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1. Introduction

Mycotoxins are secondary fungal metabolites often 
found as contaminants in agricultural commodities all 
over the world and pose a risk for human and animal 
health (Bennett and Klich, 2003; Wu et al., 2014a). More 
than 400 different mycotoxins have been isolated and 
chemically characterised. Those of major medical and 
agricultural concern are aflatoxins, fumonisins, ochratoxins, 
trichothecenes, zearalenone (ZEA) and patulin (PAT) (Wu 
et al., 2014a).

The molecular mechanisms behind the toxic effects of 
the major mycotoxins are established and oxidative stress 
and the generation of free radicals have been shown to be 
implicated in mycotoxin toxicity (Adhikari et al., 2017; 
Wang et al., 2016). Indeed, the imbalance between free 
radicals and the antioxidant defence systems can cause 
chemical damage to DNA, proteins and lipids, as observed 
upon exposure to mycotoxins (Assi, 2017).

As human and animal exposure to mycotoxins is 
unavoidable, effective ways to mitigate their harmful 
impacts are required. Several studies have demonstrated the 
beneficial effects of antioxidant substances in the prevention 
and treatment of various diseases (Li et al., 2015). In this 
context, the use of natural antioxidants has been shown 
to mitigate and/or prevent the toxic effects of mycotoxins 
(Sorrenti et al., 2013).

The aims of this review are first to describe the cellular 
mechanisms involved in the physiological control and 
imbalance of free radical generation; second to summarise 
the toxic effects of the major mycotoxins associated with 
oxidative stress; and third, to present the main natural 
antioxidants used to mitigate the toxic effects of these 
mycotoxins.
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Abstract

Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk 
factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen 
species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, 
protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, 
deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative 
stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced 
toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural 
compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, 
flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of 
anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
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2.  Oxidative stress: physiological control and 
damage caused by overproduction of free 
radicals

One consequence of aerobic conditions is activation of 
oxidative mechanisms and the subsequent generation of 
reactive oxygen species (ROS) (Droge, 2002). Cells have 
developed primary and secondary enzymatic systems to 
avoid ROS-induced damage (Valko et al., 2007). Superoxide 
dismutase (SOD), catalase (CAT), glutathione reductase 
(GR) and glutathione peroxidase (GPx) are characterised as 
primary antioxidant enzymes that trigger the breakdown of 
free radicals or combine toxic compounds with glutathione 
(GSH). The mechanisms of action of these enzymes are 
diverse. SOD breaks down the superoxide anion radical 
into H2O and O2, whereas CAT catalyses the decomposition 
of hydrogen peroxide (H2O2) into water and oxygen. GPx 
reduces hydrogen peroxide to water and GR can regenerate 
GSH (Droge, 2002). By contrast, glutathione S-transferase 
(GST), a secondary detoxification enzyme, acts by binding 
ROS to GSH (Hayes and Strange, 1995) or by detoxifying 
lipid peroxides (Pickett and Lu, 1989).

Other mechanisms, including cysteine and GSH, are also 
involved in physiological control of ROS generation (Droge, 
2002). GSH interacts with multiple antioxidant enzymes, 
modulating the action of GR, GPx and GST (a decrease in 
GSH content reduces enzymatic activity).

A control mechanism also exists for the expression of 
enzymes with antioxidant activity. Control is regulated by 
antioxidant response elements (AREs) that are activated by 
nuclear factor erythroid 2-related factor 2 (Nrf2) (Jin et al., 
2014). Nrf2-ARE is considered to be an important signalling 
pathway associated with antioxidant activity. Cells subjected 
to oxidative stress induce Nrf2 translocation to the nucleus, 
thereby activating genes encoding antioxidant enzymes and 
detoxifying enzymes of phase II (e.g. SOD) through ARE 
binding. Interestingly, although high antioxidant induction 
is associated with Nrf2 when this pathway is activated by 
ROS, the response is limited because ROS also activates 
a cell death-signalling pathway (Jin et al., 2014; Valko et 
al., 2007).

Organelles such as peroxisomes and mitochondria provide 
membrane-limited compartments specialised in redox 
activities. Consumption of oxygen leads to the production of 
H2O2, which oxidises some molecules. Furthermore, these 
organelles contribute to metabolic functions as they contain 
CAT, an enzyme that decomposes the H2O2 and prevents 
intracellular accumulation of this compound (Valko et al., 
2007). Cellular respiration in mitochondria creates one of 
the main superoxide production sites. During this process, 
ATP is produced by the electron transport chain and during 
energy transduction, free radical superoxide is formed, 

which has been associated with the cell pathophysiology 
in several diseases (Droge, 2002; Valko et al., 2007).

Generation of oxidative stress, free radicals, and damage 
to DNA, proteins and lipids

Cells in homeostasis may produce free radicals as a result of 
physiological reactions (cellular respiration, for example). 
A variety of exogenous factors can promote oxidative 
stress and overproduction of free radicals (Young and 
Woodside, 2001). Oxidative stress occurs in cells when 
the production of ROS, such as such as hydroxyl radical 
(HO), perhydroxyl radical (HOO-), superoxide anion (O2

-) 
and reactive nitrogen species (RNS) including nitric oxide 
(NO), exceeds the antioxidant capacity of a cell (Valko et al., 
2007). Changes in intracellular antioxidant systems or in 
the production of free radicals can result in oxidative stress 
(Halliwell and Whiteman, 2004). Increased ROS production 
alters and/or activates several intracellular mechanisms that 
promote oxidative damage to DNA, proteins and membrane 
lipids. Lipid peroxidation may also lead to cell death. The 
mechanisms involved in the induction of cell apoptosis 
caused by the generation of ROS include activation of p53, 
mitogen-activated protein kinases (MAPKs), caspases and 
changes in the Bcl-2/Bax expression (Farley et al., 2006).

Cells in homeostasis are maintained in a redox state through 
the association of the iron and copper redox couple. 
However, in a situation of oxidative stress, when superoxide 
is overproduced, the ‘free iron’ (Fe2+) is released into the 
cytoplasm. This release considerably increases the oxidative 
stress, and leads to the generation of other reactive radicals 
through the Fenton reaction. In this reaction, Fe2+ and H2O2 
generate one of the most harmful radicals, the reactive 
hydroxyl (Fe2+ + H2O2 → Fe3+ + •OH+OH−). Transition 
metal ions, mainly iron, have been implicated in the 
generation of highly reactive radicals leading to DNA and 
membrane damage. Cellular and organelle membranes are 
attractive targets for oxidation due to the polyunsaturated 
fatty acid residues of phospholipids (Birben et al., 2012). 
Secondary ROS metabolites can be produced, including 
endoperoxides (cyclisation reaction) and malondialdehyde 
(MDA), the toxic final product of lipid peroxidation, which 
is potentially mutagenic (Birben et al., 2012; Marnett, 1999).

The level of cytosolic calcium (Ca2+) can be increased 
by ROS generation through an influx of extracellular 
Ca2+ or mobilisation of intracellular Ca2+ stores (Droge, 
2002). This increase in the cytosolic Ca2+ level contributes 
to the activation of protein kinase C alpha and to the 
transcriptional induction of the activator protein 1 (AP-
1), c-Fos and c-Jun (Maki et al., 1992). MAPK signalling 
cascades are activated through a variety of membrane 
receptors (receptor tyrosine kinases, protein tyrosine 
kinases, receptors of cytokines and growth factors, and 
heterotrimeric G protein-coupled receptors) and are 
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regulated by phosphorylation and dephosphorylation 
on serine and/or threonine residues (Droge, 2002). The 
association between oxidative stress and the generation 
of free radicals can activate the MAPK pathway, mainly 
c-Jun N-terminal kinase (JNK) and p38, resulting in cell 
apoptosis (Allen and Tressini, 2000).

