagnostic delay and insufficient therapeutic options,
a better understanding of the pathogenesis of this
disease is necessary.
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AS is regarded as a genetic disease and is strongly as-
sociated with HLA-B27 [4]. To date, other HLA variants
and non-MHC loci have been identified as the genetic
biomarker of AS through genome-wide association stud-
ies [5, 6]. A growing body of evidence indicated AS and
inflammatory bowel disease (IBD) shared similarity of
genetic risk factors and etiopathogenesis [7, 8]. The
interaction between host genetics and gut microbiome
may be involved in IBD pathogenesis [9]. Hence, AS may
also be a microbiome-driven disease. The most notable
association is the acknowledged ability of Chlamydia
trachomatis and Klebsiella to trigger HLA-B27-associated
disease; molecular mimicry has been suggested as a patho-
physiological mechanism [10]. However, these conclusions
are mainly based on serological tests and have not been
universally accepted. Interestingly, a distinct AS gut mi-
crobial signature was reported in a comparison of patients
with healthy controls on the basis of 16S ribosomal RNA
gene sequencing. In these patients, the abundance of
Lachnospiraceae, Veillonellaceae, Prevotellaceae, Porphy-
romonadaceae, and Bacteroidaceae was significantly in-
creased, while that of Ruminococcaceae and Rikenellaceae
was notably decreased [11]. In contrast to Crohn’s disease,
the microbial biomass did not differ between the AS pa-
tients and controls. How these alterations in the microbial
community structure correlate with the homeostasis of
the host, however, is obscure.
During the last decade, novel sequencing technologies

have revolutionized the field of microbiology and the role
of the microbiome in inflammatory and autoimmune dis-
eases has recently gained great attention. Significant differ-
ences were reported for the microbiomes of patients with
autoimmune diseases such as Crohn’s disease [12], ulcera-
tive colitis [13, 14], rheumatoid arthritis (RA) [15], systemic
lupus erythematous (SLE) [16, 17], and psoriasis [18]. A
quantitative metagenomics analysis developed by the Meta-
HIT consortium revealed a significant loss of gut microbial
richness associated with the risk of metabolic syndrome
[19] and co-morbidities associated with liver cirrhosis (LC)
[20]. No study has yet used this approach to analyze AS.
In this study, we conducted a quantitative metage-

nomics study in 211 Chinese individuals. These partici-
pants were divided into a discovery cohort of 73 AS

patients and 83 healthy controls as well as a validation
cohort of 24 patients and 31 healthy controls.

Results
Updated integrated gene catalog
The first integrated gene catalog (IGC, including type 2
diabetes [T2D], IBD, human microbiome project [HMP],
and MetaHIT individuals) contains 9,879,896 genes from
1267 gut metagenomes [21]. To better assess the rela-
tionship between AS and the gut microbiome, we first
assembled the genes from the AS patients and our
healthy controls (patient characteristics are reported in
Additional file 1: Table S1) and then constructed an up-
dated integrated gene catalog, denoted as IGC2 here-
after, which encompasses the IGC, LC, and AS gene
catalogs. The gene catalog for the AS gut microbiome
contained 2,319,710 non-redundant open reading frames
(ORFs), whereas the LC gut microbial catalog contained
2,688,468 genes [20]. Together they contained 517,488
genes not present in the IGC1. We added them to the
IGC1 and obtained a new catalog named IGC2 (Table 1
and Additional file 2: Figure S1a) that was used in the
remainder of the study.

Phylogenetic differences between AS patients and
healthy controls
The sequencing reads (Additional file 1: Table S2) were
aligned against 8743 reference genomes from the NCBI
and HMP (Additional file 1: Table S3). The diversity of
the gut microbiomes for the AS patients and the healthy
controls was similar at genus level (Additional file 2:
Figure S1a) but was significantly higher in the controls
at species level (Additional file 2: Figure S1b). This result
indicated that the genera were represented by more spe-
cies in the healthy participants. Analysis of phylotypes
with a median relative abundance larger than 1% and
0.1% at the genus and species levels, respectively, indi-
cated that Bacteroidetes, Firmicutes, Proteobacteria, and
Actinobacteria were the four dominant taxa in both the
AS patients and healthy controls, which, in agreement
with other studies [20], represented > 99% of the micro-
biome data. However, in contrast to the results of
Costello et al. [22], at the phylum level there were no

Table 1 The statistics of gene catalogs

Gene catalog Year of publication Sample numbers (#) Gene numbers (#) Total bases (bp) Average length (bp)

