

Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing

Julien Chamberland, Thomas Messier, Eric Dugat-Bony, Marie-Helene

Lessard, Steve Labrie, Alain Doyen, Yves Pouliot

▶ To cite this version:

Julien Chamberland, Thomas Messier, Eric Dugat-Bony, Marie-Helene Lessard, Steve Labrie, et al.. Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing. International Dairy Journal, 2019, 93, pp.99-105. 10.1016/j.idairyj.2019.02.005 . hal-02629063

HAL Id: hal-02629063 https://hal.inrae.fr/hal-02629063

Submitted on 29 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Accepted Manuscript

Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing

Julien Chamberland, Thomas Messier, Eric Dugat-Bony, Marie-Hélène Lessard, Steve Labrie, Alain Doyen, Yves Pouliot

PII: S0958-6946(19)30045-7

DOI: https://doi.org/10.1016/j.idairyj.2019.02.005

Reference: INDA 4459

To appear in: International Dairy Journal

Received Date: 8 January 2019

Revised Date: 18 February 2019

Accepted Date: 19 February 2019

Please cite this article as: Chamberland, J., Messier, T., Dugat-Bony, E., Lessard, M.-H., Labrie, S., Doyen, A., Pouliot, Y., Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing, *International Dairy Journal*, https://doi.org/10.1016/j.idairyj.2019.02.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Influence of feed temperature to biofouling of ultrafiltration membrane during
2	skim milk processing
3	
4	
5	
6	Julien Chamberland ^a *, Thomas Messier ^a , Eric Dugat-Bony ^b , Marie-Hélène Lessard ^a ,
7	Steve Labrie ^a , Alain Doyen ^a , Yves Pouliot ^a
8	
9	
10	
11	
12	^a STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF),
13	Department of Food Science, Université Laval, Québec, Canada G1V 0A6
14	^b UMR Génie et Microbiologie des Procédés Alimentaires, GMPA, AgroParisTech,
15	INRA, Université Paris-Saclay, 78850 Thiverval-Grignon, France
16	
17	
18	
19	
20	<i>Y</i>
21	* Corresponding author. Tel.:
22	E-mail address: julien.chamberland.1@ulaval.ca (J. Chamberland)
23	

24

25 ABSTRACT

27	The temperature of the feed is known to be an important factor affecting the formation
28	and the growth rates of bacterial communities on dairy filtration membranes. However,
29	decades after the integration of filtration processes in the dairy industry, there is still
30	questioning whether filtration should be performed at cold (< 15 °C) or hot (> 48 °C)
31	temperature. A biofilm reactor designed to mimic a filtration system was used to
32	provide answers to this question. Bacteria adhering and growing on ultrafiltration
33	membranes in contact with pasteurised skim milk were characterised at 15 $^{\circ}\mathrm{C}$ and 50 $^{\circ}\mathrm{C}$
34	through a metabarcoding approach. Our results suggested that the processing time
35	should be limited to 10 h at 50 $^{\circ}$ C to avoid the exponential growth of thermophilic
36	spore-former bacteria, while the use of 15 °C combined with daily cleaning procedures
37	appeared the best way to retard the formation of biofilms on membranes.
38	
39	
40	

41 **1.** Introduction

42

43 Biofilm formation is generally undesirable in the food industry, because it 44 represents a potential source of microbial contamination and spoilage enzymes affecting 45 food quality (Teh et al., 2014), and affect processing efficiency (Seale, Bremer, Flint, Brooks, & Palmer, 2015a). In the dairy industry, processing equipment such as filtration 46 47 systems are used in a continuous mode for extended operation times (> 20 h). These 48 conditions are particularly susceptible to biofilm formation (Anand, Singh, Avadhanula, 49 & Marka, 2014). Indeed, the filtration environment is steady (which is essential for 50 biofilm formation, even in the presence of turbulence), offers a constant supply of 51 nutrients (proteins, sugars and minerals) and is at a temperature suitable for microbial 52 growth (between 10 °C and 50 °C) (Tang, Flint, Bennett, Brooks, & Zain, 2015). 53 Filtration membranes are further susceptible to biofilm formation since mechanical 54 cleaning is not possible in this closed environment and the constant convective flow 55 through the membrane, due to transmembrane pressure, may facilitate bacterial 56 adhesion to the membrane surface (Choi, Zhang, Dionysiou, Oerther, & Sorial, 2005; 57 Ridgway et al., 1999; Simões, Simões, & Vieira, 2010). 58 The main strategy used to control biofouling in the dairy industry is to clean 59 membranes daily with a clean-in-place (CIP) system, circulating acid and alkaline solutions at the membrane surface following a filtration time of up to 24 h (Anand et al., 60 61 2014; Berg et al., 2014). This cleaning process restores the membrane permeation flux 62 (Trägårdh, 1989). However, traditional CIP may not remove or kill bacteria cells 63 adhered on stainless steel or filtration membrane surfaces (Bénézech & Faille, 2018; 64 İpek & Zorba, 2018; Marka & Anand, 2017), even with optimised CIP protocols