Another important free reactive radical produced 
in biological systems is NO. NO is a normal cellular 
metabolite with different functions in cells including 
neurotransmission, maintaining vascular tone, defence, 
smooth muscle relaxation and immune regulation 
(Bergendi et al., 1999). Like with ROS, a nitrosative stress 
occurs following overproduction of RNS and disruption 
of the antioxidant system (Ridnour et al., 2004). The 
mechanisms of cell damage induced by nitrosative stress 
include changes in protein structure (through nitrosylation 
reactions) leading to inhibition of their function (Valko et 
al., 2007) and cell apoptosis. The induction of apoptosis 
by NO is associated with a decrease in the concentration 
of cardiolipin, an important component of the inner 
mitochondrial membrane. This molecule contributes 
to the optimal function of enzymatic systems involved 
in mitochondrial energy metabolism. A decrease in the 
cardiolipin level results in disruption of the electron 
transport chain, changes in mitochondria permeability and 
the release of cytochrome C into the cytosol (Droge, 2002). 
Furthermore, free radicals, such as superoxide anion and 
NO, are produced by phagocytic cells during the respiratory 
burst occurring in the inflammatory process. Together, 
these radicals can react to produce the peroxynitrite anion 
(ONOO−), a molecule that is a powerful oxidant and can 
cause DNA fragmentation and lipid oxidation.

The generation of free radicals can increase the expression 
of cyclooxygenase-2 (COX-2), and of arachidonic acid 
metabolism, promote the upregulation of proinflammatory 
cytokines, such as tumour necrosis factor (TNF), 
interleukin(IL)-1, IL-6 and IL-8, thereby inducing a chronic 
inflammatory response and the stimulation of more free 
radicals (Reuter et al., 2010). Extensive data has shown that 
oxidative stress contributes to the inflammatory process, 
which, in turn, leads to overproduction of reactive radical 
species thereby promoting a harmful feedback process that 
increases cellular damage.

The primary function of the respiratory chain is to 
use the energy produced to transfer electrons into the 
mitochondrial intermembrane space. However, a small 
percentage of electrons escape from the mitochondrial 
space, producing superoxide (Birben et al., 2012). In normal 
conditions, the production of superoxide is limited by 
SOD, which transforms the anion into hydrogen peroxide 
(Droge, 2002). Under oxidative stress, overproduction 
of superoxide occurs via activation of nicotine adenine 
dinucleotide phosphate (NADPH) and depletion of SOD 

(Birben et al., 2012). Under oxidative stress, some organelles 
including peroxisomes, mitochondria and endoplasmic 
reticulum (ER) are affected by the overproduction of 
free radicals, mainly associated with lipid peroxidation. 
The peroxisome damage leads to CAT depletion and 
intracellular accumulation of H2O2 (Valko et al., 2007). The 
mitochondria are an important target for injury induced 
by oxidative stress caused via endogenous metabolic 
processes and/or exogenous oxidative influences (Guo et 
al., 2013). The mitochondrial damage to DNA caused by 
oxidative stress can result in a decrease in proteins that are 
important for electron transport, leading to the generation 
of ROS and the dysregulation of organelles, which, in turn, 
activate cell apoptotic mechanisms (Van Houten et al., 
2006). Furthermore, radicals such as NO− and ONOO− are 
responsible for detrimental changes in the mitochondrial 
respiratory chain (Sas et al., 2007). The structural changes 
in mitochondrial proteins result in altered function in 
which enzymatic systems of the electron-transport chain 
(nicotinamide adenine dinucleotide dehydrogenase, 
cytochrome-c-oxidase, and adenosine triphosphate 
synthase) are the main targets of the free radicals (Van 
Houten et al., 2006).

ROS can also alter mitochondrial phospholipids resulting in 
lipid peroxidation, which, in turn, increases mitochondrial 
membrane permeability. The mitochondrial permeability 
transition pore (MPTP) can be induced by ROS generation 
due the oxidation of thiol groups on the adenine nucleotide 
translocator (part of the MPTP) (Valko et al., 2007). 
ONOO− can also affect mitochondrial homeostasis and 
energy production by inactivating enzymatic systems and 
promoting the release of mitochondrial Ca2+ (Douarre et 
al., 2012). The intracellular elevation of the Ca2+ level also 
changes mitochondrial membrane potential (MMP) and 
induces the production of superoxide radicals, resulting in 
a vicious cycle (Douarre et al., 2012) The mitochondrial 
excess of Ca2+ contributes with the formation of MPTP, to 
osmotic swelling and rupture of the outer mitochondrial 
membrane (Douarre et al., 2012). These mitochondrial 
changes caused by oxidative stress can lead to cell apoptosis 
due to the release of cytochrome-c, changes in Bcl2/Bax 
expression (down-regulation of the Bcl2 protein and an 
increase in Bax expression), activation of MAPKs and casp-
3 (Anuradha et al., 2001; Farley et al., 2006).

The ER is an organelle that regulates protein synthesis, drug 
detoxification, carbohydrate metabolism, lipid biosynthesis 
and Ca2+ homeostasis. Oxidative stress and ROS generation 
deregulate the ER functions and release Ca2+ into the 
cytosol (Minasyan et al., 2017). The ER and mitochondria 
interact physiologically and functionally at sites called 
mitochondrial associated membranes. The damage to 
ER caused by oxidative stress results in mitochondrial 
dysfunction and cell apoptosis (Kim et al., 2008).
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3.  Response to mycotoxins and oxidative 
stress: interaction in in vitro, in vivo and ex 
vivo models

The mycotoxins aflatoxin B1 (AFB1), deoxynivalenol (DON), 
nivalenol (NIV), fumonisin B1 (FB1), ochratoxin A (OTA), 
PAT and ZEA are the main contaminants of food and feed 
worldwide and have been extensively studied due their 
toxic effects on the human and the animal health (Wu et 
al., 2014a). Several aspects of the intracellular action of 
mycotoxins have been elucidated: the induction of oxidative 
stress and ROS generation have become one of the major 
triggers of their lesional mechanisms, as observed in in vitro, 
in vivo and ex vivo studies. The oxidative stress mechanisms 
associated with AFB1, DON, NIV, T-2 toxin (T-2), FB1, 
OTA, PAT and ZEA are summarised in Figure 1 and 2.

Aflatoxin B1

Aflatoxins are fungal metabolites mainly produced by 
Aspergillus flavus and Aspergillus parasiticus (Saini and 
Kaur, 2012). More than 10 forms of aflatoxins are known, 
among which the main ones are AFB1,  and aflatoxins B2 
(AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1) and M2 (AFM2) 
(Kumar et al., 2017). Aflatoxins are natural contaminants of 
cereals (maize, rice, oats, barley and sorghum), groundnuts, 
pistachio nuts, almonds, cottonseed and walnuts (Wu et 

al., 2014a). Milk can be contaminated by AFM1, which is a 
principal hydroxylated-AFB1 metabolite biotransformed by 
hepatic cytochrome P450 in cows fed an AFB1 contaminated 
diet (Bennet and Klick, 2003).

The toxicity of AFB1 is mainly associated with the 
binding of bioactivated AFB1-8,9-epoxide to cellular 
macromolecules, such as mitochondria, nuclear nucleic 
acids and nucleoproteins, with cytotoxic effects (Bennet 
and Klich, 2003).

