
HAL Id: hal-02628936
https://hal.inrae.fr/hal-02628936

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Climate induced land use change in France: impacts of
agricultural adaptation and climate change mitigation

Anna Lungarska, Raja Chakir

To cite this version:
Anna Lungarska, Raja Chakir. Climate induced land use change in France: impacts of agri-
cultural adaptation and climate change mitigation. Ecological Economics, 2018, 147, pp.134-154.
�10.1016/j.ecolecon.2017.12.030�. �hal-02628936�

https://hal.inrae.fr/hal-02628936
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Climate-induced land use change in France: impacts of

agricultural adaptation and climate change mitigation

Anna Lungarska1
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Abstract

Interaction between mitigation and adaptation is a key question for the design of climate

policies. In this paper, we study how land use adaptation to climate change impacts

land use competition in the agriculture, forest and other land use (AFOLU) sector and

how a mitigation policy in agriculture might affect this competition. We use for this

purpose two sector-specific bio-economic models of agriculture and forest combined with

an econometric land use shares model to simulate the impacts of two climate change

scenarios (A2 and B1, 2100 horizon), and a greenhouse gas emissions from agriculture

policy consisting of a tax of between 0 and 200 e/tCO2 equivalent. Our results show

that both climate change scenarios lead to an increase in the area devoted to agriculture

at the expense of forest which could have a negative impact on reducing greenhouse gas

emissions responsible for climate change. The mitigation policy would curtail agricultural

expansion, and thus could counteract the effects of land use adaptation to climate change.

In other words, accounting for land use competition results in a reduction of the abatement

costs of the mitigation policy in the agricultural sector.

Keywords: Spatial land use share model, greenhouse gas tax, climate change,

mitigation, adaptation, land rent, agriculture

JEL Classification: Q15, Q54, Q52, C31

This is an Accepted Manuscript of an article published by Elsevier in Ecological

Economics, 147, 134-154, https://doi.org/10.1016/j.ecolecon.2017.12.030 .

Email addresses: Anna.Lungarska@inra.fr (Anna Lungarska), Raja.Chakir@inra.fr (Raja
Chakir)

1Corresponding author

Preprint submitted to Elsevier February 7, 2018

https://doi.org/10.1016/j.ecolecon.2017.12.030


1. Introduction

According to the International Panel on Climate Change (IPCC) (2013), the average1

global temperature has increased by about 0.85◦ C during the period between 1880 to 2012.2

In order to avoid the worst impacts of climate change (CC), requires global greenhouse3

gas (GHG) emissions to be cut substantially [32]. In March 2015, the European Union4

(EU) announced its intended contribution to the CC mitigation effort by promising a5

40% cut (compared to 1990 levels) in Europe’s GHG emissions by 2030. A few months6

later, during the 2015 United Nations Climate Change Conference (COP 21) held in7

Paris, France pledged a 75% emissions reduction by 2050. These ambitious commitments8

contributed greatly to the adoption of the first universal, legally-binding global climate9

agreement. The EU’s effort is split between member states with each one defining its10

own mitigation strategy. Thus, the French government announced a national low-carbon11

strategy [63] which establishes carbon budgets for the 2015-2018, 2019-2023, and 2024-12

2028 periods. In order to achieve these national goals, the strategy involves carbon pricing13

for the energy sector of 22 e/tCO2 in 2016, 56 e/tCO2 in 2020, and 100 e/tCO2 in 2030.14

In France, around 70% of national GHG emissions come from energy use (in produc-15

tion, transport, residential, etc.) and 16% - 18 %2 from agriculture. In the case of the16

latter sector, the goal (compared to 2013) is a reduction of some 12% for the third carbon17

budget (2024-2028), and a cut of 50% (compared to 1990) of GHG emissions by 205018

[63]. However, no economic incentive policy has been announced for agriculture. [40]19

discuss the barriers to GHG pricing (cap and trade schemes, taxation) in agriculture, and20

categorize them into: i) transaction costs; ii) leakages; and iii) distribution effects. Their21

article proposes a framework for analyzing potential solutions to these issues through pol-22

icy design. However, the policies currently being considered propose emissions reductions23

by the agriculture sector through the implementation of agroecological measures such as24

maintenance of meadows, development of agro-forestry, and optimization of input use.25

An exemplary measure which was proposed during COP 22 held in Marrakech in26

2Cited figures are from UNFCC data for France up to 2013. Emissions include LULUCF and indirect
CO2.
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autumn 2016, is the “4 per 1000” increase in carbon stock in soils which would reduce27

atmospheric concentrations. This solution would be associated with gains in terms of28

soil fertility and supply of other ecosystem services. In this paper, we show how an29

incentive policy such as GHG taxation in agriculture, could encourage farmers to adopt30

GHG mitigation means in the direction of the proposed agroecological measures. Such a31

policy might has an additional indirect effect in the form of land use change (LUC) from32

agriculture to forestry which could further reduce the costs of GHG emissions abatement.33

CC has been ongoing for the last several decades [45], and a policy evaluation in the34

light of these changes is necessary. For this reason, we investigate the effects of CC on35

land use in France at the 2100 horizon, in the context of a CC mitigation policy based36

on taxing agricultural GHG emissions. We exploit the results from previous work on37

the impact of CC on the profitability of agriculture and forestry, and estimate a spatial38

econometric land use share model which captures the changes in land rents for different39

land use classes. In addition, we study the impact of a mitigation policy (tax on GHG40

emissions) on land use and on overall agricultural emissions. When accounting for the41

land use effects of the mitigation policy, we find private abatement costs are lower, and42

this difference is amplified in different CC scenarios. We build on three branches of the43

literature on agriculture and CC adaptation and mitigation: i) impact of CC on the44

agricultural sector; ii) impact of CC on land use; and iii) abatement costs related to GHG45

emissions from agriculture.46

First, we draw on the numerous studies assessing the direct effects of CC on agriculture47

[2, 71]. According to [61], the literature proposes five approaches to the impacts of CC on48

agriculture: i) crop simulation models [26]; ii) cross-sectional or intertemporal analyses of49

yields [53]; iii) panel (intertemporal) analysis of net revenues across weather [31]; iv) cross-50

sectional analyses of net revenues or land values per hectare [60, 59]; and v) computable51

general equilibrium (CGE) models [64]. Each has limitations and advantages; however,52

most models do not allow for adaptations to farmer behavior, or possible land use changes53

outside the agricultural sector. [59] address these issues in part, and propose a method54

that relies on Ricardian theory of differential land rents. The Ricardian method assumes55
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that the land price is the net present value of future land rents. However, future land56

rents can be driven by factors other than agricultural use [17, 70]. [72] in their assessment57

of CC impacts on US agriculture, account for urban pressure on agricultural land prices.58

[1] combine an economic and a crop simulation model to account for some adaptations to59

crop choice, while [48] go a step further and explore some agronomic adaptations (sowing60

dates, crop varieties). We build on this body of work and estimate an econometric land61

use model that allows for LUC among two land based sectors namely agriculture and62

forestry.63

Second, there are some recent studies (6 and 41, for instance) that investigate the64

effects of CC on land use. To estimate future land rents for their land use model, [6] use65

the same principle as [59]. While [59] focus solely on agriculture adaptations related to66

crops and practices, [6] evaluate the impact of CC in terms of LUCs among annual crops,67

perennial crops, pastures, forests, and urban areas. [41] investigate LUC by approximating68

future agricultural and forestry productivity by ecosystem net primary productivity. [37]69

build on an agricultural land use model [35] to investigate the effect of CC on water quality.70

However, their model does not consider other land-demanding economic sectors or their71

future evolution. In contrast, our methodology allows for LUC not only among sectors72

but also within the agricultural and forestry sectors (choice of crops and/or pasture, and73

choice of tree species). This aspect is fundamental when considering CC adaptations.74

Third, the marginal abatement costs of GHG for agriculture have been studied using75

different modeling techniques. In a meta-analysis, [77] classify the different approaches76

according to three groups: i) supply-side models specialized in agriculture [e.g. 29, 28, 38];77

ii) general equilibrium models [e.g. 58, 73]; and iii) engineering studies [e.g. 8]. [77]78

argue that the results of the first model types generally are closer to the microeconomic79

definition of marginal costs, while general equilibrium models integrate the commodity80

price responses to pollution abatement. Nevertheless, supply-side models provide a better81

representation of the heterogeneity in farming systems. The level of detail in descriptions82

of the production function is even higher in engineering studies but this is at the expense83
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of the geographical extent of these studies.384

