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Introduction

Survival and evolutionary success of living organisms directly depend on the ability to respond

appropriately to their biotic environments. Plants and animals have developed intricate mech-

anisms of recognition and response that require differentiation between self and potentially

pathogenic nonself and containment of infected tissues [1]. A class of cytosolic Nucleotide

Oligomerization Domain (NOD)-like receptors, or NLRs, contribute to this recognition and

discrimination process in plants and animals [2,3]. Less is known about how fungi monitor

their interactions with their biotic environments. Here, we summarize evidence indicating

that fungi have similar NLR proteins and may use similar mechanisms to recognize and

respond to heterospecific nonself; we outline similarities and differences with their plant and

animal counterparts, and we propose future directions elucidating aspects of fungal immune

systems.

1. Why should fungi identify nonself?

Fungi colonize nearly all environments on Earth (reviewed in [4]), where they interact with

every major organismal group: viruses, bacteria, protists, amoeba, plants, and animals. Many

of these interactions lead to symbioses ranging from mutualism to pathogenesis (Fig 1) [4].

Examples include fungi that are targeted by pathogens and predators [5] or that become hosts

for intracellular bacterial populations [6]. Some of these fungal endosymbiont interactions

have coevolved over their 400 million year old [7] symbiosis and likely involve specific bidirec-

tional recognition systems [8–10]. The evolutionary success of the kingdom Fungi and diver-

sity of fungal biotic interactions suggest that, like plants and animals, fungi have developed the

ability to accurately identify and respond to interacting organisms. However, mechanisms for

such monitoring and response are just beginning to be understood [11]. An intriguing possi-

bility is the involvement of NLR-based nonself recognition mechanisms in Fungi.

Fungi possess mechanisms that allow for self and nonself recognition within species during

vegetative development, including vegetative (heterokaryotic) incompatibility controlled by

het (or vic) genes [12,13]. Vegetative incompatibility (VI) between genetically distinct mycelia

helps maintain the integrity of mycelial individuals, permitting them to persist and evolve. VI

also prevents the spread of mycoviruses (reviewed in [14]). In ascomycetes, some het genes

involved in VI encode NLR proteins that contribute to allorecognition, but their involvement

in xenorecognition is still largely unknown [15].
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2. How do plant & animal NLR-based innate immune systems

function?

Innate immunity is an ancestral defense mode that involves microbial recognition, signal

transmission, transcriptional reprogramming, and rapid cell death in animals, plants, and

other organisms [16,17]. Plant and animal innate immune receptors, including NLRs, recog-

nize pathogenic markers and initiate cell death. In plants, cell death occurs via the hypersensi-

tive response, and in animals, cell death (pyrotopsis) occurs via inflammasome assembly [18].

Although the downstream signaling events and cellular death activation mechanisms differ

between plants and animals, in both cases NLR activation results in rapid cell death and

Fig 1. Diversity of fungal habitats and lifestyle leading to a large range of biotic interactions. a.

Hyphae of the symbiotic fungus Laccaria bicolor and a fruiting body primordium surrounded by soil particles

(INRA JL Churin); b. Transversal section of an ectomycorrhiza of the black truffle Tuber melanosporum

(green) associated in symbiosis with a root of the tree Carpinus betula (red); c. The rust fungus Melampsora

larici populina (red) invading a poplar leaf (green) (INRA S Hacquard, S Duplessis); d. Saprophyte fungus

Podospora anserina growing freely; e. Saprophyte fungus P. anserina experiencing cell death during the

interaction with bacteria of the genus Serratia (right panel); f. Dimorphic stages (i.e., yeast versus hyphae) of

the human opportunistic pathogen Candida albicans; g. A wood-degrading fungus emerging from decaying

wood and colonizing surrounding soil.

https://doi.org/10.1371/journal.ppat.1006578.g001
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expression of antimicrobial compounds to restrict the spread of the pathogens. Similarly, VI in

fungi leads to rapid cell death and increase of antimicrobial activity [19,20]. Plant and animal

NLRs share similarities in structure and in pathogen-detection functions, although microbial

molecules recognized by each group differ. Typical NLRs in both groups are tripartite, con-

taining a central nucleotide-binding domain (NBD), an N-terminal domain that initiates

downstream events, and a C-terminal Leucine-Rich Repeat (LRR) domain that facilitates pro-

tein–protein interactions [3,16]. The central NBD domains are related but can be differenti-

ated, with NB-ARC and NACHT domains (named after proteins containing them) found in

plant and animal NLRs, respectively (Fig 2). Although the N-terminal domains differ, C-termi-

nal LRR domains are common to both groups. Fungal NLRs share similar structure and

domain homology, further discussed below.