MetaHIT 2010 124 3,299,822 2,323,171,095 704

T2D (+MetaHIT) 2012 145 (+124) 4,267,985 3,081,440,484 722

LC 2014 181 2,688,468 2,017,496,337 750

AS (+LC_H*) This time 73 (+83) 2,319,710 1,682,594,586 725

IGC 2014 1267 9,879,896 7,436,156,055 753

IGC2 This time 1521 10,397,384 7,766,094,066 747

LC_H healthy samples in LC project
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significant differences between the two groups in the
abundance of Bacteroidetes or the ratio of Bacteroides
to Firmicutes (Additional file 2: Figures S2, S3), but the
abundance of Actinobacteria was significantly greater
(p = 1.50e-15, Wilcoxon rank-sum test) in the AS patients
(Fig. 1a) and that of Fusobacteria (p = 9.02e-08, Wilcoxon
rank-sum test) and Verrucomicrobia (p = 2.86e-04, Wil-
coxon rank-sum test) was lower (Fig. 1b). Consistent with
this result, an increase in the Actinobacteria was also
observed at the genus level, as four of the top five
enriched genera (Neisseria, Bifidobacterium, Collinsella,
Rothia, and Actinomyces; Additional file 1: Table S4)
belonged to Actinobacteria. Concomitantly, the AS
microbiome was depleted of gram-negative bacteria:
Enterobacter (p = 3.89e-10, Wilcoxon rank-sum test); and
Citrobacter (p = 5.54e-07, Wilcoxon rank-sum test). The
genera belonging to Enterobacteriaceae were enriched
in the healthy controls, as were Fusobacterium and a
genus most closely related to Lachnospiraceae bacte-
rium (Additional file 1: Table S4).

The most abundant species in both the AS and healthy
control groups were primarily from the Bacteroides
genus. Of the 20 species for which the abundance was
most decreased in the AS group, ten were Bacteroides
spp. (Fig. 1b). It has been reported that Bacteroides spp.
are reduced in RA [23] and IBD [24]. However, in other
diseases, such as psoriasis and celiac disease, Bacteroides
spp. were found to increase. These observations suggest
that phylogenetically related species can be differentially
enriched in different diseases. Noticeably, of the species
that increased the most in the AS patients, 13 were
Actinobacteria (Fig. 1a), specifically from the genus of
Bifidobacterium (p = 2.42e-12, Wilcoxon rank-sum test),
some of which are often used as probiotics. However, it
has been reported that B. bifidum (p = 1.96e-08, Wilcoxon
rank-sum test), B. longum (p = 1.38e-12, Wilcoxon rank-
sum test), and B. pseudocatenulatum (p = 9.69e-07,
Wilcoxon rank-sum test) can induce a TH2-driven im-
mune response [25] and the glycopolymers of B. bifidum
may play a role in the pathogenesis of autoimmune

a

b

Fig. 1 Differences of phylogenetic abundance between AS patients and healthy controls. The phylotypes that were increased (a) or decreased (b)
in the AS patients at the phylum, genus, and species levels. Red and blue indicate the AS patients and healthy controls, respectively. The phylogenetic
abundance of phyla that had mean values less than 1% and that of genera and species that were less than 0.01% were excluded. After exclusion,
Wilcoxon rank-sum tests were applied to identify the differentially abundant phyla, genera, and species. Among these, the highest medians of the
phylogenetic abundance in the enriched cohort were drawn as boxplots
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thyroid diseases through the mechanism of molecular
mimicry [26, 27].
Furthermore, compared with healthy controls, the mi-

crobial communities in the AS cases were characterized
by a higher abundance of Prevotellaceae including Prevo-
tella melaninogenica (p = 5.91e-09, Wilcoxon rank-sum
test), Prevotella copri (p = 1.18e-03, Wilcoxon rank-sum
test), and Prevotella sp. C561 (p = 1.12e-07, Wilcoxon
rank-sum test). This observation is consistent with the
data of Costello [22]. The study by Lin [28] noted
marked effects of HLA (human leukocyte antigen)-B27
on the gut microbiota; and an increase in the Prevotella
spp. was observed in HLA-B27 transgenic rats. P. copri
may stimulate an immune reaction that then targets
joint tissues and this species was strongly correlated with
the disease severity in untreated new-onset RA patients
[23] whereas P. melaninogenica can interact with human
lactoferrin.

Gene markers and functional differences between AS
patients and healthy controls
The AS patients exhibited a reduced richness of the
gut microbiome compared with the healthy controls
(414,289 ± 129,035 and 539,071 ± 189,228, respectively,
p = 6.68e-06, Wilcoxon rank-sum test) and the overall
distribution of their gene counts was clearly shifted
toward lower values (Additional file 2: Figure S4a, b).
The Shannon-Wiener diversity index (p = 1.50e-07,
Wilcoxon rank-sum test) and the Simpson diversity
index (p = 3.57e-06, Wilcoxon rank-sum test) also reflected
the lower gut microbiome richness of the AS patients
(Additional file 2: Figure S4).
To identify the differentially abundant genes, Wil-

coxon rank-sum test was applied to 73 AS patients and
83 controls. Among these participants, 23,709 genes
were identified: 6238 were more abundant in AS patients
and 17,471 in the healthy controls, using the threshold
value of > 1e-7 for mean relative abundance and < 1e-4
for q (Additional file 2: Figure S5a). Compared with
those for IBD and LC, the degree of gut dysbiosis in AS
was intermediate, IBD being lowest and LC highest, as
deduced from the p value distributions (Additional file 2:
Figure S5b).
To analyze the functional difference between the pa-