With the exception of general equilibrium models, the responses of farmers to GHG85

taxation in terms of land use is ignored in previous work. Since land use feedback effects86

have been shown to be important in the context of GHG mitigation policies such as incen-87

tives for using biofuels [74], in our simulations we account explicitly for LUC. Finally, [57]88

estimate an econometric land use model for the USA and simulate landowner responses to89

sequestration policies. They examine a two-part policy involving a subsidy for converting90

land to forest, and a tax on converting land from forest. They then estimate the carbon91

sequestration supply function of these policies by computing the corresponding flows of92

carbon in terrestrial sinks. However, unlike our study, they do not simulate the impacts93

of climate change on land use.94

The present paper addresses three main questions:95

1. What are the impacts of CC on agricultural and forest rents in France?96

2. What are the impacts of a mitigation policy (tax on GHG emissions from agriculture)97

on farms emissions and on LUC in France?98

3. What are the impacts of CC on agriculture and LUC in France?99

To investigate these questions we exploit the results from two mathematical program-100

ming models (AROPAj for agriculture and FFSM++ for forestry) to study the impacts101

of CC on agricultural and forest rents. We use the supply model AROPAj to study102

the impacts of a mitigation policy (tax on GHG) on agriculture, and we use a spatial103

econometric model to study the impacts of CC and a mitigation policy on LUC. Our104

econometric model allows for the allocation of land among four land uses, namely: i)105

agriculture (crops and pasture); ii) forest; iii) urban; and iv) other. We estimate a spatial106

econometric land use share model which accounts explicitly for spatial autocorrelation107

between land uses in neighboring grid cells. Most previous work assumes spatial inde-108

pendence of land use choices between neighboring areas, although some recent exceptions109

include [7, 22, 51, 75, 34, 24]. Incorporating spatial autocorrelation into land use models110

allows for more precise estimation, and improves prediction accuracy [23].111

3For more details on the methodologies and the results of these studies, see [77].
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The article is organized as follows. In section 2, we describe the models used to assess112

GHG emissions from agriculture, and section 3 presents the data. Section 4 presents and113

discusses the results of our simulations.114

2. Methodology115

The study methodology is based on two mathematical programming models (AROPAj116

for agriculture, and FFSM++ for forestry), coupled to bio-ecological models, and a spatial117

econometric land use model that allows us to combine the results of the sector-specific118

models. Figure 1 describes the modeling scheme adopted. The bio-ecological components119

of the sector specific models account for the direct impact of CC on agriculture and120

forestry in terms of crop and forest yields. These results are integrated in the economic121

models where economic agents maximize their returns by modifying their input (fertilizer122

in the case of farmers) and/or land use (crops, tree species). The evaluated rents are used123

in the econometric land use model to provide estimates of the land shares dedicated to124

each of the four major land use classes.125

Bio-ecological models:

Crops and forestry response to climate change in
terms of yields, forest productivity and mortality

FFSM++

Forestry management,
production and prices

AROPAj

Agricultural offer and
land use (crops/pastures)

Spatial econometric land use model

Predicts land use shares allocation between
agriculture, forestry, and urban use

Forest productivity
and mortality

STICS:
Yields=f(Nitrogen)

Forestry rent Agricultural rentC
lim

at
e

ch
an

ge
sc

en
ar

io
s

Weather under CC
and CO2 levels

CC demography
hypothesis

Figure 1: Methodology for the assessment of the climate induced LUC

2.1. Bio-ecological models126

As depicted in figure 1, CC scenarios (A2 and B1) are simulated first via bio-ecological127

models. For agriculture, this is the STICS crop model developed by the French National128
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Institute for Agricultural Research, INRA, in Avignon [14, 15]. STICS captures the effects129

of different weather and soil conditions and the CO2 fertilization effect. It is able also130

to simulate changes to sowing and harvesting dates, new varieties, and different levels of131

nitrogen input.132

The response of forests to CC is captured by two indicators: tree growth, and prob-133

ability of tree presence (mortality). These indicators are derived from data provided by134

the French National Geographic Institute (IGN). The effects of current climate and soil135

conditions on the indicators are estimated via generalized additive models (GAM), and136

future values under CC are projected4.137

2.2. Sector specific models for agriculture and forestry138

Agriculture supply-side model.. We study the agricultural sector via the economic supply-139

side model AROPAj (for a detailed description see 46). This is a linear programming140

model based on FADN data, and takes account of the Common Agricultural Policy. In this141

model, the economic agents are representative farms grouped by farm type, maximizing142

their gross margins (revenue minus variable costs). Farm types are defined depending143

on economic size, type of production, and altitude.5 In order to maximize their144

profits, the model allows farmers to allocate their land to different crops but respecting a145

total area constraint. The shadow price (dual value, 25) associated to this constraint is146

used to measure the land rent.6147

For each farmer, the only publicly available location is the FADN region in which the148

farmer operates. In order to infer an agent’s approximate location, we use the spatial-149

ization methodology developed by [21] and applied to AROPAj by [16]. This procedure150

allows us to estimate the probability of the presence of a given farm type at the scale151

of 1 ha. Next, we intersect these probabilities with the 8 km x 8 km grid used in the152

4This work was conducted by Pierre Mérian and Jean-Daniel Bontemps at INRA, Nancy, France.
5The type of production (type of farming) and the economic size are defined in the sense of

FADN (http://ec.europa.eu/agriculture/rica/diffusion_en.cfm). For instance, farm type
35 in the Rhône-Alpes region is located at low altitude (< 300 m), the economic size of its
composing farms is mostly superior to 25,000 e/year, and its activities are oriented mainly
towards field crops. In the baseline case, its land is used mostly for maize (31%), wheat
(30%), sunflower (14%) while only a small part of its area is devoted to pastures (5%).

6Following the duality theorem, the shadow price provides an estimate of the marginal profitability of
land, or in other words, its rent (under the economic equilibrium hypothesis).
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econometric analysis (cf. subsection 2.3). The individual probabilities of presence sum153

to 1 so for each grid cell we have a mix of agricultural techniques/practices associated154

to each different farm type potentially present in the grid. This spatial distribution of155

farmers is kept constant in our climate change and GHG tax simulations. However, farms156

can change their production mix, and for instance, could convert7 pasture to arable land157

and vice versa.158

The AROPAj model is combined with STICS crop model using dose-response functions159

representing crop yields as a function of the quantity of nitrogen applied to the field [39].160

Each agent’s dose-response functions are calibrated after simulating the different soil types161

and preceding crops. The crops represented by the dose-response functions are common162

wheat, durum wheat, barley, maize, rapeseed, sunflower, soybean, potato, and sugar beet.163

This list covers the main crops grown in France measured by land area. Heterogeneity164

in climatic conditions is integrated to a certain extent by calculating average weather165

indicators for each FADN region and altitude class (0 – 300 m, 300 – 600 m, and > 600166

m). Based on the crop model, AROPAj is able to account also for variations in crop yields167

under future climate scenarios [48]. To sum up, dose-response functions in AROPAj are168

calibrated on information about weather, soils, altitude, preceding crop, and crop variety.169

They allow the choice of crop and quantity of fertilizer used by each farm type to be170

endogenous in the model. These functions are re-estimated for future climate conditions.171

Dose-response functions allow the model economic agents to adjust the quantity of172

nitrogen used in production depending on the economic conjuncture (input and output173

prices, policies, etc.). Previous works account for a crop switch but consider a constant174

level of input per crop [29, 28]. In the present study, we assess the effects of CC on agricul-175

ture and on land use in France, for two IPCC scenarios, A2 and B1. The four major CC176

scenarios and the underlying hypothesis are described in [43] and summarized in figure 3.177

In our simulations, we account only for CC and do not integrate any changes in produc-178