65 (Kumari & Sarkar, 2014). At the laboratory scale, innovative biofilm removal or control

66	strategies dedicated to the membrane separation industry have been suggested: the use
67	of ozonised water (Henderson et al., 2016), surfactants (Hijnen et al., 2012) or specific
68	enzymes (Khan et al., 2014; Tang, Flint, Bennett, & Brooks, 2010), quorum quenchers
69	(Yeon et al., 2009), quorum quenching bacteria (Kampouris et al., 2018; Oh et al.,
70	2017) or bioengineered biofilms (Wood et al., 2016). The use of specific enzymes is
71	actually recommended in the industry to control short-term issues related to biofouling,
72	but are still inefficient in a long-term purposes (Simões et al., 2010).
73	The complete removal of biofilms from filtration membranes may not be
74	possible (Bucs et al., 2018; Simões et al., 2010). Instead of eradicating them from
75	filtration systems, it appears more realistic to delay biofilm formation (Bucs et al.,
76	2018), or to reduce their negative impact through the selection of operational parameters
77	that limit the growth of problematic bacteria such as those that are thermoresistant.
78	Recently, the chemistry of the membrane material was found to affect the persistence of
79	a problematic spore-former (Bacillus sp.) on filtration membranes following whey
80	ultrafiltration (UF) (Chamberland et al., 2017a). Lowering the temperature of the feed
81	also appears a good strategy since it reduced the incidence of biofouling on reverse
82	osmosis membranes in the desalination industry (Farhat, Vrouwenvelder, Van
83	Loosdrecht, Bucs, & Staal, 2016), and the adhesion of Streptococcus sp. on PES
84	membranes during milk or whey UF (Chamberland, Lessard, Doyen, Labrie, & Pouliot,
85	2017b).
86	Two common feed temperatures are used during UF of dairy fluids. Although
07	

higher feed temperatures (i.e., 50 °C) provide higher permeation fluxes (Méthot-Hains
et al., 2016; St-Gelais, Haché, & Gros-Louis, 1992; Yan, Hill, & Amundson, 1979),
better microbial quality of the retentate is expected when filtration is performed at a
colder temperature (< 20 °C) due to a lower number of bacteria in it (Kapsimalis & Zall,

91	1981; Maubois & Mocquot, 1975; Pompei, Resmini, & Peri, 1973). However, when
92	filtering fluids with fat or concentrating milk at a high concentration factor, a higher
93	feed temperature is required to reduce the viscosity of the feed, even if the growth of
94	thermophilic bacteria can occur (Maubois & Mocquot, 1975; Seale et al., 2015b).
95	Consequently, this study was needed to document the composition of bacterial
96	community forming on dairy filtration membranes at different time points and
97	temperatures. It permitted to assess if the formation of biofilm on membranes is
98	possible in a single processing day at cold temperature (15 $^{\circ}$ C), and to determine a safe
99	processing time at hot temperature (50 $^{\circ}$ C) to avoid the exponential growth phase of
100	bacteria adhering on membranes in contact with pasteurised milk. Bacteria were
101	characterised by a metabarcoding approach and quantified by real-time PCR (qPCR),
102	from membranes sampled in a biofilm reactor designed to mimic a filtration system.
103	
104	2. Material and methods
105	
106	2.1. Milk source
107	
107	
108	A different batch lot of raw milk (temperature < 4 °C, pH between 6.65–6.75)
109	was obtained from a local dairy prior each experiment. Milk was skimmed ($< 0.01\%$
110	fat) and pasteurised (75 °C for 16 s) as previously described (Chamberland et al.,
111	2017b). The pasteurised milk was directly collected in a sterilised 20 L feed tank (Cole-
112	Parmer, Montreal, QC, Canada) called the milk tank, and was stored at 4 °C. The time
113	between the pasteurisation and the beginning of each experiment was 12 h or less.
114	