tients’ and controls’ microbiomes, we used the KEGG
(Kyoto Encyclopedia of Genes and Genomes) annota-
tion, which was available for 40% (3,684,628/10,397,384)
of all the ICG2 genes. The most abundant KEGG
orthologs in both groups were those associated with
carbohydrate metabolism (Additional file 2: Figure S6).
The most enriched orthologs in the AS patients were
related to membrane transport, similar to findings for
LC [20] and T2D [29]. In contrast, the most prevalent
markers among the AS patients included those

involved in cell motility, membrane transport, metabo-
lism of cofactors and vitamins, and signal transduction
(Additional file 2: Figures S7, S8). Furthermore, the micro-
biota regulates the intestinal immune responses primarily
through the production of microbe-associated molecular
patterns (MAMPs) such as lipopolysaccharides (LPS) and
flagellin.
Moreover, the module related to proteasome functions

was more abundant in the AS samples whereas those for
glycosaminoglycan metabolism, secondary metabolites
biosynthesis, and symbiosis were elevated in healthy
controls (Additional file 2: Figure S9). The proteasome is
a multi-subunit proteolytic complex that is involved in
the degradation of many cytosolic and nuclear proteins
that regulate pathways critical for cell survival. This
complex is widely expressed in eukaryotic cells and
some prokaryotes such as the Archaea and Actinobac-
teria. The enrichment of this module was consistent
with the higher abundance of Actinobacteria in the AS
patients. Furthermore, all of the proteasome-associated
genes that were identified as being differentially abun-
dant in this study belonged to the bacterial proteasome
(Additional file 1: Table S8).

Metagenomic species (MGS) in AS disease and
comparison with other diseases
MGS is a gene group in which all of the genes are def-
erentially abundant between patients and healthy con-
trols, the genes in the same MGS have consistent
abundance among individuals. We grouped the genes
into clusters denoted MGSs [30] according to the gene
abundance (Fig. 2). Of the 6238 genes enriched in the
AS cohort, 2594 genes were clustered into six MGSs,
whereas of the 17,471 genes enriched in the healthy
controls, 5291 were clustered in 23 MGSs (Additional
file 1: Table S9). All of the MGS were significantly dif-
ferent in the discovery cohort and 12 were also signifi-
cant in the validation cohort (all six of the AS-enriched
and six of the control-enriched). Four of the MGSs that
were enriched in the AS patients could be annotated to
the strain level; two of them are Bifidobacterium and
B. pseudocatenulatum_DSM_20438, which is consistent
with the phylogenetic analysis that identified an increase
in the Bifidobacteria as presented in a previous section.
We compared the MGS from different studies, tar-

geting the AS study, LC [20], and obesity [19]; we in-
cluded the T2D [29] and European Women T2D
studies [31], although it is known that these two
studies are confounded to a certain degree by the
metformin treatment administered to some of the pa-
tients [31]. We found that only a few species were
common to these different diseases (Additional file 1:
Table S11). Clostridium bolteae, Clostridium symbio-
sum, and Clostridium ramosum were enriched in
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patients in the T2D Project and the Obesity Project,
which showed that some species in some genus were
similar in obesity patients and T2D patients. Importantly,
a majority of the MGS markers were disease-specific
(Fig. 2e), indicating that they could be a foundation for
novel non-traumatic monitoring and classification ap-
proaches based on human gut microbiome for different
chronic diseases.

Unknown taxonomic organism identified by population
metagenomics technology
To further explore the bacterial species associated with
AS that was not captured by the gene-based approach
presented above, we grouped the AS-specific catalog
genes (1,708,140 genes that were with abundance in at
least ten samples from 2,319,710 genes) into clusters of
≥ 700 genes, denoted “big CAGs (Co-abundance gene

a

d e

b c

Fig. 2 MGSs in AS patients and healthy controls and association with clinical indices. a The abundance of 12 MGSs are shown as heatmaps: the
discovery set (n = 156) is on the left and the validation set (n = 55) is on the right. The colors denote the variation in abundance (white indicates
zero; black indicates the highest abundance). b The association between MGSs and clinical index is shown in the middle: the darker the color, the
greater the intensity. Violet indicates a positive correlation with each index (the index partition in first row), green indicates a negative correlation
with each index (the index partition in first row). The 25 genes in each MGS for which the mean abundance values were the highest are shown
in the heatmap. c On the right of the heatmap, the Wilcoxon rank-sum test p values for the mean abundance of the 25 “marker genes” are indicated.
Above the heatmap, the color key shows how the color variation indicates the abundance. d The networks of the 12 MGSs reflect the interaction
between them. The notes represent the MGSs and the note size is proportional to the mean abundance of the genes in the MGS. The red lines
represent the negative correlation between the two notes and the blue lines represent the positive correlation between the two notes. e The
Venn diagram of the MGS in AS Project, LC Project, T2D Project, T2D European Women Project, and Obesity Project (Additional file 1: Table S11)
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groups).” This was facilitated by using the approach de-
scribed by Nielsen et al. [32] across the 211 individuals
of our cohort (AS patients and healthy controls). We
obtained 199 big CAGs and validated them in the
validation cohort (Additional file 2: Figure S10). Of
these, 63 (31.7%) could be assigned taxonomically
(Additional file 1: Table S12, Additional file 2: Figure S11),
consistent with previous data that indicated that most
gut bacterial species have no closely related reference
genomes [32]. In a similar manner, we obtained and
validated 755 clusters of 100–699 genes, hereafter denoted
“small CAGs” [32]: 583 (77.2%) of these 755 were un-
known taxonomic organisms.
To identify the clusters (included the big CAGs and