Studies in vitro (Liu and Wang, 2016; Mary et al., 2012; 
Wang et al., 2017) and in vivo (Abdel-Wahhab and Aly, 
2003; Shi et al., 2015) demonstrated that oxidative stress 
plays a major role in the toxic effects of AFB1. The main 
consequences of ROS generation induced by AFB1 are 
damage to DNA (Wang et al., 2017; Zhang et al., 2015b) 
and mitochondrial lesions (Liu and Wang, 2016) as 
summarised in Figure 1. AFB1 uncouples mitochondrial 
oxidative phosphorylation, reduces MMP and induces 
mitochondrial permeability (Liu and Wang, 2016; Shi et 
al., 2015). The mitochondrial alterations associated with 
oxidative stress activate cytochrome C, modulate Bcl2/
Bax gene expression and activate caspase 9 and caspase 3 
(Liu and Wang, 2016; Mary et al., 2017; Wang et al., 2017) 
leading to cell apoptosis. Mary et al. (2017) also reported 
that hepatocytes treated with AFB1 increase the expression 

ROS Mitochondria

Apoptosis

Inflammatory response

Lipid peroxidation
GSH

MDA

DNA/protein synthesis

Arachnoid acid (2)
Cox-2 (5)
Cytokines (1, 2, 5)
Fenton reaction (3)
iNOS (5)
NO (1)
NOX-2 (1)

AFB1 (1)
FB1 (2)
OTA (3)
PAT (4)
ZEA (5)

Nrf2 (1, 3) 
CAT (1, 3, 4, 5)
GPx (1, 2, 3, 5)
SOD (1-5)

Ca2+ level (3)
Hsp 25/70 (2)
MAPKs (2, 4)
p53 (1, 4, 5)

Bcl-2/Bax (1-5)
Cytochrome C (1, 3, 4)
Cytocrome P450 (3, 4)
Casp-3 (1-5) 

Figure 1. Summary of the intracellular lesions associated with oxidative stress induced by the main mycotoxins that contaminate 
food and feed. AFB1 = aflatoxin B1; FB1 = fumonisin B1; OTA = ochratoxin A; PAT = patulin; ZEA = zearalenone. The numbers 
between brackets indicate the mycotoxins involved in each process.
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of the p53 gene, which was associated with an increase in 
cell apoptosis.

Recent studies have shown that AFB1 causes changes 
in intracellular antioxidant mechanisms such as Nrf2, 
SOD, GPx and CAT expression (Liu and Wang et al., 
2016; Wang et al., 2017), inhibiting antioxidant enzymes 
and causing an increase in lipid peroxidation (LPO) and 
a decrease in the level of GSH (Ma et al., 2015; Maurya 
and Trigun, 2016). Moreover, ROS generation induced 
by AFB1 modulates the inflammatory response through 
up-regulation of pro-inflammatory cytokines TNF-α, 
IL-1α, IL-1β and IL-6 and NO expression, by reducing 
anti-inflammatory cytokine IL-4 expression, inducing 
cytochrome P450 activity, increasing arachidonic acid 
metabolism, and activating the NADPH oxidase (NOX)-
2 dependent signalling pathway, thereby promoting the 
autophagy of pro-inflammatory macrophages M1 (An et 
al., 2017; Ma et al., 2015; Meissonier et al., 2007).

Deoxynivalenol

DON is a type B trichothecene predominantly produced by 
Fusarium graminearum and Fusarium culmorum (Bennet 
and Klich, 2003). Exposure to DON has been associated 
with alterations in the intestinal, immune, endocrine and 

nervous systems in several animal species and in humans 
(Maresca et al., 2013; Payros et al., 2016; Pestka, 2010a). At 
a molecular level, DON causes ribotoxic stress, inducing 
MAPK phosphorylation, promoting apoptosis, resulting in 
changes in the inflammatory response and decreasing the 
expression of cell adhesion proteins (Pierron et al., 2016; 
Silva et al., 2014).

Studies in vitro (Li et al., 2014; Yang et al., 2014; Zbynovska 
et al., 2013) and in vivo (Borutova et al., 2008; Osselaere et 
al., 2013) established the toxic effects of DON associated 
with oxidative stress and ROS generation as observed in the 
Figure 2. DON alters the intracellular antioxidant defence 
system in target tissues such as liver, kidney, lymphoid 
organs, intestine and blood/serum as demonstrated by 
an increase in MDA concentration (Li et al., 2014) and a 
decrease in GSH, SOD, CAT and GPx levels (Hou et al., 
2013; Strasser et al., 2013; Zbynovska et al., 2013).

The oxidative stress signalling pathway induced by DON 
has been suggested to be one of the mechanisms behind 
DNA fragmentation, cell death and apoptosis (Frankic et al., 
2008; Zhang et al., 2009) as well as the inhibition of protein 
synthesis and an increase in carbonyl content (Strasser 
et al., 2013). Furthermore, alterations in the surface of 
lysosomal membranes lead to lysosomal fragility, a decrease 

ROS Mitochondria

Apoptosis

Inflammatory response

Lipid peroxidation

GSH

MDA

DNA/protein synthesis

AP-1 (1)
ERK MAPK (1, 2)
Cox-2 (1)
Cytokines (1-3)
iNOS (1-3)
NO (3)
NFкB (1, 2)

DON (1)
NIV (2)
T-2 (3)

AIFM-1 (1)
Bcl-2/Bax (1-3)
Cytochrome C (1, 3)
Casp-3 (1-3) 

Ca2+ level (2)
Fas (3)
MAPKs (1, 3)
p53 (3)

Nrf2 (2, 3) 
CAT (1, 3)
GPx (1, 3)
GR (3)
GSP-Px (3)
HO-1 (2)
SOD (1, 3)

Figure 2. Summary of the intracellular lesions associated with oxidative stress induced by trichothecenes that contaminate 
food and feed. DON = deoxynivalenol; NIV = nivalenol; T-2 = T-2-toxin. The numbers between brackets indicate the mycotoxins 
involved in each process.
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in the MMP, an increase in membrane permeability and 
consequent deregulation of Bcl-2/Bax expression (leading 
to release of cytochrome C and activation of caspase 3, 8, 
9 and apoptosis inducing factor mitochondrion associated 
1) have been associated with ROS generation induced by 
DON (Kouadio et al., 2005; Li et al., 2014; Sun et al., 2015). 
It has also been established that the ribotoxic stress induced 
by DON can stimulate apoptosis via activation of the p38 
MAPK (Pestka et al., 2008).

In addition, DON-induced oxidative stress can modulate 
the inflammatory response through up-regulation of 
pro-inflammatory cytokines including IL-1β, IL-2, IL-
6, IL-8, TNF-α, down-regulation of anti-inflammatory 
IL-4 and IL-10, selective activation of ERK MAPK, NFκB 
and AP-1, and increased and decreased expression of 
intracellular proteins involved in innate immunity, such 
as cyclooxygenase-2 (Cox-2) and inducible nitric oxide 
synthase (iNOS), respectively (Cano et al., 2013; Graziani 
et al., 2015; Pestka et al., 2010b).

Nivalenol

NIV is another type B trichothecene and is generally 
a biologically active metabolite of DON, present in 
agricultural commodities (Bennet and Klich, 2003). NIV 
is not as prevalent as DON, but NIV showed higher acute 
toxicity than DON (Alassane-Kpembi et al., 2015; Cheat 
et al., 2015). Studies in vivo (Cheat et al., 2015), in vitro 
(Alassane-Kpembi et al., 2015; Del Regno et al., 2015; 
Marzocco et al., 2009) and ex vivo (Alassane-Kpembi et al., 
2017; Cheat et al., 2015) reported that NIV, such as DON, 
induce inhibition of protein, DNA and RNA synthesis, 
mitochondrial damage, cell apoptosis, decreases cellular 
viability and modulate inflammatory response mainly due to 
ROS generation associated with induction of oxidative stress 
as demonstrated in Figure 2, affecting the gastrointestinal 
tract and organs of the immune system.

The oxidative stress induced by NIV promotes ROS release 
via the NADPH oxidase signalling pathway, decreases the 
GSH level, alters Ca2+ homeostasis and activates nuclear 
factor kappa beta (NF-κB) (Del Regno et al., 2015). This 
ROS generation induces DNA and mitochondrial damage, 
activation of extracellular regulated kinase (ERK) MAPK, 
changes in Bcl-2 expression, up-regulation of Bax gene and 
activation of caspase 3, thereby promoting cell apoptosis 
(Marzocco et al., 2009). The oxidative stress induced by 
NIV stimulates the antioxidant intracellular mechanisms 
of defence through an increase in heme oxygenase-1 
(HO-1) and activation of Nrf2 (Del Regno et al., 2015). 
In addition, the NIV-induced oxidative stress modulates 
the inflammatory response by activation of NF-κB, up-
regulation of pro-inflammatory cytokines such as IL-8, 
IL-1α, IL-1β, IL-17A, IL-22, interferon (IFN)-α and an 

increase in iNOS expression (Alassane-Kpembi et al., 2017; 
Del Regno et al., 2015; Marzocco et al., 2009).