115 2.2. Biofilm reactor assembly and operation

116

117	A biofilm reactor (CBR 90, BioSurfaces technologies corporation, Bozeman,		
118	MN, USA) that mimics the filtration environment was used to study the attachment of		
119	bacteria on 10 kDa polyethersulfone (PES) UF membranes (ST membrane, Synder,		
120	Vacaville, CA, USA) (Fig. 1). Membrane coupons measuring 6 cm^2 were fixed on eight		
121	membrane holders, between the holders and the restraining frames specifically designed		
122	for the biofilm reactor. The eight holders are placed in such a way in the bioreactor that		
123	the flow condition is identical for each membrane (Fig. 1B). The milk tank was always		
124	maintained at 4 °C in an incubator (MIR-153, Sanyo, Osaka, Japan) throughout the		
125	biofilm development experiments (Fig. 1). A peristaltic pump (Masterflex, Model		
126	7518-00, Barnant Company, Barrington, IL, USA) continuously transferred milk from		
127	the milk tank to the biofilm reactor through silicone tubing (Tubing M-Flex L/S 16,		
128	Cole-Parmer, Montreal, Canada) at a constant flow rate of 0.25 mL s ⁻¹ (flow rate value		
129	between those of Bremer, Fillery, and McQuillan (2006) and Dufour, Simmonds, and		
130	Bremer (2004)). The stirring rate inside the reactor was 180 rpm, as described by Tang		
131	et al. (2009), to generate a flow regime considered as turbulent according to		
132	Buckingham-Meyer, Goeres, and Hamilton (2007).		
133	The biofilm formation experiments were performed at 15 $^{\circ}$ C and 50 $^{\circ}$ C. The		
134	reactor was maintained at 15 \pm 1 °C by a cold water bath or at 50 \pm 1 °C by a stirring		
135	hot plate (Troemner, LLC; Thorofare, NJ, USA) connected with a sterile temperature		
136	sensor inside the biofilm reactor. Experiments were performed in triplicate $(n = 3)$ for		
137	each temperature condition.		
138	Efforts were made to mimic as much as possible the filtration system		

139 environment by operating the biofilm reactor in the continuous mode, at representative

140	operating temperatures, with the highest level of turbulence possible, and with			
141	pasteurised milk having its natural microflora (thermoresistant bacteria and			
142	environmental contaminants). However, the turbulent flow regime and shear stress at			
143	membrane's surface in a filtration system could not be reproduced using the bioreactor.			
144				
145	2.3. Bioreactor preparation			
146				
147	Prior to each experiment, the biofilm reactor and its different parts (tanks and			
148	tubing) were autoclaved at 121 °C for 15 min. Membrane coupons were then fixed			
149	aseptically on the membrane holders and a conventional CIP of the system			
150	(conditioning step) was performed as recommended by the membrane manufacturer.			
151	Briefly, the CIP procedure consisted of alkaline (pH 10.5), acid (pH 2.0) and			
152	chlorinated alkaline (pH 10.5, 150 ppm of free chlorine) cleaning steps, executed			
153	consecutively. Cleaning solutions were prepared with commercial chemicals:			
154	Membra-base 210 (Sani-Marc, Victoriaville, QC, Canada), Ultrasil 75 (Ecolab, Saint			
155	Paul, MN, USA) and Chloreco (Sani-Marc). Each cleaning step was performed for			
156	30 min at 50 °C. A rinsing step with deionised water at 50 °C preceded and followed			
157	each individual step of the CIP. The stirring rate of 180 rpm was maintained in the			
158	biofilm reactor during the cleaning procedure. A cleaning step under the same			
159	conditions was also performed at the end of each experiment.			
160				
161	2.4. Membrane and milk sampling			
162				
163	During experiments performed at 15 °C, membranes were collected with a			
164	sterile scalpel after the membrane conditioning step (0 h), after 20 h, 24 h, 28 h, 32 h,			