small CAGs) associated with AS, the low abundance
clusters were filtered (Online Methods) and the Wilcoxon
rank-sum test was used (false discovery rate [FDR] < 0.01).
There were 62 clusters, which included 16 big CAGs
and 46 small CAGs (Additional file 1: Table S12).
Among these, 25 cluster markers (six big CAGs and
19 small CAGs) were confirmed in the validation cohort
(p < 0.05). Compared with the 12 clusters of differentially
abundant genes shown in Fig. 2, MGS (AS_i_1) belongs
to cag4343, MGS (AS_i_2) belongs to cag521, MGS
(AS_i_3) belongs to cag1907, the majority of the MGS
(AS_d_1) belongs to cag555, and the others contain some
genes that overlapped with the big CAGs and small
CAGs. Of the 62 clusters, 16 clusters were directly anno-
tated to the strain level. The other clusters should also be
strain-level clusters, but their strain names were un-
known (Additional file 1: Table S12). Among these, ten
clusters were annotated to the species level, eight clusters
were annotated to the genus level, four clusters were
annotated to the order level, and 24 clusters were
completely unknown. All of these 62 clusters and the
12 clusters of differentially abundant genes shown in
Fig. 2 were used as cluster markers to construct a new
classification model for AS based on the human gut
microbiome.

New classification model for AS
We constructed classification algorithms (classifiers) to
identify AS patients using three types of biomarkers:
sequenced reference genomes, genes, and clusters, which
included the MGSs and CAGs. With the Matthews
Correlation Coefficient (MCC) optimization selection
and the Support Vector Machine (SVM), three classifiers
were constructed (Online Methods) based on the three
types of bio-markers (marker details in Additional file 1:
Table S13), and the receiver-operating characteristic
(ROC) curves were drawn (Fig. 3). During the classifier
construction, all 210 differentially abundant sequenced
reference genome markers (Additional file 1: Table S14)
were input and 33 sequenced reference genome

markers were picked after MCC optimization selection
(Additional file 1: Table S13). The top 100 differentially
abundant genes with smallest p values (<1.1e-12) were
input and finally 30 genes were used. All 62 of the diffe-
rentially abundant clusters (including metagenomic
species and CAGs) and 12 MGSs were merged together
and a final group of 62 cluster markers (11 MGSs, 14 big
CAGs, and 37 small CAGs) were used (Additional file 1:
Table S13).
From the ROC curves (Fig. 3), we found that the gene

markers (area under ROC curve [AUC]) = 96.64% in the
validation cohort) were better than the sequenced refer-
ence genome markers (AUC = 93.55% in the validation
cohort) because the gene markers were not limited to
known taxonomic organisms. The cluster markers were
high-level bio-markers based on gene markers, although
they were not good enough (AUC = 92.61% in the valid-
ation cohort) because they contained many unknown
taxonomic organisms. The cluster markers and gene
markers were important complements to the sequenced
reference genome markers.
All three of the classifiers that were based on human

gut microbiome could be used as new classification
models for AS.

Discussion
Here, we integrated the AS gene catalog with the IGC
and LC gene catalogs to generate reference genes. Ap-
proximately 17% additional genes (232,446 genes) could
be aligned effectively with the expanded catalog as op-
posed to the AS gene catalog alone. The new catalog
should facilitate quantitative characterization of the
metagenomic, metatranscriptomic, metaproteomic, and
metabolomic data from the gut microbiome to better
understand their variations across population groups
and cross-talk between the microbiota and its host. Due
to few AS participants who did not take any medicine, a
major limitation of our study is that we do not know
whether medication use is driving the difference seen in
AS patients compared with healthy controls. This will
require further study, such as the analysis of newly diag-
nosed AS patients.
It has recently become clear that the influence of the