T-2 toxin

T-2 is a type A trichothecene produced by several Fusarium 
species, mainly Fusarium sporotrichiodes, Fusarium poae 
and Fusarium langsethiae. Studies have demonstrated 
that T-2 affects the gastrointestinal tract, kidney, liver, 
heart, skin, the nervous, immunological, and reproductive 
systems, and embryogenic development in humans and 
animals (Agrawal et al., 2012; Li et al., 2011; Meissonnier 
et al., 2008).

The main molecular target of trichothecenes is the ribosomal 
unit, affecting initiation of the polypeptide chain (Li et al., 
2011). Like other trichothecenes, T-2 binds and inactivates 
peptidyl transferase activity resulting in inhibition of protein 
synthesis and disruption of the mitochondrial morphology, 
ER and other membranes (Adhikari et al., 2017). Studies in 
vitro (Chen et al., 2008; Yang et al., 2016; Zhang et al., 2016) 
and in vivo (Chaudhari and Lakshmana, 2010) provided 
evidence that T-2-induced oxidative stress is associated 
with an increase in ROS generation and DNA, protein and 
lipid peroxidation leading to cell apoptosis.

The oxidative stress induced by T-2 promotes Fas up-
regulation, p53 activation, down-regulation of Bcl-2 and 
up-regulation of the pro-apoptotic factor Bax causing 
cytochrome C release, caspase 3 activation and cell 
apoptosis (Chen et al., 2008; Zhang et al., 2018) (Figure 
2). ROS generation causes a decrease in Nrf2 expression, 
changes in the intracellular antioxidant enzymes GPx, GR, 
SOD and CAT, promoting a decrease in GSH level and an 
increase in MDA level (Wu et al., 2014b; Yang et al., 2016).

Another apoptosis signalling pathway linked to oxidative 
stress induced by T-2 is through the activation of JNK1, 
p38 MAPK, increase in heat shock protein (Hsp) 70 
expression, increase in iNOS activity and NO release, 
causing mitochondrial damage and activation of caspase 
3 (Chaudhari and Lakshmana, 2010; Li and Pestka, 2008). 
In addition, studies have shown that T-2 can modulate the 
inflammatory response by increasing the expression of 
pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β 
and IL-11 (Agrawal et al., 2012; Zhou et al., 2014).

Fumonisin B1

Fumonisins are a group of mycotoxins mainly produced by 
Fusarium verticillioides and Fusarium proliferatum (Voss 
et al., 2001). At least 15 related fumonisin compounds 
have been identified so far, but FB1 is the most significant 
fumonisin due to its toxicity and widespread occurrence 
(Voss et al., 2007).
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At cellular level, FB1 inhibits ceramide synthase, blocking 
the synthesis of sphingolipids, a class of membrane lipids 
that play an important role in cell signalling transduction 
pathways and cell growth, differentiation, and death (Grenier 
et al., 2012; Voss et al., 2007). Ceramide synthase inhibition 
leads to reduced levels of ceramide and intracellular 
accumulation of sphingolipids (So) and sphinganine (Sa). 
These free sphingoid bases are pro-apoptotic, cytotoxic 
growth inhibitors and are immunotoxic (Loiseau et al., 
2007; Voss et al., 2001, 2007).

Studies in vitro (Domijan et al., 2015; Mary et al., 2012) 
and in vivo (Abbes et al., 2016; Hassan et al., 2015) 
revealed the potential of FB1 to induce oxidative stress 
with consequent ROS generation, cytotoxic effects and 
apoptosis. The action of FB1 on ROS generation has 
been considered a consequence rather than a mechanism 
of its toxicity (Galvano et al., 2002; Wang et al., 2016). 
However, some studies showed that FB1 was able to 
increase the rate of oxidation, promote the production of 
free radicals and accelerate the chain reactions associated 
with lipid peroxidation in membranes (Hassan et al., 2015; 
Stockmann-Juvala and Savolainen, 2008). These changes 
were demonstrated in different animal models by alterations 
in GPx and SOD expression, increase in MDA production 
and decrease in the GSH level (Abbes et al., 2016; Domijan 
et al., 2007; Poersch et al., 2014).

The increase in ROS production induced by FB1 has 
also been associated with inhibition of DNA synthesis 
and DNA fragmentation (Kouadio et al., 2005; Wang et 
al., 2016), inhibition of protein synthesis (Domijan et al., 
2007), mitochondrial injury with consequent deregulation 
of calcium homeostasis and caspase 3 activation, induction 
of cytochrome P450 activity with an increase in arachidonic 
acid metabolism and modulation of inflammatory response 
(Abbes et al., 2016; Domijan and Abramov, 2011; Mary et al., 
2017). Some studies have demonstrated that perturbations 
of the cellular redox state due the FB1 exposition can 
activate MAPKs and Hsp 25/70. Both signalling pathways 
can affect cell survival and are involved in the regulation of 
apoptosis (Lalles et al., 2010; Rumora et al., 2007) (Figure 1).

Ochratoxin A

Ochratoxins are a group of mycotoxins produced by 
filamentous fungal species such as Aspergillus and 
Penicillium and occur in nature in three different isoforms: 
ochratoxin A, B and C. OTA is the most pathogenic to 
humans and animals, and is found in a wide range of foods 
and feed, including cereals, meat, dried fruits, nuts, coffee, 
wine and beer (Bennet and Klich, 2003; Limonciel and 
Jennings, 2014; Malir et al., 2016).

Studies involving mammalian species in vitro (Bhat et 
al., 2016; Gayathri et al., 2015; Lautert et al., 2014; Li et 

al., 2015) and in vivo (Aydin et al., 2003; Tanaka et al., 
2016) showed nephrotoxic, hepatotoxic, immunotoxic, 
enterotoxic, neurotoxic and teratogenic effects of OTA. 
The toxicity and carcinogenic mechanisms of OTA have 
been associated with induction of oxidative stress (Costa 
et al., 2016), cell apoptosis (Ramyaa and Padma, 2013), cell 
autophagy/mitophagy (Gan et al., 2017; Qian et al., 2017) 
and protein synthesis inhibition (Mally and Dekant, 2009).

ROS generation has been reported to trigger OTA toxicity 
(Zhu et al., 2017). Several oxidative stress mechanisms 
elicited by OTA have been proposed through in vivo (Abdel-
Wahhab et al., 2017; Gan et al., 2017) and in vitro studies 
(Bhat et al., 2016; Ramyaa et al., 2014) (Figure 1). OTA can 
cause damage due to oxidative stress through the generation 
of hydroxyl radicals via the Fenton reaction, via flavoprotein 
NADPH-cytochrome P450 activation and inhibition of 
Nrf2 activation and gene transcription. In addition, OTA 
can decrease the expression of the intracellular antioxidant 
enzymes GPx, CAT, SOD and GR (Abdel-Wahhab et al., 
2017; Bhat et al., 2016) as demonstrated by an increase in 
MDA levels.

ROS generation increased by OTA promotes the 
activation of the apoptosis signalling pathway through 
the mitochondrial lipid peroxidation, promoting loss of 
mitochondria membrane potential, increasing membrane 
permeability (Bhat et al., 2016), activating JNK MAPKs 
(Zhu et al., 2017) and affecting the ER calcium channels 
with consequent release of the calcium into cytosol (Sheu et 
al., 2017). These lesional mechanisms promote changes in 
the Bcl-2 family, inducing the expression of Bax, facilitating 
the release of cytochrome C and the activation of caspase 
3 in the cytosol.

Patulin

PAT is a mycotoxin produced by several fungal species 
of the genera Penicillium, Aspergillus, Paecilomyces and 
Byssochlamys and is a common contaminant of apples and 
its products, rotten fruit, mouldy feed and stored cheese 
(Tannous et al., in press).