165	36 h, 48 h and after the final cleaning step at the end of the experiment. Considering the
166	shorter development time of bacteria at warmer temperatures, the membranes were
167	collected in shorter intervals of time at 50 °C: after the membrane conditioning step,
168	after 7.5 h, 10 h, 12.5 h, 15 h, 20 h and after the last cleaning step. Prior to being stored
169	at -80 °C until DNA extraction, membranes were gently rinsed in a sterile phosphate
170	buffered saline (PBS) solution (pH 7.4) to remove planktonic bacteria from membranes
171	(Anand, Hassan, & Avadhanula, 2012).
172	Milk inside the biofilm reactor was sampled at the same time points as the
173	membranes. For each sampling time, three samples of 2 mL were pelleted and stored at
174	-80 °C until DNA extraction.
175	
176	2.5. Targeted genomic analysis of the bioreactor microbiome
177	
178	2.5.1. Genomic DNA extraction
179	For both temperature conditions, genomic DNA, which contains DNA from
180	dead and viable cells, was extracted in duplicate from the milk and the membrane
181	samples as described previously (Chamberland, Lessard, Doyen, Labrie, & Pouliot,
182	2017c), except that sodium acetate (pH 5.2) at a final concentration of 0.3 M was used to
183	precipitate the DNA (Sambrook & Russell, 2001).

184

185 2.5.2. High-throughput sequencing and bioinformatics

Amplicon sequencing targeting the V6-V8 region of the 16S ribosomal RNA (rRNA) gene was performed on a Miseq sequencer at the Institut de Biologie Intégrative et des Systèmes (Université Laval, Québec, QC, Canada). Two replicates for each temperature condition were used for the sequencing step. Raw demultiplexed paired-end

190	reads of each replicate were deposited in the GenBank database under the accession
191	number SRP140914 (first replicate, 3,285,298 raw demultiplexed reads) and
192	SRP150623 (second replicate, 3,169,154 raw demultiplexed reads). The computations
193	of the reads of each replicate were processed separately, as previously described
194	(Chamberland et al., 2017a), with the modifications described next. Computations were
195	done with the pipeline FROGS from the Galaxy portal of the INRA MIGALE
196	Bioinformatics platform (Jouy-en-Josas Cedex, France; Escudié et al., 2017; Goecks et
197	al., 2010). Following reads preprocessing (quality filter, read trimming and read
198	assembly), contiged reads were clustered with the Swarm clustering method using the
199	denoising clustering step and the suggested aggregation distance of 3 (Mahé, Rognes,
200	Quince, de Vargas, & Dunthorn, 2014). A first chimera filter was performed with
201	VSEARCH (Rognes, Flouri, Nichols, Quince, & Mahé, 2016). Operational taxonomic
202	units (OTU) with abundance lower than 0.005% were removed (Bokulich et al., 2013).
203	The SILVA database (release 132, December 13, 2017) was used to perform the OTU
204	affiliations. Each OTU was manually inspected a second time to remove undetected
205	chimeras. The final OTU tables obtained for each replicate were finally merged by
206	taking the sum of the absolute abundance of each taxon. Ecological metrics (alpha- and
207	beta-diversity) were computed with the Mothur pipeline (v1.35.1) (Schloss et al., 2009),
208	as previously described (Chamberland et al., 2017c).

209

210 2.5.3. Quantification of bacterial growth

The number of 16S rRNA gene copies found on membranes and in milk at each
time point were quantified by qPCR as described previously (Chamberland et al.,
2017a).