microbiota extends beyond the intestinal tract and af-
fects the systemic immune system. In the current
study, we present compelling evidence that the gut
microbiome is altered in AS. The alteration might have
a role in the pathogenesis of AS, possibly by modulat-
ing both the innate and adaptive immune systems. The
recognition of MAMPs by the intestinal epithelial cells
induces secretion of the antimicrobial peptide RegIIIγ,
which mediates colonization resistance in the gut [33].
A decrease in the content of LPS caused by the deple-
tion of gram-negative bacteria and an associated
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Fig. 3 Receiver-operating characteristic (ROC) curves of the sequenced reference genome markers, gene markers, and cluster markers. a Classifier
based on 25 sequenced reference genome markers and the ROC curves for the discovery and validation cohorts. b Classifier based on 35 gene
markers and the ROC curves for the discovery and validation cohorts. c Classifier based on 62 cluster markers and the ROC curves for the discovery
and validation cohorts. The discovery cohort was the 156 samples that were used to identify the markers; the validation cohort was the 55 samples
that were used to validate the markers such as those shown in Fig. 2
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reduction in the flagellar assembly could lead to
RegIIIγ hyposecretion, which could promote the dys-
biosis of the gut microbiome that is associated with AS
(Fig. 4, Additional file 2: Figure S7).
The epithelium of the human intestinal tract has

necessarily evolved mechanisms to prevent or limit the
activation of cellular immune-inflammatory stress re-
sponses and the transcription factor NF-κB is often
involved in those immune and inflammatory responses.
It has been reported that NF-κB is activated through the
tightly regulated phosphorylation, ubiquitination, and
proteolysis of the inhibitor molecule, IκB. As previously
mentioned, proteasomes are found in eukaryotes, ar-
chaea, and actinobacteria, and the central component of
all proteasomes, the core particle, is similar in overall
structure [34]. Actinobacteria have been shown to mod-
ify proteins by the attachment of a small protein modi-
fier termed prokaryotic ubiquitin-like protein, which can
target proteins for degradation by proteasomes [34–36].
It has been reported that multiple species of non-
pathogenic bacteria can attenuate the NF-κB pathway
via specific inhibition of IκB-α ubiquitination whereas the
ubiquitin-mediated degradation of IκB-α is mediated by a
common Ub ligase, E3-SCFβ-TrCP. With the information

above, and our results demonstrating that Actinobacteria
been enriched in AS patients, we speculated that Actino-
bacteria might modulate the ubiquitination of IκB-α. This
in turn would allow the activation of NF-κB signaling and
the accumulation of proinflammatory factors in patients
with AS. This could facilitate the development of AS. A
large study showed that proteasomes have an obvious
correlation with autoimmune diseases including SLE, RA,
scleroderma, and others, and the serum proteasome con-
centration in many autoimmune diseases patients was
significantly increased [37]. Furthermore, a hypothesis has
been proposed that the ubiquitin/proteasome system,
autophagy, or cross-talk among different proteolytic
pathways may possibly contribute to the pathogenesis of
T1D, another polygenic autoimmune disease that occurs
in individuals who are genetically predisposed on the basis
of their human leukocyte antigen types. The ubiquitin-
proteasome system has been used as a clinical target in
the treatment of multiple myeloma and an exploration of
the potential use of proteasome inhibition for auto-
immune diseases including AS is pending. The elucidation
of a possible functional role for the increase in the gut
bacterial proteasome components in AS would require
further studies.

DC

DC

TLR4

TLR5

AS

TLR2

Treg

Th17

RORγ t+

RORγ t+

ILC

TLR2

Gut environment Host tissues

Cell Motility Bacterial chemotaxis

Flagellar assembly

Regulation of actin cytoskeleton

Decrease of 
the ability to 
eliminate the 
pathogens

LPS

Flagellin

Bacteroides

PSA

Enterobacter
RegIIIγ

TGF-β

IL-1β

IL-23

IL-22

Fig. 4 A schematic diagram of the main functions of the gut microbes associated with AS. The red text denotes enriched in the AS patients; the
blue text denotes depleted in the AS patients; the orange lines and arrows denote the actions initiated by the gut microbes or functional in the
gut environment in this study; the black line and arrows denote the known actions and mechanisms functional in the host tissues as previously
reported; the blue dashed line and arrows denote the inferred actions and mechanisms in the host tissues that were associated with the gut
microbes. Here, we present some information regarding the influence of the gut microbiota on both the innate and adaptive immune responses.
With respect to the innate immune responses (see Fig. 1), RegIIIγ hyposecretion caused by decreased levels of LPS and flagellin and accompanied
by depletion of bacterial chemotaxis, regulation of the actin cytoskeleton, Fc gamma R-mediated phagocytosis, and NOD-like receptor signaling
result in the dysbiosis of the gut microbiome and the onset of AS. With respect to the adaptive immune responses (see Fig. 2), a reduction in the
levels of Polysaccharide A (PSA), which is mainly produced by the Bacteroides, may directly or indirectly influence the differentiation of the Treg
cells and thereby contribute to AS
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Conclusions
The human gut mirobiome of AS patients was clearly
different from that of healthy controls. There was loss of
richness of the gut microbiome in AS patients. Our re-
sults demonstrated that some alteration of gut micro-
biome is associated with developments of AS, evidenced
by the changes in genes, pathways, and various taxo-
nomic levels. According to previous reports, we inferred
that some biomarkers participate in the pathogenesis or
the development process of AS, such as Bifidobacterium,
Prevotella melaninogenica, Prevotella copri, Prevotella
sp. C561, and the gene markers related to bacterial pro-
teasome. Other markers that were not clear in pathogen-
esis could provide new information for further research.
The classification model based on biomarkers in the gut
microbiome might provide a new direction for future
clinical examination and diagnosis. Lastly, discovery of
the associated microbes of AS in the gut microbiome
may help us to seek more treatments for this disease.