7The possibility for conversion is partially limited by some technological constraints imposed during
the calibration of the AROPAj model which avoids corner solutions to the model (mono-cropping). Also,
the number of animals can vary within a ± 15% interval, otherwise, the model would be out of its
calibration interval. However, the choice of animal feed (grazing or fodder) is free.
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tion technology (apart from adaptations such as changes to sowing dates, crop varieties,179

and fertilizer use). Some complementary information related to the CC scenarios’ data180

are provided in subsection 3.3 and in appendix A.181

AROPAj models the farmer’s choice between land uses in terms of crops and/or pas-182

ture. Farmers can choose also among different animal feedstuffs8 which has an impact on183

GHG emissions. We simulate GHG tax levels from 0 to 200 e/tCO2eq; these taxes reduce184

the profitability of agriculture (ceteris paribus, no price feedback is considered).185

Therefore, the land shadow price estimated by the model decreases, meaning that agricul-186

tural rents are lower. We use these values in the land use share model. AROPAj captures187

the heterogeneity among farmers in terms of production and response to the tested mit-188

igation policies. This feature of the model is extremely relevant since agriculture is one189

of the GHG emitting sectors characterized by important heterogeneity among polluters.190

We also use AROPAj estimates of the shares of pasture and crops chosen by the economic191

agents.192

Forest sector model.. Forestry land rents are approximated by the expected returns es-193

timated by the partial-equilibrium model French Forest Sector Model (FFSM++) [18,194

19, 55]. The recursive structure of the model is based on two modules – the first is195

dedicated to the dynamics of wood resources; the second focuses on the sector’s market196

dynamics. Output prices are endogenous for the national market, and exogenous if the197

international market is considered. Recent developments of the model include spatializa-198

tion of wood resources [54], and the inclusion of a forestry management module allowing199

for the introduction of new tree species depending on expected future profits [55]. The200

expected returns are calculated for 2006 and 2100 at the French administrative region201

scale (NUTS2). FFSM++ is based on parameters (mortality and tree growth) derived202

from statistical data. These parameters are estimated using a GAM model [78] under203

current climate conditions. The results of the FFSM++ simulations in terms of expected204

8For simplicity, we consider that the number of animals is invariant in our simulations. We tested
different levels of animal variation (±15 and ±30%) and the results were similar especially for a GHG
tax of between 50 e/tCO2eq. and 100 e/tCO2eq.
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returns from forestry are summarized in figure 5. Similar to the case of agriculture, the205

response of forestry returns to CC is not uniform across regions. Overall, the results for206

forestry are lower in future climate scenarios.207

2.3. Land use share model208

In line with the literature on LUC, we estimate a land use share model. Land use209

share models are used widely in the literature [52, 76, 79, 69, 62]. The first step in the210

modeling procedure assumes that the landowner derives the optimal land allocation from211

his/her profit-maximization problem. In this paper we focus on the landowner’s decision212

to allocate land among four possible uses: agriculture (crops and pastures), forest, urban,213

and other. As in [69] and [76] landowners allocate land to the use that provides the highest214

net present value of future profits. In the second step, and following the literature, we215

aggregate optimal allocations by individual landowners to derive the observed share of a216

given land use in each grid cell.217

Following [22] and [7], the land use share Sgl is computed as the share of the areas in218

grid g (∀g = 1, ..., G) with land use l (∀l = 1, ..., L). These shares are written as:219

Sgl =
exp(Rgβ

R
l + Pgβ

P
l )∑L

l=1 exp
(
RgβRl + PgβPl

) (1)

where Rg is a vector of land use rents, βRl is the associated vector of the parameters220

to be estimated; Pg is a vector of the physical parameters (soil characteristics and slope)221

and βSl is the vector associated to the parameters to be estimated.222

Linearizing the model in equation 1 allows us to estimate equation 2 with a reference223

land use, L224

S̃gl = ln(Sgl/SgL) = Rgβ
R
l + Pgβ

P
l + ulg, ∀g = 1, ..., G, ∀l = 1, ..., L (2)

In the context of aggregated land use share models, spatial autocorrelation could result225

from a structural spatial relationship among the values of the dependent variable, or a226

spatial autocorrelation among the error terms. In the present study, we use an 8 km x 8 km227

continuous grid which corresponds to the French climate data grid system, SAFRAN9.228

9More information on this grid is available at https://www.umr-cnrm.fr/spip.php?article788&
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Since land use is one of driving forces in local weather conditions, providing land use229

estimates at this scale should be of use for future research seeking to loop the effects of230

global CC on land use, and then on local weather conditions. An econometric model that231

does not include spatial autocorrelation when the data generating process is spatial, could232

be adversely affected by this omission by bias in the regression coefficients, inconsistency,233

inefficiency, masking effects of spillovers, prediction bias [4].234

Consideration of spatial autocorrelation in an econometric model can be achieved in235

different ways by including spatially lagged variables, that is, weighted averages of obser-236

vations of “neighbors” for a given observation [4]. These spatially lagged variables can be237

the dependent variable (spatial auto-regressive - SAR - model), explanatory variables (spa-238

tial cross regressive model, SXM), the dependent and the explanatory variables (spatial239

Durbin model, SDM), or the error terms (spatial error model, SEM), or any combination240

of these options which allowing for a range of spatial models [33].241

In line with the results in [23], we estimate a spatial Durbin error model (SDEM),242

which combines SEM and SXM models, using the R package spdep [9, 10]. We use two243

spatial neighborhood matrices, W1 and W2. The former represents grid cell neighbors,244

the latter is built at the administrative region level. Both matrices are based on a Queen245

contiguity rule. Appendix C provides some results for the choice of spatial weight matrices.246

The explanatory variables are lagged with one of these two matrices depending on the247

geographical scale of the variable. In our model, spatial autocorrelation is essentially a248

data measurement problem related to explanatory variables such as rent values which are249

aggregated across space and are likely to be correlated. Spatial autocorrelation can also250

arise in our case as the result of omitted variables which are spatially correlated10.251

The SDEM takes account of the interactions between non-observed factors that affect252

the agricultural land use conversion decision (equation 3).253

lang=en .
10See [49] which provide motivations for regression models that include spatial autoregressive processes.
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S̃gl = Rgβ
R
l + Pgβ

P
l +W1(Rg′β

R′

l + Pg′β
P′

l ) +W2Rj′β
R′′

l + ulg,

where ulg = λW1ulg + ε (3)

W1 is an n × n spatial weight matrix for grid cell neighbors, W2 is a m ×m spatial254

weight matrix for regional neighbors, Rg′ and Pg′ are the fine scale explanatory variables255

for neighboring cells, Rj are regional scale variables for neighboring regions, βR′

l , βS′

l , and256

βR′′

l are the associated parameters, the parameter λ expresses the interaction between257

residuals and ε is an iid11 error term such that ε ∼ iid(0, σ2I).258

3. Data presentation259

General information and descriptive statistics of the variables used in the study are260

summarized in Table 1.261

3.1. Land use data262

Land use data are from the Corine Land Cover (CLC) database for France at the scale263

of 100m x 100m (1ha) grids and for the year 2000. The land cover classes are agriculture,264

forest, urban, and other. Table 6 in appendix A summarizes the rules governing the265

aggregation of land use classes. The resulting map is depicted in figure 2. We next266

calculate the share of each land use class for each (8km x 8km) grid cell; we know that267

each cell includes a maximum of 6,400ha. Land use shares are expressed as the sum of268

the same land use classes in hectares divided by the surface of the grid cell. Although269

these cells are generated to be homogeneous, they are changed by their intersection with270

the French borders. For instance, grid cells on the coast are restricted to their parts on271

dry land.272

Since we observe zeros in our land use shares calculated for each (8km x 8km) grid cell,273

in the cases especially of “other” land use (30% of grids), urban use (16% of grids) and274

to a small extent forest (less than 4% of grids), this poses two types of problems. First,275

we cannot calculate the share ratios by dividing on sot when it is equal to zero, second,276

11Independent and identically distributed random variable.
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we cannot calculate the log of the ratio of land use shares when sur = 0 or sfo = 0. To277

deal with these issues, we have chosen to add 0.64ha to each zero land use share for each278

6400ha (8km x 8km) mesh. We believe this will have no significant impact on our results279

for the following reason: the minimum CLC mesh size is 6.25ha (250m x 250m) and CLC280

assigns land use in relation to the dominant use in each CLC grid. This means that if281

we have a CLC grid indicated 100% agriculture then the dominant land use is agriculture282

but may not be the only land use type present in this grid. Since each of our spatial unit283

grids (8km x 8km) contains 1,024 CLC meshes, we consider it reasonable to assume that284

if the observed share is zero at least 0.65ha are fallow or devoted to “other” land uses (or285

urban, or forest).286

Figure 2: Corine Land Cover (CLC) data aggregated in four land use classes for the year 2000

3.2. Demography287

For the land use share model estimation, we use an approximation of urban rent based288

on population density (numbers of households per ha) and household revenues. Both289

indicators are provided by the French statistical institute (INSEE); revenues are available290

at the commune scale, and number of households is available for a regular 200 m x 200291

m grid12.292

In our CC simulations, we use projections on demographic evolution from INSEE (at293

the département level up to 2040, and at the national level up to 2060), and estimates294

from the CIESIN at the Western Europe level [20]. Simple regression models relating295

12INSEE, http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&

page=donnees-detaillees/donnees-carroyees/donnees_carroyees_diffusion.htm .