The toxic effects of PAT have been described in vitro 
(Assunção et al., 2016; Jayashree et al., 2017; Zhang et al., 
2015a), in vivo (Boussabbeh et al., 2016b; Lu et al., 2017;) 
and ex vivo (Maidana et al., 2016) mainly associated with 
ROS generation and activation of p53 protein and cleaved 
caspase 3 (Assunção et al., 2016; Boussabbeh et al., 2016b; 
Jayashee et al., 2016; Jin et al., 2016) (Figure 1).

PAT has a strong affinity for sulfhydryl groups (Tannous et 
al., in press). Therefore, the rapid ROS generation observed 
in the PAT toxicity is likely due to its electrophilic attack 
of the intracellular antioxidant enzymes containing the 
sulfhydryl group, mainly GSH (Jin et al., 2016). PAT 
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decreases SOD and CAT activity, promoting an increase 
in MDA levels (Zhang et al., 2015a).

ROS generation also leads to lipid peroxidation, modulation 
of p38 MAPK expression, injury of cellular membranes and 
consequent DNA damage (Jin et al., 2016). The activation of 
p53 is initiated by ROS generation that results in an increase 
in ROS generation (feedback loop) due to the increase in 
p53-induced gene 3 (PIG 3) expression that induces the 
inhibition of anti-oxidant enzyme CAT (Jin et al., 2016). In 
addition, p53 activation induces mitochondrial damage and 
caspase 3 activation leading to cell apoptosis (Boussabbeh 
et al., 2016b). PAT also modulates other mechanisms 
associated with apoptosis regulation: it decreases Bcl-2 
expression and increases Bax, cytochrome C and P450 
expression (Boussabbeh et al., 2016b; Jin et al., 2016). Some 
studies have demonstrated that the generation of ROS 
causes mitochondrial damage and activates caspase 3 due to 
ER stress induced by PAT (Boussabbeh et al., 2015, 2016a).

Zearalenone

ZEA is a resorcylic acid lactone derived mycotoxin produced 
by Fusarium fungi and is a contaminant commonly found 
in unprocessed maize kernels. ZEA and its metabolites 
(α- and β-zearalenol) have structural analogy to oestrogens. 
The oestrogenic activity of ZEA and its derivative has been 
demonstrated both in vivo (Koraichi et al., 2012) and in 
vitro (Frizzell et al., 2011; Parveen et al., 2009).

ZEA toxic effects can be induced by mechanisms that are 
not associated with its oestrogenic activity. ZEA affects 
the integrity of DNA and mitochondria, decreases cell 
proliferation and modulates the inflammatory response 
(Liu et al., 2017; Marin et al., 2015). These cytotoxic and 
genotoxic effects may be connected with oxidative stress 
generated by ZEA (Marin et al., 2015). Some studies in vivo 
(Liu et al., 2017; Marin et al., 2015) and in vitro (Hassen et 
al., 2007; Qin et al., 2015) demonstrated the capacity of ZEA 
to induce ROS and lipid peroxidation, causing oxidative 
DNA and mitochondrial damage, apoptosis and modulation 
of pro- and anti-inflammatory cytokines as observed in 
Figure 1. The inhibition of protein and DNA synthesis 
caused by the oxidative stress was related to fragmentation 
of DNA, production of micronuclei and formation of DNA-
adduct (Abid-Essefi et al., 2004). Furthermore, the decrease 
in cell proliferation could be the result of cell arrest in the 
G2/M phase induced by ZEA (Abid-Essefi et al., 2003).

The generation of ROS by ZEA exposure led to an increase 
in iNOS and Cox-2 expression, and up-regulation of pro-
inflammatory and down-regulation of anti-inflammatory 
cytokines (Marin et al., 2015). Studies in vivo (Liu et al., 
2017; Marin et al., 2015) and in vitro (Hassen et al., 2007; 
Qin et al., 2015) showed that ZEA also increases MDA 
levels due to the modulation of intracellular antioxidant 

mechanisms: decrease in GSH levels and SOD activity, 
increase in GPx and CAT activities. The latter enzymes are 
involved in intracellular antioxidant activity of the hydrogen 
peroxide conversion, consequently, the increase in GPx and 
CAT activities could be associated with an intracellular 
compensatory mechanism to scavenge ROS generation 
induced by ZEA (Marin et al., 2015). Recent studies showed 
that ZEA-ROS generation increased the expression of p53, 
decreased MMP, promoting a decrease in anti-apoptotic 
Bcl-2 gene expression, leading to Bax expression and 
caspase 3 activation (Fan et al., 2017). Therefore, the 
mitochondrial damage induced by the oxidative stress 
due to ZEA exposure can result in cell apoptosis.

4.  Antioxidants and mycotoxins: does a 
protective effect exist?

Antioxidants are able to compete with other oxidisable 
substrates at relatively low concentrations, and thus to 
significantly delay or inhibit the oxidation of the substrates 
(Diplock et al., 1998). The physiological role of antioxidants 
is to prevent damage to cellular components arising as a 
consequence of chemical reactions involving free radicals. In 
recent years, studies have demonstrated that the generation 
of oxidative stress and of free radicals, mainly ROS and 
RNS, plays an important role in the development of several 
diseases, including cancer (Reuter et al., 2010; Zuo et al., 
2015). Similar protective action of antioxidants, mainly of 
natural origin, has been observed against the toxic effects 
of several mycotoxins (Sorrenti et al., 2013).

The protective properties of antioxidants are probably due 
to their ability to act as free radical scavengers, thereby 
protecting DNA, cell proteins and lipids from mycotoxin-
induced damage. Many natural substances have been used 
for their ability to modulate the oxidative stress caused by 
mycotoxins, including ascorbate (vitamin C), tocopherol 
(vitamin E), carotenoid (vitamin A) and the flavonoids 
(Diplock et al., 1998; Sorrenti et al., 2013; Strasser et 
al., 2013). Several studies have also demonstrated the 
ability of crocin, curcumin, green tea, lycopene, phytic 
acid, L-carnitine, melatonin and minerals to modulate 
mycotoxin-induced oxidative stress (Meki et al., 2004; 
Moosavi et al., 2016; Salem et al., 2016; Silva et al., 2014; 
Verma and Mathuria, 2008; Zheng et al., 2013).

Vitamins

Vitamins, mainly vitamins A, C and E, and their precursors 
act as free radical scavengers. These vitamins reduce 
oxidative stress and mycotoxin-induced damage to the 
cells (Strasser et al., 2013). The main effects of vitamins A, C 
and E on the cellular oxidative stress induced by mycotoxins 
observed in in vitro and in vivo studies are listed in Table 1.
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Table 1. Effects of antioxidant vitamins A, C and E in mycotoxin studies.

Mycotoxin1 Experimental model Antioxidant effects2 Reference

Vitamin A
AFB1 in vitro: human lymphocytes increase GSH, GPx and SOD; decrease MDA Alpsoy et al., 2009

in vitro: microsomal enzymes inhibit microsomal enzymes and reduce the bioactivation of AFB1 Wheeler et al., 2006
in vitro: HepG2 cells decrease the bioactivation of AFB1; decrease apoptosis; inhibit p53 

mutation
Reddy et al., 2006

in vivo: mice decrease the mitotic and meiotic clastogeny Sinha and Dharmshila, 1994
DON in vitro: murine lymphoma cells decrease the lipid (MDA) and protein peroxidation Strasser et al., 2013
OTA in vivo: rats increase GSH and GPx; decrease apoptosis Palabiyik et al., 2013
ZEA in vivo: mice decrease DNA adduct formation Ghedira-Chekir et al., 1998;  