Methods
Patient information
After informed consent was provided, a total of 211 indi-
viduals (97 patients with AS and 114 healthy controls)
were enrolled in this study from three hospitals (Zhejiang
Provincial Hospital of Traditional Chinese Medicine, the
Second Affiliated Hospital of Zhejiang Chinese Medical
University, and Zhejiang Province People Hospital). The
97 individuals (57 men, 40 women) aged 14–71 years with
AS were diagnosed on the basis of the modified New York
criteria for AS [38]. The clinical information of the partici-
pants (gender, age, BMI, clinical manifestation, blood
HLA-B27 level, erythrocyte sedimentation rate [ESR],
C-reactive protein [CRP], alanine aminotransferase [ALT],
aspartate transaminase [AST], albumin [ALB], globulin
[GLB], urea nitrogen [BUN], and creatinine [Cr]) was
collected, and the Bath Ankylosing Spondylitis Functional
Index (BASFI) [39] and Bath Ankylosing Spondylitis
Disease Activity Index (BASDAI) [40] were calculated.
Among them, age, BMI, disease duration, and non-
steroidal anti-inflammatory drug treatment showed no
effects in this research (Additional file 2: Figure S12a–d).
The information of healthy controls was collected in the
First Affiliated College of Medicine, Zhejiang University.
The healthy controls (72 men, 42 women) were aged
23–70 years and were free from any history of IBD or any
rheumatic disease. AS patients and controls with gastro-
intestinal tract disorders and those undergoing treatment
with antibiotics within one month prior to the stool
collection were excluded. Patients with severe systemic
diseases or hepatitis were excluded.
A dietary questionnaire that recorded the complete

diet information and dietary habits was completed be-
fore the blood sample collection. This questionnaire was

used to exclude individuals that had specific dietary
habits such as alcohol consumption or a completely
vegetable-based diet. The clinical information on the
participants is presented in Additional file 1: Table S1.
The clinical diagnosis and blood examination data for all
individuals were obtained from the hospitals.

AS patient fecal sample collection
All of the fresh fecal samples from the AS patients were
transferred immediately from the hospital to the labora-
tory [20] and divided into ten aliquots of 200 mg. All
samples were stored at –80 °C until DNA extraction.

Using the public data of healthy controls
The data of healthy controls were published before and
could be downloaded from European Bioinformatics
Institute European Nucleotide Archive (ERP005860).
The average clean data of them was 3.84 Gbp. Because
the AS patients in this study kept a similar daily diet
(Southeast China dietary habit: rice as staple food and
bland dish styles) with these healthy controls, the data of
healthy controls were used. In order to make the two
groups (AS patients and healthy controls) as comparable
as possible, all the experimental protocols and bioinfor-
matics pipelines for each sample in this study were in
line with the published paper [20], including DNA ex-
traction, library construction, sequencing, quality control,
host genome filtering, and other bioinformatics analysis
methods. Non-metric multi-dimensional scaling (NMDS)
analysis for all the samples (AS patients and healthy
controls) based on phylogenetic abundance profiling
showed that the samples of the AS patients and healthy
controls were randomly distributed in the NMDS space
(Additional file 2: Figure S12a–d); it showed that the batch
effects in this study were minor.

DNA extraction and library construction
The DNA was extracted from each frozen fecal sample
(200 mg) using the phenol/trichloromethane DNA ex-
traction method. The quality of DNA was measured
using a NanoDrop instrument (Thermo Scientific, used
to estimate the DNA concentrations) and agarose gel
electrophoresis (used to measure the molecular sizes).
TruSeq DNA HT Sample Prep Kit was used for library
construction. The quality of the DNA library was esti-
mated using Qubit to estimate the DNA concentration
and Agilent 2100 (used to measure the insert sizes).

Sequencing
All the samples were sequenced in the Illumina Hiseq
2000 in BGI-Shenzhen and PE100 sequencing strategy
was used; each sequencing run had 9–11 samples and
the sequencing depth of each sample must be at least 3
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Gbp. The insert sizes of all samples were in the range of
275–450 bp.

Quality control and host genome filtering
The raw reads from the AS patients and healthy controls
that had 50% low quality bases (quality ≤ 20) or more than
five ambiguous bases were excluded. Subsequently, reads
with low quality tails (quality ≤ 20) were trimmed, the
remaining reads were mapped to the human genome (hg19)
by SOAP alignment (v2.21) [41], and the matching reads
were removed as being contaminants from the host genome.