13
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demographic projections from INSEE to those from CIESIN were used to downscale the296

sub-continental estimates to the French level.297

3.3. Physical data298

In our simulations, we use data on three types of physical parameters: climate, soils,299

and topography.300

Climate.. As already mentioned, we simulate two CC scenarios from the [43], A2 and B1301

(see figure 3 for the underlying hypothesis).302

The agricultural sector simulations exploit two sets of climate data were used. For303

calibration purposes (when we seek to adjust our results to a reference year, here 2002)304

we use reanalyzed ERA-Interim data on a 0.5◦ scale (for years 2000, 2001, and 2002 as305

requested by the crop model). To construct the baseline and the counterfactual climate306

change scenarios, climate data are from the global climate model (GCM) ECHAM5 and307

downscaled to the 0.5◦. Both grid data are averaged for the FADN region and altitude class308

combinations (< 300 m, 300 – 600 m, and > 600 m). The crop model requires daily data on309

several weather parameters such as minimum and maximum temperature, precipitation,310

radiation, wind, and atmospheric pressure. The modeling steps are in accordance with the311

climate change simulations methodologies applied by [36] and described in [5]. Another312

set of data are used for the baseline and counterfactual simulations of the forestry model313

FFSM++ which is computed using the ARPEGE model [65] and further downscaled13
314

to an 8 km x 8 km grid (the same we use in our econometric model) by CERFACS315

(Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique). Figure316

8 provides maps of the evolution of temperatures and precipitations for the two climate317

scenarios for the ECHAM5 model. Table 5 provides some summary information for the318

ARPEGE simulations.319

Soils. are based on data provided by the Joint Research Centre (JRC, 67) at the scale of320

1:1,000,000 and further aggregated to grid cell level. The soil quality indicator we use is321

13For more information on the downscaling procedure see [66, 11, 12]
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A1 A2

– fast economic growth – moderate economic growth
– moderate demographic growth – high demographic growth
– great technological progress – high energy consumption
– increase in temp. 1.4 – 6.4 ◦C – increase in temp. 2.0 – 5.4 ◦C

B1 B2

– moderate economic growth – low economic growth
– low demographic growth – average demographic growth
– environmental sustainability – environmental sustainability
– increase in temp. 1.1 – 2.9 ◦C – increase in temp. 1.4 – 3.8 ◦C

Figure 3: Summary of the four major climate change scenarios as presented in [43]

soil texture on four levels. Level 1, the lowest quality, is the reference. Land quality is an322

important variable in land use models [22, 3, 56].323

Topography. (altitude and slope) is derived from the digital elevation model (DEM)324

GTOPO, available on a 30 arc seconds scale (approximately 1km). Only slope is in-325

troduced in the model because of the high correlation between slope and altitude. Also,326

slope allows also for better model fit.327

This supplementary information is necessary to better integrate the physical hetero-328

geneity in AROPAj estimates of the agricultural land rent. Climate information is less329

of a determinant in crop simulations than soil data resolution[42]. Therefore, we can330

conclude that the variability in climate conditions is represented sufficiently well by the331

aggregated variables at the FADN region scale (the scale of the AROPAj results), with332

some level of discrimination between altitude levels. However, since soil varies much more,333

the inclusion of soil quality will enable more precise estimates of land use share model334

coefficients. This applies especially to the case of slope which is ignored in the STICS335

simulations supporting the AROPAj model.336

4. Results and simulations337

4.1. Econometric results of the land use model338

Table 2 presents the estimated coefficients of the econometric land use share models.339

The estimated Moran’s I statistics and the λ parameters indicate the presence of signif-340

icant spatial autocorrelation in all three models. The Akaike information criteria (AIC)341
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under the SDEM specification are lower than those for the non-spatial models. The land342

shadow price has a positive and significant effect on agricultural land use. Forestry rev-343

enues have a positive influence on agriculture, forestry, and urban land uses. Urban rent344

proxies (population density and revenues) have a positive influence on urban vs. other345

uses. Slope and its lagged value have a negative impact on all alternatives to other uses346

(except forestry for the non-lagged slope) while soil quality has a positive impact. In347

relation to the lagged values of the land shadow price, the shadow price in neighboring348

regions has a positive influence on agriculture.349

4.2. Simulations of climate change and GHG taxation350

Impacts of CC on land rents.351

. Figures 4 and 5 present the effects of CC on the agricultural and forestry rent proxies352

at the NUTS 2 regional level, which is the original geographical scale of the353

sector specific models AROPAj and FFSM++. As already mentioned, these results354

capture CC effects via their respective bio-ecological modules. In general, agriculture355

revenues (and land shadow price) are higher in the future climate scenario while forestry356

returns are lower. These results are nuanced by some regional disparities as shown in357

figures 4 and 5.358

Impacts of CC adaptation and GHG taxes on LUC.359

. The results of the LUC simulations can be analyzed in terms of: i) the impact of CC on360

LUC; ii) the impact of GHG taxation on LUC; and iii) their combined impact on LUC.361

Figure 6 summarizes the results of the simulations.362

Impacts of CC adaptation on land use.. Figure 6 shows that our land use model predicts363

an increase in crop area under the two CC scenarios compared to current climate (CTL364

scenario). Figure 6 shows also that the increase in the area to crops is more important365

in B1 scenario, than in the A2 scenario. This increase is at the expenses of forest and366

pasture. In the case of urban use, the hypothesis underlying the [43] CC scenarios posits367

an increase in French demography in the A2 scenario, and stabilization or even decrease368

in the B1 scenario. This hypothesis is demonstrated by the results which show that the369
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Agricultural land shadow price
(quantiles in ke per ha)

Scenario 0% 25% 50% 75% 100%

Present climate (CTL) 0.29 0.42 0.49 0.68 1.03
A2 0.36 0.58 0.79 1.01 1.84
B1 0.36 0.54 0.78 1.16 1.62

Figure 4: Simulated values for the agricultural rent under the current climate (CTL) and for climate
change scenarios A2 and B1 (NUTS 2 regional level)

Forestry returns
(quantiles in e per ha)

Scenario 0% 25% 50% 75% 100%

Present climate (CTL) 29 91 133 192 308
A2 18 45 74 96 709
B1 19 58 85 121 277

Figure 5: Simulated values for the forestry rent under current climate (CTL) and for climate change
scenarios A2 and B1 (NUTS 2 regional level)

urban area increases more in the A2 scenario. We can see also that in the B1 scenario,370

the greater increase in crop area is associated to a smaller increase in the areas devoted371

to urban and other uses in this scenario.372

Impacts of a GHG mitigation policy on land use.. As expected, taxing the GHG emissions373

from agriculture reduces the share of agricultural land use due to the lower profitability374

of that sector. The area to crops is affected more than the area devoted to pasture. As375

already mentioned, we use the farmers’ land allocation decision derived from the AROPAj376

model, in order to evaluate the share of pastures and crops for each grid cell. The loss377
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of agricultural area mainly benefits forest. Our results show that the tax has an effect378

on both the intensive (lowering the input use per hectare) and the extensive margin of379

agriculture by reducing the share of agricultural land use. Furthermore, the increase in380

forest could lead to further GHG mitigation through carbon stocking.381

Impacts of the combined CC adaptation and mitigation on land use.. Under both CC382

scenarios, taxation of GHG emissions acts to constrain any decrease in forest and pasture383

areas. Since converting pasture and forest to crops is a source of GHG, the emissions384

associated with this LUC are avoided by the imposition of the tax. Although the total385

agricultural area (crop and pasture) in the A2 scenario for a tax of 100 e/tCO2eq. is386

lower than in the CTL scenario (table 3), the land devoted to crops is increasing.387