215 2.6. Statistical analysis

217	As mentioned, the experimental design was repeated three times for each			
218	temperature. A one-way analysis of variance (ANOVA) of the number of 16S rRNA			
219	gene copies variable was performed with RStudio (v.1.0.136) using the package			
220	agricolae (v1.2-8). The analysis was performed separately for membrane and milk			
221	samples. The number of gene copies among samples were considered significantly			
222	different with a <i>p</i> -value smaller than 0.05 (Fisher's least significant difference test).			
223				
224	3. Results			
225				
226	3.1. Quantification of the number of 16S rRNA gene copies on membranes			
227				
228	Changes in bacterial communities in milk and on membranes were studied as			
229	function of time for two temperatures, 15 $^{\circ}$ C and 50 $^{\circ}$ C (Fig. 2). The bacterial			
230	communities observed on membranes were significantly different depending on whether			
231	the membranes were used at 15 °C or 50 °C (Fig. 2A). At 50 °C, a significant increase			
232	in the number of 16S rRNA gene copies was observed throughout the experiment			
233	($P < 0.05$, Fig. 2A). The number of gene copies per cm ² increased significantly from			
234	$3.21\pm0.12\ log_{10}$ after the first cleaning to $5.40\pm0.97\ log_{10}$ gene copies per cm^2			
235	$(P < 0.05)$ after 7.5 h, finally reaching a maximum of $8.83 \pm 1.58 \log_{10}$ gene copies per			
236	cm^2 after 15 h ($P < 0.05$, Fig. 2.A). Following the cleaning step performed after 20 h of			
237	operation, the number of gene copies (5.57 \pm 3.38 log ₁₀ gene copies per cm ²) was still			
238	significantly higher than at the beginning of the process $(3.21 \pm 0.12 \log_{10} \text{gene copies})$			
239	per cm ² , $P < 0.05$, Fig. 2.A).			

240	At 15 °C, the number of 16S rRNA gene copies did not increase significantly on
241	the membranes throughout the 48 h experiment. It varied from $3.31 \pm 0.24 \log_{10}$ gene
242	copies per cm ² after the first cleaning to $3.86 \pm 0.58 \log_{10}$ gene copies per cm ² after 48 h
243	(P > 0.05, Fig. 2A). The initial count was not significantly different from the final count
244	measured after the last cleaning $(3.48 \pm 0.58, P > 0.05, Fig. 2A)$.
245	
246	3.2. Composition of bacterial communities formed on membranes
247	
248	The temperature of the feed also affected the diversity and richness of bacteria
249	observed on membranes. Globally, communities formed at 15 °C had more diversity
250	and richness (Error! Reference source not found.). For example, the diversity index
251	(Inverse Simpson) was between 1.00 and 6.57 on membranes operated at 50 $^\circ$ C while it
252	was between 8.35 and 20.58 at 15 °C (Table 1). In the same vein, membranes operated
253	at 50 °C had a lower richness, estimated between 7.84 to 67.83 species, compared with
254	between 63.51 and 180.70 at 15 °C (Chao index, Table 1).
255	Communities formed at 50 °C were dominated by the Bacilli class (more than
256	60.15% from 7.5 h, Supplementary material Table S1). In contrast, those formed at the
257	colder temperature were composed of Actinobacteria (13.46% to 26.26%), Bacteroidia
258	(12.53% to 27.00%), Bacilli (8.01% to 20.69%), α - and γ -Proteobacteria (2.77% to
259	23.94% and 21.80% to 35.27%, respectively) classes (Supplementary material Table
260	S2). Low proportions of the Clostridia class were also observed (0.04 to 4.32%) at
261	15 °C (Supplementary material Table S2), while this class was not present at 50 °C, or
262	in trace concentrations (0.67% after 7.5 h, Supplementary material Table S1).
263	Of the bacterial genera observed on membranes, the Lactococcus genus was the
264	most abundant during the first part of the experiment performed at 50 °C, representing