While some plant and animal NLRs detect pathogens directly, others monitor modified or

damaged self, leading to indirect detection [16]. These observations led to the “Guard Model”

for plants, in which a response is elicited when a pathogen effector disrupts a complex between

the guardee (a host protein) and the guardian (an NLR) [21,22]. In the related “Decoy Model,”

a duplicated guardee protein gains a novel function of luring effectors off target. Decoys may

be integrated as an additional domain to the conventional tripartite organization of NLRs

[23,24]. Although NLR structure, motif, and mechanistic functioning of NLR proteins are

strikingly similar (Fig 2) [2], the evolution of NLRs in plants and animals is thought to be con-

vergent [1,2,25]. How fungal NLRs are related to similar proteins in plants and animals and

innate immunity is currently being investigated.

3. How do fungal NLRs mediate nonself recognition?

A subset of fungal VI genes with functionally validated roles in nonself recognition encodes

NLR proteins [26–28]. The VI process dictates whether cells generated by the vegetative fusion

of different conspecific fungal strains will develop or die after fusion [14]. Many fungal pro-

teins involved in VI contain the cell death–inducing HET domains [28], and several are NLRs

[26,29]. Fungal NLR activation during VI requires ligand-dependent activation [25], hydroly-

sis of nucleotides [30], and indirect evidence suggests oligomerization of NLRs [26,29]. In

some cases, NLR signal transduction depends on amyloid fold transmission, requiring interac-

tions with downstream effector proteins that are also observed in cell death activation mecha-

nisms in metazoans [26]. Furthermore, a fungal NLR-associated amyloid-forming domain can

functionally replace metazoan NLR effector domains, forming higher-order structures to

ensure signal transduction [31]. During VI, incompatible fungal strains undergo programmed

cell death, resulting from interactions between HET domain-containing proteins, NLRs, and

others [13,26]. VI, including NLR-controlled VI, is thought to restrict horizontal spread of del-

eterious cytoplasmic elements or confine invasive pathogens, such as viruses [32]. Fungal

NLRs controlling VI may also be involved in bacterial–fungal interactions [33,34] and poten-

tially enable fungal detection of conserved molecular-associated patterns or microbe-associ-

ated molecular patterns (lipo-polysacharides, flagellin, peptidoglycan, etc.) or live bacteria

[20]. It has also been hypothesized that VI evolved from a larger response to heterospecific

nonself, leading to the idea that NLR-controlled VI emerged from a larger fungal innate

immune system [12] similar to allorecognition responses in animals or hybrid necrosis in

plants. Transcriptomic analyses of NLR-controlled VI [19,20,27] have revealed overlap with

responses induced by bacteria and activation of processes comparable to plant or animal

innate immunity, including autophagy [27], secondary metabolite production [11,27], and cell

wall modification [11].
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Fig 2. NLR domain diversity and abundance in plants, animals, and fungi. Only Pfam-A annotated domains are presented. Fungal

NLR include NB domains found in plants and in metazoans. Three main types of repeated domains are found, but LRRs typically found in

plant and animal NLRs are missing. All fungal effector domains are also found in non-NLR proteins. Some fungal effector domains have

predicted enzymatic activities (* for lipases, @ for proteases, # for UDP-phosphorylase). Almost all combinations of N-terminal effector

domains, central NB domains, and C-terminal repeat domains can be found in fungal genomes. Arrows indicate domains related

amongst branches of the eukaryotic kingdom. Abbreviations: LRR, leucine-rich repeat; NLR, nucleotide oligomerization domain-like

receptors.

https://doi.org/10.1371/journal.ppat.1006578.g002
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4. How diverse are fungal NLRs?

Most currently available fungal genomes encode a diverse repertoire of up to 200 (on average

30) NLRs [35]. Some fungal genomes (largely Saccharomycotina) do not encode NLRs, sug-

gesting that fungal immunity involves additional mechanisms, a pattern shared by Drosophila
and worm species [16]. Fungal NLR repertoires are highly variable and display intraspecific

variation [35]. Fungal NLR structure is strikingly similar to plants and animals in being tripar-

tite and containing C- and N-terminal domains flanking a central NB domain. In contrast to

plant and animal NLRs that are assembled from relatively few domains, domain diversity in

fungal NLRs includes at least 12 N-terminal effector domains, 3 central NB domains, and 3 C-

terminal repeat Pfam domains (Fig 2) [35]. Fungal NLRs contain both the plant- and animal-

like central NB domains (NB-ARC and NACHT, respectively), with observations of animal-

like NACHT NB domains being more frequent (Fig 2). There are many open research avenues

regarding fungal NLR functioning because only half of the N- or C-terminal domains have