Figure 6: Land use changes depending on climate scenarios and GHG pricing levels

GHG emissions and abatement costs.388

. Figure 7 traces the GHG emissions evolution for the three CC scenarios and the various389

GHG taxation levels. GHG emissions are increasing under both CC scenarios, because390

farmers are increasing their nitrogen inputs, and are restricting animal grazing. Figure 7391

shows also that if we take account of the potential LUC due to a GHG tax, the reduction392

in GHG is greater than if we consider the agricultural area as remaining constant. These393

differences are more important for GHG tax levels higher than 50 e/tCO2eq. Compared394

to the results in [30] and [77], in our study we find higher abatement rates for the same395

GHG taxes. For instance, for prices of 20 e/tCO2eq. and 50 e/tCO2eq. we obtain a396

respective reduction in emissions of about 10% and 25% whereas [30] report 6% and 16%397

reductions for France (approximate figures). Also, comparing our results with those from398

the meta-analysis in [77], we find higher abatement rates.399
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Figure 7: National GHG emissions from agriculture when accounting for LUC

These results are summarized in table 3 which shows the double effect of GHG taxation400

on the two already-mentioned dimensions: the extensive and the intensive margins of401

agriculture. The results show that even for high levels of GHG tax, the B1 scenario402

shows an increase in the agricultural area. Tax levels of 50 e/tCO2eq. allow GHG403

emissions to stabilize to current levels. Note that these costs are associated not only with404

a decrease in nitrous oxide and methane emissions but also with a reduction in nitrate405

and ammonia emissions due to the application of mineral and organic fertilizers [13]. In406

general, economic theory suggests that each pollutant should be targeted individually407

depending on its environmental impact. Nevertheless, there might be synergies between408

different environmental objectives.409

The targeted 12% decrease in GHG emissions (French low-carbon strategy, 63) is410

achieved at 30 e/tCO2eq. when accounting for LUC, and at 40 e/tCO2eq. otherwise. In411

the A2 scenario, the 12% cut (compared to the baseline emissions in the CTL scenario)412

is achieved at 90 e/tCO2eq. (with LUC) and at 120 e/tCO2eq. (with no LUC). In the413

B1 scenario, the respective tax levels are 90 e/tCO2eq. and 130 e/tCO2eq. (table 4.414

These figures are close to those announced for the energy sector (e.g. 100 e/tCO2 in415
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2030) and do not account for forest carbon stock which also is affected by GHG taxation.416

In the context of both the current and the projected future climate, internalization of417

the negative externalities from agriculture could have a positive effect on the forest area418

(compared to the no tax scenario). Under current climate conditions, the effect of the419

taxation would be an overall increase in forest land use compared to the baseline case.420

CC has a negative impact on forest land use but this effect is mitigated in part by the421

simulated public policy. Reforestation or non-deforestation is associated to new carbon422

sinks or the maintenance of existing ones. This would allow a further reduction in GHG423

abatement costs. A logical extension to our current work would be integration of the424

GHG emissions resulting from LUCs. A preliminary assessment of the organic carbon425

storage variation due to LUCs indicates a relatively low level of CO2 emissions (about 1%426

of current agricultural emissions).427

20



Variable Description Mean St. dev. Min Max

Land use
sag Share of crops and pastures 0.601 0.289 0 1
sfo Share of forest 0.264 0.225 0 1
sur Share of urban 0.049 0.093 0 1
sfo Share of forest 0.264 0.225 0 1
sur Share of urban 0.049 0.093 0 0.992
sot Share of other uses 0.086 0.173 0 1

Source: CLC 2000
Scale: aggregated at 8 km x 8 km

Shadow price Land shadow price (ke/ha) 0.554 0.218 0 1.11
Source: AROPAj v.2 (2002)
Scale: NUTS 2 and lower

For revenue Forestry revenues (e/ha) 137.683 66.509 28.934 308.043
Source: FFSM++, 2006
Scale: NUTS 2 scale

Pop revenues Households’ revenues (ke/ year/
household)

12.308 3.239 0 41.802

Source: INSEE, 2000
Scale: French commune

Pop density Households density (households/
ha)

5.432 2.274 2.75 58.722

Source: INSEE, 2000
Scale: 200 m x 200 m grid

Slope Slope (%) 4.325 6.155 0 47.721
Source: GTOPO 30
Scale: 30 arc sec ∼ 1 km

Texture Soils’ texture classes 1 2 3 4
Number of cells 1242 4820 3120 579
Source: JRC, [67]
Scale: 1:1000000

Table 1: Summary statistics of land use shares and the explanatory variables
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 2.827∗∗∗ 3.104∗∗∗ −6.269∗∗∗

(0.577) (0.559) (0.515)

Shadow price (spat) 0.757∗∗ −0.457 0.407
(0.297) (0.296) (0.297)

For. revenues 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001)

Pop. density −0.131∗∗∗ −0.145∗∗∗ 0.168∗∗∗

(0.013) (0.014) (0.015)

Pop. Revenues 0.047∗∗∗ 0.062∗∗∗ 0.236∗∗∗

(0.014) (0.014) (0.016)

Slope −0.155∗∗∗ 0.027∗∗ −0.153∗∗∗

(0.012) (0.013) (0.014)

Texture (cl.2) 0.669∗∗∗ 0.315∗∗∗ 0.509∗∗∗

(0.098) (0.100) (0.111)

Texture (cl.3) 1.186∗∗∗ 0.675∗∗∗ 0.898∗∗∗

(0.115) (0.118) (0.129)

Texture (cl.4) 1.780∗∗∗ 0.982∗∗∗ 0.921∗∗∗

(0.159) (0.163) (0.180)

Shadow price (W2) 1.531∗∗ −0.594 0.932
(0.780) (0.762) (0.716)

For. revenues (W2) 0.011∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002)

Pop. density (W1) −0.240∗∗∗ −0.214∗∗∗ −0.166∗∗∗

(0.035) (0.036) (0.037)

Pop. Revenues (W1) −0.011 −0.028 0.096∗∗∗

(0.029) (0.029) (0.029)

Slope (W1) −0.140∗∗∗ −0.118∗∗∗ −0.099∗∗∗

(0.019) (0.019) (0.019)

Texture (cl.2, W1) 0.114 0.209∗∗ 0.344∗∗∗

(0.096) (0.098) (0.106)

Texture (cl.3, W1) 0.130 0.248∗∗∗ 0.202∗∗

(0.094) (0.095) (0.103)

Texture (cl.4, W1) 0.244∗∗ 0.083 0.193∗

(0.105) (0.107) (0.115)

N 9761
R2 0.634 0.443 0.558
Moran’s I (SLX) 0.438∗∗∗ 0.402∗∗∗ 0.343∗∗∗

Moran’s I (residuals) -0.025 -0.025 -0.022
λ 0.759∗∗∗ 0.738∗∗∗ 0.658∗∗∗

Log Lik. -22129.8 -22391.02 -23449.93
AIC 44297.6 44820.04 46937.86
(AIC for LM) 48529.63 48486.51 49561.97

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Estimated coefficients and their statistical significance for the land use model
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Climate change GHG taxation All GHG GHG emissions Utilized agricultural

scenario (e/tCO2eq.) evolution (%) per ha (tCO2eq.) area evolution (%)

CTL 0 100.00 3.453 100.00

20 90.11 3.190 97.54

50 76.41 2.805 94.08

100 63.76 2.478 88.85

A2 0 127.04 4.008 109.47

20 115.18 3.716 107.05

50 98.36 3.277 103.65

100 81.49 2.864 98.26

B1 0 125.80 3.829 113.47

20 115.47 3.583 111.29

50 99.85 3.184 108.30

100 84.89 2.835 103.41

*Utilized agricultural area equals the sum of land devoted to crops and to pastures.