265	37.18% of the community on the membrane sampled after 7.5 h (Fig. 2A). However, at			
266	this temperature, exponential growth of Bacillus spp. occurred, presumably primarily			
267	B. licheniformis based on a local BLAST alignment, from 10 h to 15 h of operation. The			
268	number of 16S gene copies affiliated to the Bacillus genus increased from 1.66 to			
269	6.14 \log_{10} gene copies per cm ² between these sampling times (Fig. 2A). The <i>Bacillus</i>			
270	genus reached stationary phase at 15 h of operation and persisted on membranes, even			
271	after cleaning.			
272	At 15 °C, psychrotrophic (cold-tolerant) bacterial genera were observed on			
273	membranes, such as Corynebacterium (ratios between 3.51 to 12.28%), Halomonas			
274	(ratios between 1.10% and 7.67%), Pseudomonas (ratios between 0.09 to 11.65%) or			
275	Psychrobacter (ratios between 10.26% to 26.75%) (Fig. 2A and Table S2).			
276	Psychrobacter was the most abundant genus, however, no one genus was dominant, and			
277	no exponential growth was observed throughout the 48 h-experiments (Fig. 2A). The			
278	Bacillus genus was only found in low ratios (0.19% to 3.92%) at this temperature (Fig.			
279	2A).			
280				
281	3.3. Changes in bacterial diversity in milk inside the bioreactor			

282

As on the membranes, there were few variations in the proportions of bacterial OTU in milk circulating in the bioreactor at 15 °C. A decrease in the number of 16S rRNA gene copies was suspected, from $6.08 \pm 1.41 \log_{10}$ gene copies per mL at the beginning of the experiment to $4.52 \pm 0.12 \log_{10}$ gene copies per mL after 48 h of operation, but the difference was not significant (*P* > 0.05, Fig. 2B). At 50 °C, an increase in *Bacillus* spp. was observed in milk, similar to the finding with the membranes, but an increase in the number of 16S gene copies was only significant after

293	4.	Discussion		
292				
291	per mL (P < 0.05, Fig. 2B).			
290	15 h of operation, where the number of copies reached 8.49 \pm 0.67 log_{10} gene copies			

294

295 4.1. Operating at 50 °C, a race against spore-former bacteria

296

297 The most important predictable issues resulting from UF of dairy fluid at 50 °C 298 is the formation of biofilms composed of thermophilic bacteria on UF membranes 299 during the process (Anand et al., 2014; Burgess, Lindsay, & Flint, 2010; Pompei et al., 300 1973), and the subsequent contamination of the feed, as seen in milk circulating inside 301 the bioreactor (Fig. 2B). These bacteria, including the commonly found 302 Anoxybacillus flavithermus, Geobacillus spp. and Bacillus spp. are generally not 303 pathogenic, but their biofilm-forming and spore-forming abilities make them extremely 304 difficult to remove or kill using conventional heat treatments, and their heat-stable 305 enzymes may also affect the quality of dairy products (Burgess et al., 2010; Cho et al., 306 2018; Sadiq et al., 2017). Complete CIP may be sufficient to kill them on stainless steel, 307 which support high temperature cleaning (Parkar, Flint, & Brooks, 2004). However, on 308 weaker materials such as polymeric filtration membranes, it was observed that biofilms of Bacillus spp. are one of the most resistant to CIP solutions (Anand & Singh, 2013). 309 310 This study determined that a 15 h run at 50 °C (time needed to reach a stationary 311 phase on membranes) allows mature and saturated biofilm composed of spore-former 312 bacteria (Bacillus spp.) to form on a cleaned membrane during its first use. The Bacillus 313 genus entered exponential growth phase after approximately 10 h and grew significantly 314 in a short period of time, as found in other studies with doubling times corresponding to

315	0.25 h and to 0.52 h at this temperature (Burgess et al., 2010; Dufour et al., 2004;					
316	Gauvry et al., 2017). In comparison, Streptococcus thermophilus biofilms may be					
317	formed in 6 h in the regeneration section of a pasteuriser, at a temperature between					
318	30 °C and 40 °C (Bouman, Lund, Driessen, & Schmidt, 1982; Knight, Nicol, &					
319	McMeekin, 2004), while the contamination of thermophilic spore-forming bacteria					
320	appears from 9 h during an evaporation process (Murphy, Lynch, & Kelly, 1999; Scott,					
321	Brooks, Rakonjac, Walker, & Flint, 2007).					
322	Bacillus spp. have been shown to persist on reverse osmosis membranes in					
323	contact with whey for 24 h following every step of a CIP (Anand & Singh, 2013).					
324	According to the findings of Keren et al. (2004), the number of persistent cells of					
325	Bacillus would have increased in this study since the biofilm reached stationary phase.					
326	The high ratio of <i>Bacillus</i> spp. observed on the cleaned membrane following the 50 $^{\circ}$ C					
327	experiment (Fig. 2A) may thus represent viable bacteria not removed by the CIP.					
328	However, since the genomic approach selected for this study also detects DNA from					
329	dead cells, additional work complementary to those of Anand and Singh (2013) is					
330	needed to confirm the metabolic state of bacteria on membranes following a CIP. This					
331	work will permit to determine if bacteria detected on membranes are alive and					
332	contribute actively to the formation of biofilms during the following process, or if they					
333	are dead, and rather contribute to the formation of biofilms by enhancing further					
334	bacterial adhesion on membranes.					
335						
336	4.2. Cold temperature as a key parameter to delay biofilm formation					
337						
338	As mentioned previously, there is a trend in the dairy industry to perform					
339	continuous unit operations such as UF at colder temperatures (Tang, Flint, Brooks, &					