Assembly and repeated assembly
All high-quality reads from the AS discovery cases were
assembled by SOAP de novo (v2.04) [42], which has
been effectively used in metagenomics research. We
randomly chose ten samples to test the performance of
various k-mer sizes in the range of 21–59 in increments
of 2 in the assembly; the conclusion was that the k-mers
that led to the highest N50 varied from 51 to 59. There-
fore, five k-mers 51, 53, 55, 57, and 59 were used in the
assembly and the N50-highest k-mer was chosen. After
the scaffold was obtained, we split the scaffold into
“scaftigs” by removing the ambiguous bases and dis-
carded the scaftigs whose length were less than 500 bp.
The publicly available results of the assembled healthy
controls were used directly for the scaffolds and proc-
essed by the same method. The original clean reads were
mapped to the scaffolds by SOAP alignment and the
unused reads were pooled and assembled again. The first
repeated assembly was within 20 sets (Additional file 1:
Table S5), while the repeated assembly was within four
sets (Additional file 1: Table S6). The k-mers in the
repeated assembly were all set to 55.

Gene prediction and gene catalog construction
The coding sequences were predicted from the split
scaffolds from both the original assembly and the re-
peated assembly by MetaGeneMark (v2.8) [43], which
used a hidden Markov model to predict the ORFs
(Additional file 1: Table S7). After filtering the genes
whose lengths were less than 100 bp, the remaining
sequences were clustered by CD-hit [44] to construct a
non-redundant gene catalog. Two genes whose identity
and coverage were greater than 0.95 and 0.9, respect-
ively, were merged together and the longer one was
regarded as the representative sequence. After that, this
gene catalog was merged with the IGC and LC gene cat-
alogs using CD-hit with the same parameters.

Phylogenetic abundance profiling and gene abundance
profiling
The clean reads were mapped to the reference genomes
collected from NCBI and HMP using the SOAP aligner

and the phenotype profiling was evaluated using the
number of hits for the reads against a certain reference
genome. For certain species, reads that were paired-
matched to related genomes were split into two parts:
(1) U: reads match this genome only; and (2) M: reads
also match another genome, and the abundance of the
species was also split into two parts, Ab(U) and Ab(M).
The unique part Ab(U) was calculated as the number of
reads divided by the length of the genome. For the
multiple part Ab(M), each of the reads in set M was
assigned to several parts according to the unique abun-
dance of species with which the reads matched [20]. The
formulae were as follows:

Ab Sð Þ ¼ Ab Uð Þ þ Ab Mð Þ

Ab Uð Þ ¼
XU

i¼1

1=l

Ab Mð Þ ¼
XM

i¼1

Co � 1ð Þ=l

Co ¼ Ab Uð Þ
XN

i¼1

Ab Uið Þ

where Ab(U) and Ab(M) indicate the unique part and
the multiple part of the species abundance, respectively,
and l indicates the length of genome.
On the basis that the genes are usually shorter than

the genome, when calculating gene abundance, it is too
strict to choose only paired-match reads. We relaxed the
limits such that the following reads were also pooled
into calculation: the read was single-end matched to a
reference, but the other end of the read was beyond the
range of genes (the insert size was considered to be
800 bp). The remain steps were identical to those use
for the calculation of the abundance of the species.

Gene counting and alpha diversity
The number of genes that were detected in each sample
was counted. To eliminate the effect of the various data
sizes among the samples, all reads were randomly sam-
pled to 9 M (million) reads and the same method was
applied to calculate the abundance and count the num-
ber of genes. The Shannon-Weiner alpha diversity and
the Simpson alpha diversity were calculated and com-
pared between the AS patients and healthy controls
(Additional file 2: Figure S4).

Differential gene identification
On the basis that genes with too low an abundance in
both AS patient samples and healthy control samples
might not appropriately reflect the actual situations, the
genes with median abundance less than 1e-7 in the AS
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patient group or the healthy control group were dis-
carded. The differential genes were identified by the
Wilcoxon rank-sum test with a threshold FDR < 0.001.
The estimated pi0 values (ratio of the null hypothesis in
Additional file 2: Fig. S5a) were calculated using the q
value R package [45].

Gene functional analysis
The protein sequences of the genes in the merged gene
catalog were aligned to the KEGG protein database [41]
using BLAT [46]. After filtering the match scores under
60, the genes were assigned to the KEGG orthology
groups on the basis of the highest scores of the matches.
The abundance of a certain KO (KEGG orthology group)
was calculated as the sum of the abundances of genes
that were assigned to this group. To identify the KOs
that were associated with AS, the Wilcoxon rank-sum
test was performed with FDR < 0.005 and the observed
differential KEGG orthology groups were assigned to the
KEGG pathways.

MGS identification
For the identified differentially expressed genes, hier-
archical clustering was applied using Spearman’s correl-
ation coefficient for the abundance of the genes with a
clustering threshold of 0.9. After abandoning clusters
with less than 25 genes, a second hierarchical clustering
was performed using Spearman’s correlation coefficient
for the mean abundance of genes in each cluster with a
new threshold was 0.8. The final clusters of genes were
called MGSs [20].