Grosse et al., 1997
Vitamin C

AFB1 in vitro: woodchuck hepatocytes decrease DNA adduct formation Yu et al., 1994
in vitro: human lymphocytes increase GSH, GPx and SOD; decrease MAD level Alpsoy et al., 2009
in vitro: microsomal enzymes inhibit microsomal enzymes and reduce the bioactivation of AFB1 Wheeler et al., 2006
in vivo: rats increase AFB1 metabolism to AFM1 Gradelet et al., 1998
in vivo: guinea pig decrease the GSH level; decrease the cytochrome P450 level Netke et al., 1997
in vivo: rabbits decrease the number of abnormal and dead sperms Salem et al., 2001
in vivo: rohu (Labeo rohita) increase serum lysozyme activity; enhance phagocytic ratio; 

immunostimulatory effect
Sahoo and Mukherjee, 2003

DON in vitro: rat erythrocytes decrease the haemolytic effect Rizzo et al., 1992
in vitro: murine lymphoma cells decrease the lipid (MDA) and protein peroxidation Strasser et al., 2013
in vivo: rats increase the CAT, SOD and GST activities; increase GSH level; 

decrease MDA level
Atroshi et al., 1995;  
Rizzo et al., 1994

OTA in vivo: mice decrease apoptosis Atroshi et al., 2000a

T-2 in vitro: rat erythrocytes decrease the haemolytic effect Rizzo et al., 1992
in vivo: rats increase CAT, SOD, GST and GSH level Atroshi et al., 1995;  

Rizzo et al., 1994
ZEA in vivo: piglets increase T-AOC, SOD and GPx; decrease MDA level Shi et al., 2017

in vivo: mice decrease DNA adduct formation Ghedira-Chekir et al., 1998;  
Grosse et al., 1997

Vitamin E
AFB1 in vitro: HepG2 cells decreased p53 mutation; decreased DNA adduct formation; 

decreased apoptosis
Reddy et al., 2006;  
Abdel-Hamid and Firgany, 2015

in vitro: human lymphocytes increased GST, GPx and SOD; decreased MDA level Alpsoy et al., 2009
in vitro: microsomal enzymes inhibited of  microsomal enzymes and reduce the bioactivation of 

AFB1

Wheeler et al., 2006

in vivo: rats increased the CAT, SOD and GST; decreased MDA level; decreased 
cytochrome P-450 activity

Cassandi et al., 1993

in vivo: mice increased 3β- and 17β-hydroxysteroid dehydrogenases activities and 
serum testosterone levels

Verma and Nair, 2002

DON in vitro: rat erythrocytes decreased the haemolytic effect Rizzo et al., 1992
in vitro: murine lymphoma cells decreased the lipid (MDA) and protein peroxidation Strasser et al., 2013
in vivo: piglets decreased DNA damage Frankic et al., 2008
in vivo: rats increased the CAT, SOD and GST and GSH level; decreased MDA 

level
Atroshi et al., 1995;  
Rizzo et al., 1994

FB1 in vivo: rats decrease DNA fragmentation; decreased the Ca2+ nuclei; decreased 
the AST/ALT

Atroshi et al., 1999

OTA in vitro: porcine fibroblasts decreased DNA fragmentation Fusi et al., 2010
in vitro: HepG2 cells decreased DNA fragmentation, Bax expression and casp-3 activation Gayathri et al., 2015
in vivo: rats increase the protein level; decreased the AST, ALT, AP and γGT Atroshi et al., 2000b
in vivo: mice decreased apoptosis Atroshi et al., 2000a
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Vitamin A has three active forms: retinol, retinal, and 
retinoic acid (retinoids), which are essential for physiological 
functions, including reproduction, vision, growth, and 
maintenance of epithelial tissues. The antioxidative 
effects of vitamin A have been associated with inhibiting 
cytochrome P450-mediated metabolism of toxic substances 
and preventing mutagenic epoxies from binding to DNA, 
thereby forming epoxides and competing with mutagenic 
epoxides in reaction with DNA (Diplock et al., 1998). The 
toxic effects of AFB1, DON, OTA and ZEA have been shown 
to be reduced in interaction with vitamin A in in vitro and in 
vivo models. The beneficial effects include increased levels 
of antioxidant enzymes (GSH, GPx), a decrease in mycotoxin 
bioactivation and in cell death (Table 1).

Vitamin C or ascorbic acid is a lactone synthesised in the 
liver of many species. It is a first-line antioxidant that has 
beneficial effects including protecting cell membranes, 
proteins and nucleic acids from oxidation. Its biological 
action and antioxidant characteristic are associated with its 
ability to donate electrons. At physiological levels, vitamin C 
is a powerful scavenger of oxygen-derived free radicals such 
as superoxide radical anion, H2O2, the hydroxyl radical, and 
singlet oxygen in plasma and tissues (Diplock et al., 1998). In 
addition, ascorbic acid is an efficient scavenger of reactive 
nitrogen oxide species, thereby avoiding nitrosative stress 
and cell damage (Rock et al., 1996). Vitamin C also interacts 
with GSH, reducing GSH production, which, in turn, 
reduces oxidative stress. The main effects of vitamin C on 
mycotoxin induced-toxicity are reducing lipid peroxidation 
and increasing levels of antioxidant enzymes. These and 
other effects have been described for AFB1, DON, OTA, T-2 
and ZEA (Table 1). Reduced adduct formation, decreased 

apoptosis and enhancement of phagocytosis have been 
reported for AFB1 and ZEA (Ghedira-Chekir et al., 1998; 
Sahoo and Mukherjee, 2003).

Vitamin E refers to a group of substances that includes 
tocols and tocotrienol derivatives. There are two forms of 
vitamin E, γ-tocopherol and α-tocopherol. α-tocopherol is 
the most biologically active form of vitamin E (Traber and 
Sies, 1996) and the major function is that of a peroxyl radical 
scavenger, interrupting the propagation of free radicals. In 
addition, vitamin E interacts with reactive nitrogen oxide 
species and singlet oxygen, thereby maintaining the integrity 
of polyunsaturated fatty acids in cell membranes (Rock et al., 
1996). Vitamin E has been shown to act favourably against 
seven mycotoxins (AFB1, DON, FB1, OTA, PAT, T-2 and 
ZEA) (Table 1). Its actions are similar to those of vitamins A 
and C, although decreased DNA fragmentation and damage 
of DON, FB1 and OTA was also reported (Atroshi et al., 
1999; Frankic et al., 2008; Gayathri et al., 2015). In addition, 
reduced Hsp 70 expression and increased lymphocyte 
proliferation were described for T-2 (El Golli et al., 2006; 
Jaradat et al., 2006).

Flavonoids

The flavonoids are the most common hydroxylated phenolic 
substances that are synthesised by plants. Sources of 
flavonoids are citrus fruits, berries, red wine and tea (Diplock 
et al., 1998). The function of flavonoids is associated with its 
structure, which includes a number of structurally different 
subgroups, including flavonols (quercetin, kaempferol, 
myricetin), flavanols (catechin and epicatechin), isoflavones 
(genistein), flavones (apigenin, hesperetin), flavanones 

Table 1. Continued.

Mycotoxin1 Experimental model Antioxidant effects2 Reference

Vitamin E

PAT in vitro: HepG2 cells decreased p53 activation; decreased DNA damage Ayed-Boussema et al., 2013
T-2 in vitro: chicken lymphocytes increased lymphocyte proliferation Jaradat et al., 2006

in vitro: Vero cells decreased Hsp 70 expression El Golli et al., 2006
in vitro: rat erythrocytes decreased the haemolytic effect Rizzo et al., 1992
in vivo: chicken decreased MDA level Hoehler and Marquardt, 1996
in vivo: rats increased the CAT, SOD and GST  and GSH  level; increase the 

protein level; decreased MDA level, AST, ALT, AP and γGT.
Atroshi et al., 1995, 2000a.;  
Rizzo et al., 1994

ZEA in vivo: mice decreased DNA adduct formation Ghedira-Chekir et al., 1998;  
Grosse et al., 1997

1 AFB1 = aflatoxin B1; DON = deoxynivalenol; FB1 = fumonisin B1; NIV = nivalenol; OTA = ochratoxin A; PAT = patulin; T-2 = T-2 toxin; ZEA = zearalenone.
2 ALT = alanine transaminase; AP = alkaline phosphatase; AST = aspartate transaminase; CAT = catalase; GPx = glutathione peroxidase; GSH = 
glutathione; GST = glutathione S-transferase; γGT = gamma-glutamyl transpeptidase; MDA = malondialdehyde, SOD = superoxide dismutase; T-AOC 
= total antioxidative capacity.
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(naringenin, taxifolin) and/or anthocyanidins (cyanidin, 
malvidin) (Rice-Evans and Miller, 1996). The biological 
function of antioxidants is connected with their capacity 
to scavenger free radicals (peroxyl radical and hydroxyl 
radical), as well as chelating metals involved in the Fenton 
reaction (Rice-Evans and Miller, 1996).