Table 3: Emission abatement, change in agricultural area, and abatement costs

Scenario With LUC Without LUC

CTL 30 e/tCO2eq 40 e/tCO2eq

A2 90 e/tCO2eq 120 e/tCO2eq

B1 90 e/tCO2eq 130 e/tCO2eq

Table 4: Abatement costs (in e/tCO2eq.) allowing 12% decrease in agricultural GHG emissions with or
without accounting for LUC
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5. Conclusion and perspectives428

In the present study, we analyze the impacts of climate change adaptation and a429

mitigation policy on land use changes in France. We used for this purpose two sector-430

specific bio-economic models, AROPAj and FFSM++, and an econometric land use shares431

model. The effects of climate on agriculture and forestry are captured in a generic crop432

model and a statistical model of tree growth and mortality. The results obtained were used433

for an economic modeling of the two sector-specific models. These two models allowed us434

to evaluate the economic land rents from agriculture and forestry. We estimated a spatial435

econometric land use model in which agricultural and forestry rents were approximated by436

the results from the sector-specific models. We studied four land use classes: i) agriculture;437

ii) forest; iii) urban; and iv) other uses. Our land use shares model accounts for spatial438

autocorrelation thanks to the spatial Durbin error model specification. We simulated two439

CC scenarios and GHG taxation levels (from 0 to 200 e/tCO2eq.) aimed at reducing the440

GHG emissions from agriculture.441

The results of our study show that both CC scenarios (A2 and B1) lead to an increase442

in the agricultural area at the expense of forests. The progression is slower in the A2443

compared to the B1 CC scenario. The simulated taxation schemes addressing GHG444

decrease farmers’ profits, and thus curtail some agricultural expansion. This process could445

reduce the abatement costs associated to public policy. The imposition of GHG taxation446

under CC leads to farmers reducing their input use (intensive margin of agriculture)447

but to a lesser extent converting forest and pasture land to agriculture. This behavior is448

compatible with the agroecological measures aimed at cutting the sector’s GHG emissions.449

In addition, some potentially“win-win”measures (such as the“4 per 1000”program) could450

increase abatement rates, and improve soil quality, and thus agricultural productivity.451

Our results show that the targeted emissions cut for French agriculture is achievable452

at a tax level close to the carbon price associated to energy CO2 emissions (100 e/tCO2).453

Furthermore, when the possible agricultural land use feedback of the policy is taken into454

account, tax levels are lower. A necessary extension of our current work is to assess CO2455

emissions and carbon sinks related to the evolution of forests. Taking account of these456
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effects of public policy could reduce abatement costs further.457
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[12] Boé, J., Terray, L., Martin, E., Habets, F., aug 2009. Projected changes in compo-511

nents of the hydrological cycle in French river basins during the 21st century. Water512

Resources Research 45 (8).513

URL http://doi.wiley.com/10.1029/2008WR007437514

[13] Bourgeois, C., Fradj, N. B., Jayet, P.-A., oct 2014. How Cost-Effective is a Mixed515

Policy Targeting the Management of Three Agricultural N-pollutants? Environmen-516

tal Modeling & Assessment 19 (5), 389–405.517

URL http://link.springer.com/10.1007/s10666-014-9401-y518

[14] Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D.,519

Sierra, J., Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y., Cellier, P., Debaeke,520

P., Gaudillère, J., Hénault, C., Maraux, F., Seguin, B., Sinoquet, H., Jan. 2003.521

An overview of the crop model STICS. European Journal of Agronomy 18 (3-4),522

309–332.523

URL http://www.sciencedirect.com/science/article/pii/524

S1161030102001107525

[15] Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2009. Conceptual Basis, Formali-526

sations and Parameterization of the STICS Crop Model. QUAE.527
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prend en compte les enjeux forestiers dans la lutte contre le changement climatique.537

INRA Sciences Sociales 4.538

URL http://purl.umn.edu/149688539

[19] Caurla, S., Delacote, P., Lecocq, F., Barthès, J., Barkaoui, A., Dec. 2013. Combining540

an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the french541

forest sector. Journal of Forest Economics 19 (4), 450–461.542

URL http://www.sciencedirect.com/science/article/pii/543

S1104689913000445544

[20] Center for International Earth Science Information Network, 2002. Country-level545

Population and Downscaled Projections based on the A1, B1, A2 and B2 Sce-546

narios, 1990-2100, [digital version]. http://www.ciesin.columbia.edu/datasets/547

downscaled.548

27

http://doi.wiley.com/10.1029/2008WR007437
http://link.springer.com/10.1007/s10666-014-9401-y
http://www.sciencedirect.com/science/article/pii/S1161030102001107
http://www.sciencedirect.com/science/article/pii/S1161030102001107
http://www.sciencedirect.com/science/article/pii/S1161030102001107
http://www.sciencedirect.com/science/article/pii/S0264837711000433
http://www.sciencedirect.com/science/article/pii/S0264837711000433
http://www.sciencedirect.com/science/article/pii/S0264837711000433
http://linkinghub.elsevier.com/retrieve/pii/009411909090050W
http://purl.umn.edu/149688
http://www.sciencedirect.com/science/article/pii/S1104689913000445
http://www.sciencedirect.com/science/article/pii/S1104689913000445
http://www.sciencedirect.com/science/article/pii/S1104689913000445
http://www.ciesin.columbia.edu/datasets/downscaled
http://www.ciesin.columbia.edu/datasets/downscaled
http://www.ciesin.columbia.edu/datasets/downscaled


[21] Chakir, R., Jan. 2009. Spatial downscaling of agricultural land-use data: An econo-549

metric approach using cross entropy. Land Economics 85 (2), 238–251.550

[22] Chakir, R., Le Gallo, J., 2013. Predicting land use allocation in France: A spatial551

panel data analysis. Ecological Economics 92 (0), 114–125.552

[23] Chakir, R., Lungarska, A., 2017. Agricultural rent in land-use models: comparison553

of frequently used proxies. Spatial Economic Analysis 0 (0), 1–25.554

URL http://dx.doi.org/10.1080/17421772.2017.1273542555

[24] Chakir, R., Parent, O., 06 2009. Determinants of land use changes: A spatial multi-556

nomial probit approach. Papers in Regional Science 88 (2), 327–344.557

[25] Chambers, R. G., Just, R. E., nov 1989. Estimating Multioutput Technologies. Amer-558

ican Journal of Agricultural Economics 71 (4), 980.559

URL https://academic.oup.com/ajae/article-lookup/doi/10.2307/1242674560

[26] Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung, B.,561
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Appendix A Data761

A.1 Climate data762

Dec-Jan-Feb Jun-Jul-Aug Period

Variable Units Mean STDDEV Mean STDDEV Mean STDDEV

B1 precipitation mm/y -164 330 -94 181 -138 126

B1 temperature ◦ C 1.60 1.46 1.11 0.59 1.57 0.48

A2 precipitation mm/y -175 328 -112 202 -209 113

A2 temperature ◦ C 3.18 1.26 3.52 0.78 3.44 0.51

Table 5: Mean and standard deviation for the anomalies in precipitations and temperature for 2081-2100
vs 1961-1990 (ARPEGE model)

34



Figure 8: Climate change projections for the A2 and B1 scenarios (ECHAM5 model), source [47]
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A.2 Land use classification763

Land Cover class CLC value LU class

1 Artificial Surfaces 1, ..., 11 Urban

2 Agricultural Areas 12, ..., 22 Agriculture

3.1 Forests 23, ..., 25 Forest

3.2 Shrub and/or herbaceous vegetation associations 26, ..., 29 Other

3.3 Open spaces with little or no vegetation 30, ..., 34 Other

4 Wetlands 35, ..., 39 Other

5 Water bodies 40, ..., 44 Other

Table 6: Extract from the CLC classification and the corresponding LU aggregation
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Appendix B Predicted land use shares764

Figure 9: Land use depending on the tax level and climate scenario CTL
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Figure 10: Land use depending on the tax level and climate change scenario A2

Figure 11: Land use depending on the tax level and climate change scenario B1
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Appendix C Comparison of neighborhood matrices765

Following the discussion on neighborhood weight matrices in the spatial econometrics766

literature [e.g. 27, 50, 68], we tested three neighborhood matrices for the grid cells (1st,767