CAG identification
To assess the abundance of all genes that were detected in
more than ten samples, a canopy algorithm was applied
[47]. The T1 threshold for the canopy algorithm was a
Pearson correlation coefficient > 0.95 and a Spearman’s
correlation coefficient > 0.7, whereas the T2 threshold was
a Pearson correlation coefficient > 0.9. After the first clus-
tering process and exclusion of canopies that contained
only one gene, according to mean abundance of the clus-
ters, a canopy-like algorithm was applied. For a group that
contained canopies obtained by first clustering, a new can-
opy will merge into this group if the Pearson correlation
coefficient between this canopy and more than 70% of the
canopies in this group > 0.9. After the former process, the
second clusters may have overlaps. Thus, for a certain
gene that is in more than one cluster, the distances be-
tween the gene and the clusters to which it belongs were
calculated and the closest cluster was chosen. The new
clusters were called CAGs and those that contained more
than 700 genes were selected for further research [32].
After filtering the median abundance lower than 1E-8 in

both groups, the Wilcoxon rank-sum tests were applied to
select the CAG markers that had FDRs < 0.0005.

Phylogenetic annotation of MGSs/CAGs
To annotate the MGSs/CAGs into a taxonomy, all of
the genes of each MGS/CAG were mapped to the NCBI
databases for bacteria, fungi, and viruses using BLAT.
The strict matching results were regarded as valid
matches if the identity > 0.95 and coverage > 0.9. If more
than 90% genes were annotated into only one certain
taxonomy, the MGS/CAG was annotated into this
phenotype.

Self-learning classifier
We choose three types of data, the abundance of refer-
ence genomes markers, gene markers, and clusters
markers in the discovery set as the features with which
to build the classifiers. The redundant features were fil-
tered: several subsets of all features were chosen by the
mRMR algorithm (the side Channel Attack R package)
[48] and the leave-one-out cross-validation LDA (Linear
Discriminant Analysis) (the paleoMAS R package) was
applied. The ones for which the highest MCC were ob-
tained were chosen to build a SVM classifier (the e1071
R package). The number of features in each subset were
reduced from the original number by step 5 (one in the
case of the MGS). The ROC figures for both the disco-
very set and validation set were drawn using the pROC
R package.

Data access
The sequencing data of the 97 AS samples have been
submitted to NCBI Sequence Read Archive under acces-
sion number SRP100575.

Additional files

Additional file 1: Table S1. Phenotype information of AS patient
individuals and health controls in discovery stage (156 samples) and
validation stage (55 samples). Table S2. Data production and quality
control of 156 samples in discovery stage and 55 samples in validation
stage. Table S3. The 8743 reference genomes from NCBI and HMP
(downloaded on 15 Dec 2013). Table S4. The differentially abundant
genus in AS patients (n = 73) and healthy controls (n = 83). Table S5.
Assembly result of 156 samples in discovery stage. Table S6. The
improvement with the repeatedly assembly. Table S7. Gene prediction
of 156 samples in discovery stage. Table S8. Genes with abundance
which belong to proteasome modules. All the differentially abundant
genes identified in this study only belong to bacterial proteasome.
Table S9. The taxonomic annotation of MGSs. Table S10. The phenotypic
correlation analysis (p value) of 12 MGSs according to different clinical
groups. Table S11. Comparison of the MGS in different diseases. Table
S12. The taxonomic annotation of CAGs (Gene number ≥ 100). Table
S13. The details of the best markers selected for five monitoring and
classification models based on five kinds of bio-markers. Table S14.
The 210 differentially abundant sequenced reference genome markers
used for classification training. (XLSX 870 kb)
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Additional file 2: Figure S1a. Venn diagram of three existing human
gut gene catalogs. Figure S1b. Diversity of genera and species between
AS patients and healthy controls. Figure S2. The Bacteroidetes/Firmicutes
ratio in the AS patient group and in the healthy control group. Figure S3.
Phylogenetic abundance under phylum, genus, and species levels between
AS patients and healthy controls. Figure S4. Loss of richness of the gut
microbiome in AS. Figure S5. The distribution of p values. Figure S6. The
distribution of KEGG functional categories (statistics in Level 2) for all genes
and differentially abundant genes. Figure S7. The distribution of detail
pathways in four KEGG functional categories which were quite different
between AS-enriched genes and control-enriched genes in Figure S6.
Figure S8. The distribution of eggNOG functional categories for AS related
markers. Figure S9. The distribution of KEGG module categories for AS
related markers shown by number and percentage. Figure S10. Heatmap
of the abundance of a random metagenomic species in both sequencing
data and downloaded data. Figure S11. Taxonomic annotation of genes in
CAGs by NT database. Figure S12. The NMDS (non-metric multidimensional
scaling) analysis based on phylogenetic abundance profiling of all the 156
samples in the discovery cohort. (DOCX 4671 kb)
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