Bennett, 2009) to provide dairy products with a better microbial quality, even if this
reduces membrane performance because of higher milk viscosity (Kapsimalis & Zall,
1981; Yan et al., 1979).

343 As mentioned by Yuan, Burmølle, Sadiq, Wang, and He (2018), few studies 344 have looked at biofilm formation assays at cold temperatures and whether some psychrotrophic bacteria found in raw milk, such as *Pseudomonas fluorescens*, have 345 346 increased biofilm-forming abilities at colder temperatures (Aswathanarayan & Vittal, 347 2014). Indeed, biofilms have already been found on dairy industrial filtration 348 membranes operated around 15 °C with pasteurised milk (Chamberland et al., 2017c; Tang et al., 2009). 349 350 In this study, membranes operated at cold temperature were colonised with 351 bacteria such as *Pseudomonas*, *Lactococcus* and *Sediminibacterium*, as observed 352 previously following 5 h UF at 10 °C in a model cross-flow filtration system 353 (Chamberland et al., 2017b). However, this 48 h experiment did not provide sufficient 354 evidence for biofilm formation or for growth on the membranes since the numbers of 355 16S rRNA gene copies on membranes did not differ significantly across the times 356 sampled (P > 0.05, Fig. 2A). At 15 °C, both psychrotrophic and mesophilic bacteria can 357 grow in the dairy environment (Seale et al., 2015a). However, mesophilic bacteria such 358 as lactic acid bacteria have a slow growth rate at this temperature (Adamberg, Kask, 359 Laht, & Paalme, 2003) and psychrotrophic bacteria from raw milk that survive 360 pasteurisation are scarce (Coghill, 1982; Quigley et al., 2013a). Even if it was 361 demonstrated that a psychrotrophic genus such as *Pseudomonas* was more resistant to 362 heat treatment than previously stated (Quigley et al., 2013a), most of the psychrotrophic 363 bacteria found in pasteurised milk originate through post-contamination from the water source or the plant environment (Chamberland et al., 2017b; Coghill, 1982; Quigley et 364

365 al., 2013b).

366	Since water used to perform the cleaning cycle of the pasteuriser and the					
367	membranes in this study was demineralised and of high purity, the number of					
368	metabolically active bacteria in the pasteurised milk and adhering to membranes was					
369	probably very low. The biofilm reactor and its components were also autoclaved prior					
370	to each experiment, which limited the possibility of environmental contamination of					
371	milk. Habimana, Heffernan, and Casey (2017) formed Pseudomonas fluorescens					
372	biofilms on nanofiltration membranes in less than 48 h at 20 °C, but their inoculation					
373	rate was higher. Extended membrane usage time is required to determine the time					
374	needed for psychrotrophic biofilms to be formed.					
375	In this study, communities formed at 15 °C did not have a detectable exponentiated					
376	growth phase. Their tolerance to the CIP cycle was possibly lower than communities					
377	formed at 50 °C, as revealed by a similar number of 16S rRNA gene copies at the					
378	beginning and at the end of the 48 h experiment (Fig. 2A) (Anand & Singh, 2013;					
379	Keren et al., 2004). Since the membrane cleaning is generally performed at 50 $^{\circ}$ C, it					
380	would be interesting to determine if the higher thermal stress imposed by the CIP on					
381	communities formed at 15 °C could be a long-term advantage to reduce the biofilm					
382	formation rate on membranes. The destabilisation of bacteria through temperature					
383	changes permitted control of S. thermophilus biofilms in the regenerative section of					
384	pasteurisers (Knight et al., 2004). This stress, imposed with a multi-temperature					
385	filtration process, may contribute to reduce biofilm formation on filtration membranes.					
386						
387	4.3. The representativeness of the biofilm reactor					
388						
389	Necessarily, results obtained from a biofilm reactor in this study did not reflect					