2nd, and 3rd order neighbors) and two neighborhood matrices for the regions (1st and 2nd768

order neighbors). The results of these five neighborhood matrices combinations show that769

we can stick to the 1st order grid and regional matrices. In terms of explanatory power,770

only one of the alternative matrices specifications leads to better results (higher R2 and771

log likelihood, lower Akaike information criterion). However, since our main interest772

is in estimating an econometric model to allow predictions, we consider the estimated773

coefficients to be more intuitive under the 1st order neighborhood matrices.774
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 2.827∗∗∗ 3.104∗∗∗ −6.269∗∗∗

(0.577) (0.559) (0.515)

Shadow price (spat) 0.757∗∗ −0.457 0.407

(0.297) (0.296) (0.297)

For. revenues 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001)

Pop. density −0.131∗∗∗ −0.145∗∗∗ 0.168∗∗∗

(0.013) (0.014) (0.015)

Pop. Revenues 0.047∗∗∗ 0.062∗∗∗ 0.236∗∗∗

(0.014) (0.014) (0.016)

Slope −0.155∗∗∗ 0.027∗∗ −0.153∗∗∗

(0.012) (0.013) (0.014)

Texture (cl.2) 0.669∗∗∗ 0.315∗∗∗ 0.509∗∗∗

(0.098) (0.100) (0.111)

Texture (cl.3) 1.186∗∗∗ 0.675∗∗∗ 0.898∗∗∗

(0.115) (0.118) (0.129)

Texture (cl.4) 1.780∗∗∗ 0.982∗∗∗ 0.921∗∗∗

(0.159) (0.163) (0.180)

Shadow price (W2) 1.531∗∗ −0.594 0.932

(0.780) (0.762) (0.716)

For. revenues (W2) 0.011∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002)

Pop. density (W1) −0.240∗∗∗ −0.214∗∗∗ −0.166∗∗∗

(0.035) (0.036) (0.037)

Pop. Revenues (W1) −0.011 −0.028 0.096∗∗∗

(0.029) (0.029) (0.029)

Slope (W1) −0.140∗∗∗ −0.118∗∗∗ −0.099∗∗∗

(0.019) (0.019) (0.019)

Texture (cl.2, W1) 0.114 0.209∗∗ 0.344∗∗∗

(0.096) (0.098) (0.106)

Texture (cl.3, W1) 0.130 0.248∗∗∗ 0.202∗∗

(0.094) (0.095) (0.103)

Texture (cl.4, W1) 0.244∗∗ 0.083 0.193∗

(0.105) (0.107) (0.115)

N 9761

R2 0.634 0.443 0.558

Moran’s I (SLX) 0.438∗∗∗ 0.402∗∗∗ 0.343∗∗∗

Moran’s I (residuals) -0.025 -0.025 -0.022

λ 0.759∗∗∗ 0.738∗∗∗ 0.658∗∗∗

Log Lik. -22129.8 -22391.02 -23449.93

AIC 44297.6 44820.04 46937.86

(AIC for LM) 48529.63 48486.51 49561.97

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Spatialized dual value, 4 LU, 1st order W1 and W2
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 4.532∗∗∗ 4.620∗∗∗ −4.726∗∗∗

(0.859) (0.855) (0.782)

Shadow price (spat) 1.213∗∗∗ 0.160 1.412∗∗∗

(0.325) (0.329) (0.339)

For. revenues 0.002 0.001 0.002

(0.001) (0.001) (0.001)

Pop. density −0.147∗∗∗ −0.162∗∗∗ 0.162∗∗∗

(0.013) (0.013) (0.015)

Pop. Revenues 0.028∗∗ 0.037∗∗∗ 0.261∗∗∗

(0.013) (0.013) (0.015)

Slope −0.177∗∗∗ 0.026∗∗ −0.171∗∗∗

(0.012) (0.012) (0.013)

Texture (cl.2) 0.621∗∗∗ 0.228∗∗ 0.493∗∗∗

(0.098) (0.100) (0.110)

Texture (cl.3) 1.172∗∗∗ 0.593∗∗∗ 0.884∗∗∗

(0.114) (0.116) (0.127)

Texture (cl.4) 1.908∗∗∗ 0.841∗∗∗ 0.948∗∗∗

(0.156) (0.159) (0.174)

Shadow price (W2) 0.602 −0.302 0.841

(0.971) (0.975) (0.943)

For. revenues (W2) 0.009∗∗∗ 0.005∗∗ 0.008∗∗∗

(0.002) (0.002) (0.002)

Pop. density (W1) −0.258∗∗∗ −0.238∗∗∗ −0.152∗∗

(0.061) (0.062) (0.064)

Pop. Revenues (W1) −0.051 −0.085∗ −0.014

(0.045) (0.045) (0.044)

Slope (W1) −0.145∗∗∗ −0.132∗∗∗ −0.106∗∗∗

(0.027) (0.026) (0.025)

Texture (cl.2, W1) −0.005 0.062 −0.120

(0.159) (0.162) (0.176)

Texture (cl.3, W1) 0.336∗∗∗ 0.281∗∗ 0.252∗

(0.123) (0.125) (0.134)

Texture (cl.4, W1) −0.158 0.019 0.009

(0.104) (0.105) (0.113)

N 9761

R2 0.612 0.417 0.547

Moran’s I (SLX) 0.321∗∗∗ 0.293∗∗∗ 0.252∗∗∗

Moran’s I (residuals) -0.011 -0.011 -0.013

λ 0.866∗∗∗ 0.859∗∗∗ 0.8∗∗∗

Log Lik. -22422.31 -22614.29 -23568.33

AIC 44882.62 45266.59 47174.66

(AIC for LM) 48403.87 48377.97 49542.09

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Spatialized dual value, 4 LU, 2nd order W1, 1st order W2
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 4.838∗∗∗ 5.150∗∗∗ −3.683∗∗∗

(1.067) (1.070) (1.033)

Shadow price (spat) 1.434∗∗∗ 0.255 1.798∗∗∗

(0.326) (0.331) (0.349)

For. revenues 0.0004 −0.001 0.001

(0.001) (0.001) (0.001)

Pop. density −0.159∗∗∗ −0.177∗∗∗ 0.155∗∗∗

(0.013) (0.013) (0.014)

Pop. Revenues 0.001 0.005 0.247∗∗∗

(0.012) (0.012) (0.014)

Slope −0.202∗∗∗ 0.012 −0.190∗∗∗

(0.011) (0.011) (0.012)

Texture (cl.2) 0.688∗∗∗ 0.219∗∗ 0.549∗∗∗

(0.096) (0.098) (0.107)

Texture (cl.3) 1.251∗∗∗ 0.574∗∗∗ 0.925∗∗∗

(0.111) (0.113) (0.123)

Texture (cl.4) 1.994∗∗∗ 0.728∗∗∗ 0.945∗∗∗

(0.152) (0.155) (0.169)

Shadow price (W2) −0.941 −1.112 0.161

(1.014) (1.025) (1.048)

For. revenues (W2) 0.007∗∗∗ 0.003 0.006∗∗

(0.002) (0.002) (0.002)

Pop. density (W1) −0.263∗∗∗ −0.401∗∗∗ −0.177∗∗

(0.085) (0.086) (0.089)

Pop. Revenues (W1) −0.001 0.010 −0.022

(0.057) (0.058) (0.058)

Slope (W1) −0.109∗∗∗ −0.115∗∗∗ −0.089∗∗∗

(0.033) (0.033) (0.032)

Texture (cl.2, W1) −0.020 0.094 −0.327

(0.268) (0.272) (0.295)

Texture (cl.3, W1) 0.559∗∗∗ 0.442∗∗∗ 0.330∗∗

(0.136) (0.138) (0.149)

Texture (cl.4, W1) 0.015 0.072 0.121

(0.099) (0.101) (0.109)

N 9761

R2 0.595 0.395 0.539

Moran’s I (SLX) 0.255∗∗∗ 0.229∗∗∗ 0.204∗∗∗

Moran’s I (residuals) -0.001 -0.003 -0.004

λ 0.924∗∗∗ 0.92∗∗∗ 0.881∗∗∗

Log Lik. -22630.84 -22796.76 -23663.21

AIC 45299.68 45631.51 47364.42

(AIC for LM) 48276.51 48256.34 49496.53

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Spatialized dual value, 4 LU, 3rd order W1, 1st order W2
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 1.523∗∗ 1.498∗∗ −6.202∗∗∗