The flavonol quercetin is one of the most effective 
polyphenolic substances linked to a reduction in the levels 
of ROS and reactive nitrogen species. In previous in vivo 
and in vitro studies, quercetin was shown to modulate the 
effects of oxidative stress caused by T-2, AFB1 and OTA 
resulting in an increase in Nrf2 expression, SOD and GPx 
activity as well as total antioxidant status and GSH levels 
(Abdel-Wahhab et al., 2017; Capcarova et al., 2015; Choi et 
al., 2010; Ramyaa and Padma, 2013; Ramyaa et al., 2014). On 
the other hand, quercetin was associated with a decrease in 
ER oxidative stress, ROS generation, MAD level, P450 and 
NADPH activity, cytochrome C release, casp-3 activation 
cell apoptosis, Cox-2 and NO expression, TNF-α, IL-6 and 
IL-2 and a decrease in DNA damage (Abdel-Wahhab et 
al., 2017; Ramyaa and Padma, 2013; Ramyaa et al., 2014).

Recent studies demonstrated the antioxidant effects of 
other flavonoids on oxidative stress induced by mycotoxins. 
Proanthocyanidin increased Nrf2 expression, SOD, GPx, 
CAT activities, GSH level, and decreased MDA content, 
DNA damage and the expression of pro-inflammatory 
cytokines (IL-1β, TNF-α, IL-6 and IFN-γ) in rats and mice 
subjected to AFB1 (Long et al., 2016c) and ZEA (Long et 
al., 2016b) diets. Cyanidin decreased DNA damage, ROS 
production, lipid hydroperoxide and iNOS, and increased 
HO-1 activity and non-protein thiol groups in rats, in a 
pig kidney cell line (LLC-PK1), and in human fibroblasts 
exposed to OTA (Sorrenti et al., 2012). Baicalein, wogonin 
and hesperidin increased cell viability and decreased 
genotoxicity and casp-3 activation in mice and neural 
crest cells exposed to AFB1 (Nones et al., 2013; Ueng et 
al., 2001). Zhong et al. (2017) reported that the apigenin 
re-established MMP, increased Bcl-2 expression, decreased 
Bax, p53 activation and the cytochrome C release in human 
embryonic kidney cells 293 (HEK 293 cells) treated with PAT. 
With the addition of silymarin to their diet, mice subjected to 
FB1 contaminated feed showed decreased TNF-α expression 
and casp-8 activation (Sozmen et al., 2014).

Crocin, curcumin, green tea, lycopene and phytic acid

Crocin is a major bioactive compound and is mainly 
found in Gardenia jasminoides and saffron. Water and 
ethanol extracts of crocin displayed antioxidant activity 
against O2

- and HO radicals (Xiao et al., 2017). Curcumin 
is a hydrophobic polyphenol derived from turmeric, a 
compound extracted from the root of Curcuma longa L. 
rhizome. Curcumin has diverse biological functions and 
its structure, which is composed of methoxy groups and 

phenols, is associated with its properties (Zheng et al., 
2017). The antioxidant action of crocin and curcumin on 
the molecular effects of mycotoxins in vitro and in vivo are 
summarised in Table 2.

Green tea is derived from Camellia sinensis leaves and 
contains a wide range of bioactive compounds of which one 
third are composed of polyphenols of which the majority are 
flavonoids. Catechins (GTCs) are one of the main flavonoids 
in green tea. GTCs have antioxidant capacity to scavenge 
ROS such as O2

-, H2O2 and HO radicals (Cooper et al., 
2005). Lycopene is the most abundant carotenoid (non-
vitamin A) in orange fruits and vegetables, mainly tomatoes 
and derived products and is responsible for their bright red 
colour. Lycopene is a recognised antioxidant and has been 
considered the most efficient in scavenging single oxygen 
(Mordente et al., 2011). Phytic acid (IP6) is a saturated 
cyclic acid commonly found in plant tissues and seeds; 
and its antioxidant effect is on ROS production mainly due 
its capacity to chelate iron, thereby inhibiting the Fenton 
reaction (Silva and Bracarense, 2016). The antioxidant 
effects of green tea, lycopene and IP6 on mycotoxin-induced 
oxidative stress in vitro and in vivo studies are listed in 
Table 3.

L-carnitine

L-carnitine is an endogenous mitochondrial membrane 
compound that plays a prominent role in facilitating the 
transport of long-chain fatty acids into mitochondria and the 
oxidation pathway (Adeva-Andany et al., 2017). L-carnitine 
decreases oxidative stress, increases endogenous antioxidant 
defence capacity, protects mitochondria against lipid 
oxidation, and decreases apoptosis through the inhibition 
of mitochondrial swelling and cytochrome C release (Adeva-
Andany et al., 2017). L-carnitine has been shown to decrease 
ROS production, MDA level, casp-3 activation, DNA and 
protein damage, and to increase MMP and GSH levels in rats 
and quails subjected to AFB1 or T-2 contaminated diets (Citil 
et al., 2005; Moosavi et al., 2016; Yatim and Sachan, 2001).

Melatonin

Melatonin is a hormonal product of the pineal gland 
that controls reproductive functions, modulates immune 
system activity, limits tumorigenesis and effectively 
inhibits oxidative stress (Reiter, 1997). Antioxidant effects 
of melatonin reported in rats exposed to AFB1 and OTA 
contaminated diets included an increase in the GHS level 
and in the activity of CAT, GPx, GSH, GST, GR and SOD 
(Abdel-Wahhab et al., 2005; Meki et al., 2004; Sutken et al., 
2007), a decrease in MDA and LPO content (Abdel-Wahhab 
et al., 2005; Sutken et al., 2007; Yenilmez et al., 2010) and 
decreased expression of NO, Hsp 70 and casp-3 (Meki et 
al., 2001, 2004).
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Minerals

Several minerals are dietary constituents involved in the 
antioxidant defence system, acting directly as antioxidants 
or promoting detoxifying enzymes (Sorrenti et al., 2013). 
Antioxidant enzymes, such as GPx and SOD require a 
dietary supply of selenium (Se), copper (Cu) and zinc (Zn) 
(Wang et al., in press).

Se is an essential micronutrient associated with Se-
dependent enzymes, including GPx, thioredoxin reductases, 
iodothyronine deiodinases, and selenophosphate synthetases 
(Wang et al., 2016). Se has been shown to increase the 
antioxidant function of CAT, GSH, GPx and SOD, decrease 
MDA content, increase the level of GSH and to modulate 
DON-induced immunosuppression in piglet lymphocytes 
and broiler chickens exposed to DON (Placha et al., 2009; 
Wang et al., in press). Long et al. (2016a,b) observed that 
Se increased GPx and SOD activities and Bcl-2 expression, 

decreased MDA content, Bax and casp-3 expression in mice 
fed with ZEA.

Zn exerts its antioxidant activity either in an acute way 
or on a long-term basis. In the first form, zinc acts by 
stabilising protein sulfhydryl groups against oxidation and 
exchanging redox active metals (copper and iron) (Zheng 
et al., 2013). In the second form, Zn induces the expression 
of metallothioneins, which act as electrophilic scavengers. 
Moreover, zinc is a co-factor of the SOD enzyme that 
catalyses superoxide anions into less toxic O2 and H2O2 
and modulates the activity of GPx and glutamylcysteine 
synthetase, through the activation of metal response 
transcription factor-1 (MTF-1) (Powell, 2000). Zheng et 
al. (2013) demonstrated the antioxidant effect of zinc as 
being an increase in SOD activity and a decrease in ROS 
generation and in DNA damage in HepG2 cells exposed 
to OTA.