Pfam-A annotations [35]. Also, in contrast to plant and animal NLRs, some fungal N-terminal

effector domains have predicted enzymatic activities (Fig 2) or pore-forming toxin properties

[26], suggesting an autonomous mode of action rather than signaling function. Although not

well documented, some fungal NLRs include unusual domains that might act as decoy

domains, as highlighted in plant NLRs’ integrated decoy. For instance, a P. anserina NLR

protein includes a zinc finger DNA-binding domain in its C-terminal region (personal

observations).

Fungal NLRs include domains that share homology with plant or animal NLR effector

domains. For instance, homology searches show similarity between the fungal HET domain

and the TIR domain [35], as well as between the fungal HeLo-like domain and the N-terminal

part of plant CC-type NLRs [29]. Similarities in eukaryotic NLR diversity, domain architec-

ture, and functioning suggest that fungal NLRs are analogous to plant and animal innate

immune receptors, combining features of both [35,36]. Plant and animal NLRs are thought to

have arisen by convergent evolution [1,36], and the central NB domains of fungal NLRs ana-

lyzed so far support the view that NLRs are similar because of convergence [1]. It is tempting

to hypothesize that fungal NLRs have similarly converged on tripartite structure to facilitate an

immune response, particularly given the experimental data in plant and animal systems [16],

demonstrating the ease and elegance of NLR-based molecular switches for immunity.

5. What role do fungal NLRs play in fungal innate immunity?

We are just beginning to understand the breadth of fungal NLR diversity and functioning. Elu-

cidating the role of NLRs and other fungal immunity genes will mean addressing the following

questions:

• What signals are recognized by fungal NLRs?

Identifying signals that candidate NLRs respond to could be accomplished by developing

protein interaction assays to define complex constituents in the presence and absence of

pathogens.

• How are NLR responses initiated?

Similarities between N-terminal effector and central NBD domains suggest that fungal NLRs

function in multimeric complexes, such as in animals and plants [3,37], and recruit down-

stream activators of the pathways. In vitro and heterologous protein pull-downs may identify

NLR superstructure binding partners. Interestingly, some fungal NLR effector domains have

predicted enzymatic activities (Fig 2). These NLRs might function alone to initiate a

response. Confirming these activities and identifying their substrates will be of interest.
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• What genes are controlled by fungal NLRs?

Comparative genomics and transcriptomics would offer insight into fungal immunity by

identifying genes and proteins that respond to NLR-based immune activation. Further gene

expression analyses in NLR loss- or gain-of-function mutants may be useful to decipher spe-

cific NLR responses. Once identified, producing fluorescent fusions with NLR-activated

genes and monitoring protein expression and localization could also provide indications on

the nature of the induced response.

• How do NLR genes evolve?

Employing population genomics and selection analyses will help identify components of

fungal immunity, including candidate NLR genes under varying selective regimes [28], such

as the conservation of classic MAMP-detecting NLRs.

6. Fungi as promising models to study NLR-based response to

nonself in eukaryotes?

NLR functioning in plants and animals provides pathogen detection and interspecific commu-

nication [2], such as maintenance of the host microbiome equilibrium [38]. Many fungi also

host bacterial communities, which increase fitness and functioning of fungal metaorganisms.

In this sense, fungal systems provide an exciting opportunity to investigate many aspects of

NLR-based responses, such as host–microbiome and host–pathogen interactions. Relative to

plant and animal systems, fungi offer the following benefits: many currently studied fungi are

easy to cultivate, they produce numerous individuals and generations that can be analyzed

simultaneously, there are genetic manipulation tools available for many fungi, available popu-

lation genomic data are increasing rapidly, and they are amenable to in vitro evolutionary

studies.

Fungi are widely used in industry, food production, and medicine [4]. Elucidating NLR-

based fungal communication mechanisms could simplify the production and purification of

bioactive molecules by getting rid of the bacterial species initiating such products [39]. Finally,

fungi are responsible for devastating diseases of plant crops and animals, including humans.

As each fungal species develops its own NLR repertoire, understanding NLR-mediated fungal

immunity in pathogenic fungi reveals specific targets for drug development to activate fungal

cell death.
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