(0.741) (0.709) (0.645)

Shadow price (spat) 0.637∗∗ −0.618∗ −0.185

(0.322) (0.320) (0.321)

For. revenues 0.003∗∗∗ 0.003∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Pop. density −0.131∗∗∗ −0.145∗∗∗ 0.166∗∗∗

(0.013) (0.014) (0.015)

Pop. Revenues 0.047∗∗∗ 0.062∗∗∗ 0.236∗∗∗

(0.014) (0.014) (0.016)

Slope −0.156∗∗∗ 0.026∗∗ −0.154∗∗∗

(0.012) (0.013) (0.014)

Texture (cl.2) 0.668∗∗∗ 0.303∗∗∗ 0.514∗∗∗

(0.098) (0.100) (0.110)

Texture (cl.3) 1.187∗∗∗ 0.659∗∗∗ 0.906∗∗∗

(0.115) (0.118) (0.129)

Texture (cl.4) 1.776∗∗∗ 0.971∗∗∗ 0.920∗∗∗

(0.159) (0.163) (0.179)

Shadow price (W2) 1.373 0.486 −3.517∗∗∗

(1.342) (1.299) (1.211)

For. revenues (W2) 0.022∗∗∗ 0.018∗∗∗ 0.030∗∗∗

(0.004) (0.004) (0.004)

Pop. density (W1) −0.239∗∗∗ −0.218∗∗∗ −0.172∗∗∗

(0.035) (0.036) (0.037)

Pop. Revenues (W1) −0.014 −0.035 0.093∗∗∗

(0.029) (0.029) (0.029)

Slope (W1) −0.139∗∗∗ −0.114∗∗∗ −0.094∗∗∗

(0.019) (0.019) (0.019)

Texture (cl.2, W1) 0.121 0.213∗∗ 0.363∗∗∗

(0.096) (0.098) (0.106)

Texture (cl.3, W1) 0.130 0.240∗∗ 0.209∗∗

(0.094) (0.095) (0.102)

Texture (cl.4, W1) 0.229∗∗ 0.087 0.163

(0.105) (0.107) (0.114)

N 9761

R2 0.635 0.444 0.559

Moran’s I (SLX) 0.435∗∗∗ 0.398∗∗∗ 0.334∗∗∗

Moran’s I (residuals) -0.025 -0.025 -0.021

λ 0.76∗∗∗ 0.735∗∗∗ 0.654∗∗∗

Log Lik. -22128.61 -22386.48 -23442.59

AIC 44295.21 44810.97 46923.17

(AIC for LM) 48505.82 48424.26 49454.49

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Spatialized dual value, 4 LU, 1st order W1, 2nd order W2

43



Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 2.079∗ 2.708∗∗ −5.766∗∗∗

(1.141) (1.117) (1.004)

Shadow price (spat) 1.344∗∗∗ 0.177 1.214∗∗∗

(0.353) (0.356) (0.369)

For. revenues 0.001 0.0002 0.001

(0.001) (0.001) (0.001)

Pop. density −0.147∗∗∗ −0.162∗∗∗ 0.162∗∗∗

(0.013) (0.013) (0.015)

Pop. Revenues 0.028∗∗ 0.037∗∗∗ 0.262∗∗∗

(0.013) (0.013) (0.015)

Slope −0.177∗∗∗ 0.025∗∗ −0.172∗∗∗

(0.012) (0.012) (0.013)

Texture (cl.2) 0.615∗∗∗ 0.224∗∗ 0.494∗∗∗

(0.098) (0.100) (0.109)

Texture (cl.3) 1.165∗∗∗ 0.587∗∗∗ 0.886∗∗∗

(0.114) (0.116) (0.127)

Texture (cl.4) 1.901∗∗∗ 0.835∗∗∗ 0.950∗∗∗

(0.156) (0.159) (0.174)

Shadow price (W2) 3.843∗∗ 1.514 0.137

(1.695) (1.688) (1.630)

For. revenues (W2) 0.015∗∗∗ 0.013∗∗ 0.020∗∗∗

(0.005) (0.005) (0.005)

Pop. density (W1) −0.256∗∗∗ −0.240∗∗∗ −0.153∗∗

(0.061) (0.062) (0.064)

Pop. Revenues (W1) −0.056 −0.090∗∗ −0.020

(0.045) (0.045) (0.044)

Slope (W1) −0.144∗∗∗ −0.128∗∗∗ −0.102∗∗∗

(0.027) (0.026) (0.025)

Texture (cl.2, W1) 0.001 0.070 −0.105

(0.159) (0.162) (0.176)

Texture (cl.3, W1) 0.335∗∗∗ 0.275∗∗ 0.248∗

(0.123) (0.125) (0.134)

Texture (cl.4, W1) −0.160 0.019 −0.004

(0.104) (0.105) (0.113)

N 9761

R2 0.612 0.417 0.548

Moran’s I (SLX) 0.319∗∗∗ 0.29∗∗∗ 0.241∗∗∗

Moran’s I (residuals) -0.011 -0.011 -0.013

λ 0.867∗∗∗ 0.856∗∗∗ 0.799∗∗∗

Log Lik. -22420.77 -22612.43 -23566.6

AIC 44879.54 45262.86 47171.2

(AIC for LM) 48381.11 48328.99 49426.38

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Spatialized dual value, 4 LU, 2nd order W1, 2nd order W2
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Dependent variable:

ln((agr+pst)/oth) ln(for/oth) ln(urb/oth)

(1) (2) (3)

Constant 2.263 3.976∗∗∗ −5.350∗∗∗

(1.434) (1.432) (1.357)

Shadow price (spat) 1.618∗∗∗ 0.220 1.809∗∗∗

(0.357) (0.362) (0.382)

For. revenues −0.0005 −0.001 0.0001

(0.001) (0.001) (0.001)

Pop. density −0.160∗∗∗ −0.177∗∗∗ 0.155∗∗∗

(0.013) (0.013) (0.014)

Pop. Revenues 0.0005 0.005 0.247∗∗∗

(0.012) (0.012) (0.014)

Slope −0.202∗∗∗ 0.012 −0.191∗∗∗

(0.011) (0.011) (0.012)

Texture (cl.2) 0.680∗∗∗ 0.216∗∗ 0.548∗∗∗

(0.096) (0.098) (0.107)

Texture (cl.3) 1.241∗∗∗ 0.571∗∗∗ 0.921∗∗∗

(0.111) (0.113) (0.123)

Texture (cl.4) 1.983∗∗∗ 0.725∗∗∗ 0.943∗∗∗

(0.152) (0.155) (0.169)

Shadow price (W2) 2.935 −0.335 1.488

(1.820) (1.836) (1.863)

For. revenues (W2) 0.011∗ 0.009 0.013∗∗

(0.006) (0.006) (0.006)

Pop. density (W1) −0.262∗∗∗ −0.401∗∗∗ −0.176∗∗

(0.085) (0.086) (0.089)

Pop. Revenues (W1) −0.001 0.010 −0.026

(0.057) (0.058) (0.058)

Slope (W1) −0.108∗∗∗ −0.113∗∗∗ −0.086∗∗∗

(0.033) (0.033) (0.032)

Texture (cl.2, W1) −0.013 0.101 −0.320

(0.268) (0.272) (0.295)

Texture (cl.3, W1) 0.566∗∗∗ 0.441∗∗∗ 0.327∗∗

(0.136) (0.138) (0.149)

Texture (cl.4, W1) 0.020 0.076 0.122

(0.099) (0.101) (0.108)

N 9761

R2 0.595 0.395 0.539

Moran’s I (SLX) 0.255∗∗∗ 0.227∗∗∗ 0.192∗∗∗

Moran’s I (residuals) -0.001 -0.003 -0.004

λ 0.922∗∗∗ 0.918∗∗∗ 0.88∗∗∗

Log Lik. -22632.02 -22797.22 -23662.29

AIC 45302.05 45632.44 47362.59

(AIC for LM) 48278.04 48217.85 49386.96

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: Spatialized dual value, 4 LU, 3rd order W1, 2nd order W2
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