Table 2. Effects of antioxidant food compounds (crocin and curcumin) in mycotoxins studies.

Mycotoxin1 Experimental model Antoxidant effects2 Reference

Crocin
AFB1 in vivo: rats increase GSH level, GPx and GST activities; decrease DNA damage Lin and Wang, 1986;  

Wang et al., 1991
PAT in vivo: mice increase GSH level and Bcl-2 expression; re-establish the MMP; 

decrease p53 activation, Bax expression and cytochrome C release; 
decrease MDA content, Hsp 70 expression, casp-3 activation and 
CAT; decrease DNA damage

Boubassabbeh et al., 2016a,b

ZEA in vitro: HCT11 and HEK293 
cells

decrease MDA content, ER stress and DNA damage Ben Salem et al., 2015b

in vivo: mice increase Bcl-2 expression; decrease Bax, Hsp 70 expression and 
p53 activation; decrease MDA content, CAT and SOD activities; 
decrease protein carbonyl generation

Ben Salem et al., 2015a;  
Salem et al., 2016

Curcumin
AFB1 in vitro: human primary 

hepatocytes
decrease DNA damage Gross-Steinmeyer et al., 2009

in vivo: broiler chickens increase GSH level, CAT, GST and SOD activities; decrease 
cytochrome P450 expression; decrease IL-6 expression

Gowda et al., 2009;  
Yarru et al., 2009

in vivo: mice increase ATPase and SDH; increase GSH level, CAT, GPx and SOD 
activities; decrease DNA and protein damage

Mathuria and Verma, 2007a,b; 
Verma and Mathuria, 2008, 
2009; Verma et al., 2008

in vivo: rats increase GSH level, CAT, SOD, GPx and GST activities; increase 
Bcl-2 expression; decrease Bax expression; decrease casp-3 
activation; decrease DNA and protein adduct formation

Abdel-Wahhab et al., 2016; 
El-Bahr, 2015; Nayak and 
Sashidhar, 2010;  
Poapolathep et al., 2015

ZEA in vivo: rats decrease MDA content; decrease DNA fragmentation Ismaiel et al., 2015
in vivo: sow increase GSH level, CAT and SOD activities Qin et al., 2015

1 AFB1 = aflatoxin B1; PAT = patulin; ZEA = zearalenone.
2 ATPase = adenosine triphosphatase; CAT = catalase; GPx = glutathione peroxidase; GSH = glutathione; GST = glutathione S-transferase; GST = glutathione 
S-transferase; MDA = malondialdehyde; MMP = mitochondrial membrane potential; SDH = succinate dehydrogenase; SOD = superoxide dismutase.
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Mixtures

Several studies have demonstrated that mixtures of natural 
substances reduce the oxidative stress lesions caused by 
mycotoxins. The combination of L-carnitine, vitamin 
E, selenium, melatonin, coenzyme Q10 and tamoxifen 
(Abidin et al., 2013; Atroshi et al., 2000; Sutken et al., 
2007; Yenilmez et al., 2010) increased protective effects on 
DNA, proteins and lipids against OTA-induced toxicity 
compared to the individual effects of the compounds. 
Moreover, the combination of coenzyme Q10, L-carnitine, 
alpha-tocopherol and selenium, garlic and curcumin (El-
Barbary, 2016), black tea and curcumin (Alm-Eldeen et al., 
2015) displayed potent antioxidant effects against the toxic 
effects of AFB1. In T-2-induced oxidative stress experiments, 
the increase in the level of GSH and the decrease in DNA 
damage were more apparent in mixtures of coenzyme Q10, 
L-carnitine, alpha-tocopherol and selenium (Atroshi et 

al., 1999) and tamoxifen, vitamin E, and Se (Atroshi et al., 
1997, 2000).

5. Conclusions

Oxidative stress, ROS and RNS generation induced by 
mycotoxins have been associated with their cytotoxic effects 
on DNA, protein synthesis and mitochondria. These effects 
have been confirmed in different assays on cell membranes, 
proteins or nucleic acids, but the mechanisms involved in 
the activation of the signalling pathways that results in cell 
death or increased permeability for the different mycotoxins 
remain uncertain. Which factors are involved in activation? 
Dose, duration of exposure, and animal species are some of 
the aspects that need to be investigated in addition to the 
molecular characteristics of mycotoxins. In addition, most 
available data were acquired in in vitro studies or mice/rat 
models. New data from other animal models, especially 
those of economic interest are still lacking.

Table 3. Effects of antioxidant food compounds (green tea/catechin, lycopene and phytic acid) in mycotoxins studies.

Mycotoxin1 Experimental model Antoxidant effects2 Reference

Green tea/catechin
AFB1 in vitro: chicken hepatocytes increase Bcl2-expression; increase SOD, CAT, GR activities; decrease 

MDA content; decrease Bax and NF-κB expression; decrease TNF-α, IL-1β 
and IL-6 expression

Oskoueian et al., 2015

in vitro: HepG2 decrease ROS production Corcuera et al., 2012
in vivo: piglets decrease the cytochrome 450 content Tulayakul et al., 2007
in vivo: rats decrease the cytochrome 450 content; decrease DNA damage; decrease 

cell proliferation  (promotion phase cancer)
Ito and Ito, 2007;  
Qin et al., 2000

FB1 in vivo:  rats increase GSH level Marnewick et al., 2009
OTA in vitro: LLC-PK1 cells increase cell viability; decrease ROS production; decrease DNA damage Costa et al., 2007
PAT in vivo: mice increase GSH level; decrease MDA content; decrease protein carbonyl 

formation; decrease p53 and casp-3 activation; decrease DNA damage
Jayashree et al., 2017;  
Song et al., 2014

Lycopene
AFB1 in vivo: rats decrease DNA adduct formation Tang et al., 2007
OTA in vivo: rats increase GSH level and GPx activity; decrease MDA content; decrease 

apoptosis; decrease DNA damage
Aydin et al., 2013;  
Palabyik et al., 2013

T-2 in vivo: chicks increase GSH level; decrease MDA content Leal et al., 1999
ZEA in vivo: mice increase GSH level; increase CAT, GPx, GST, GR and SOD activities; 

increase IL-10 expression; decrease TNF-α, IL-1β, IL-2 and IL-6 expression
Boeira et al., 2015

Phytic acid
AFB1 in vivo: rats increase GSH level; increase CAT and SOD activities Abu El-Saad and 

Mahmoud, 2009
DON in vitro: IPEC-1 cells increase TEER Pacheco et al., 2012

ex vivo: piglet intestine decrease Cox-2 and casp-3 expression Silva et al., 2014
FB1 ex vivo: piglet intestine decrease Cox-2 and casp-3 expression Silva et al., 2014

1 AFB1 = aflatoxin B1; FB1 = fumonisin B1; OTA = ochratoxin A; PAT = patulin; T-2 = T-2 toxin; ZEA = zearalenone.
2 CAT = catalase; GPx = glutathione peroxidase; GR = glutathione reductase; GSH = glutathione; GST = glutathione S-transferase; IL = interleukin; MDA 
= malondialdehyde; NF-κB = nuclear factor kappa beta; ROS = reactive oxygen species; SOD = superoxide dismutase; TEER = transepithelial electrical 
resistance; TNF-α = tumour necrosis factor alpha
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Several antioxidants have demonstrated their beneficial 
effects in mitigating and/or preventing the toxic effects 
of mycotoxins in in vitro, in vivo and ex vivo experimental 
models, but again the mechanisms and pathways involved in 
these effects are still not fully understood, pointing to a wide 
range of research opportunities. Although numerous studies 
have demonstrated the protective and preventive effect 
of antioxidants on mycotoxins-induced oxidative stress, 
the choice of the most appropriate nutritional methods 
requires knowledge of the type of antioxidants in the diet, 
their bioavailability and food sources, and the exact intake 
required to achieve these protective effects.
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