390	perfectly the reality of industrial filtration systems. Indeed, according to observations				
391	made in the desalination industry (reverse osmosis membranes), a higher flow velocity				
392	in filtration system or the presence of a concentration polarisation at the membrane				
393	surface may affect the time needed to form biofilms on membranes (Suwarno et al.,				
394	2014). On the other hand, the use of a biofilm reactor helped to generate membrane				
395	samples at different time points without affecting the retentate flow, and to determine				
396	more precisely the impact of the temperature in a controlled environment. In				
397	comparison with other studies made previously, the ratio of the bacteria among				
398	communities forming on membranes in model filtration system or in the biofilm reactor				
399	were different (Chamberland et al., 2017a,b). However, common dairy bacterial genus				
400	such as Bacillus spp., Lactococcus spp., Pseudomonas spp. or Streptococcus spp. were				
401	observed in both systems (Chamberland et al., 2017a,b).				

402

403 **5.** Conclusions

404

405 The temperature of the feed, as shown in this study, is a crucial parameter to 406 consider for preventing biofilm formation on membranes. Indeed, at the industrial scale, 407 the conclusions presented here cannot be taken as an argument to perform cold milk UF 408 over 48 h. However, this study revealed that in a system wherein bacterial contaminants 409 are well controlled (system perfectly cleaned and cleaned with good quality water), the 410 biofilm formation rate on membranes is considerably slower at 15 °C than at 50 °C. 411 Indeed, in a system were the daily cleaning procedures are rigorously performed, 412 biofouling may not be an issue at 15 °C. However, as noted, additional work is needed 413 to determine how psychrotrophic biofilms persist on filtration membranes and affect 414 cleaning efficiency in real filtration systems. Industrially, if the feed viscosity does not

415	permit operation at cold temperatures, or if industrial installations are not available,					
416	filtration at 50 $^{\circ}$ C may be mandatory. Then, the operating time should be limited to 10 h					
417	to avoid the exponential growth of thermoresistant bacteria such as Bacillus sp. on					
418	membranes.					
419						
420	Acknowledgements					
421						
422	This work was supported by the NSERC-Novalait Industrial Research Chair on					
423	Process Efficiency in Dairy Technology (grant number IRCPJ 46130-12 to Yves					
424	Pouliot) and the Fonds de recherche du Québec – Nature et technologies through a					
425	doctoral research scholarship (grant number 199094). Eric Dugat-Bony was supported					
426	by the AgreenSkills+ fellowship programme which has received funding from the EU's					
427	Seventh Framework Programme (grant number FP7-609398, AgreenSkills+ contract).					
428	The authors are thankful to Barb Conway for editing this manuscript. We are also					
429	grateful to the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr) for					
430	providing computational resources.					
431						
432	References					
433						
434	Adamberg, K., Kask, S., Laht, T., & Paalme, T. (2003). The effect of temperature and					
435	pH on the growth of lactic acid bacteria: a pH-auxostat study. International					
436	Journal of Food Microbiology, 85, 171–183.					
437	Anand, S., & Singh, D. (2013). Resistance of the constitutive microflora of biofilms					
438	formed on whey reverse-osmosis membranes to individual cleaning steps of a					
439	typical clean-in-place protocol. Journal of Dairy Science, 96, 6213-6222.					

440	Anand, S., Hassan, A., & Avadhanula, M. (2012). The effects of biofilms formed on				
441	whey reverse osmosis membranes on the microbial quality of the concentrated				
442	product. International Journal of Dairy Technology, 65, 451-455.				
443	Anand, S., Singh, D., Avadhanula, M., & Marka, S. (2014). Development and control of				
444	bacterial biofilms on dairy processing membranes. Comprehensive Reviews in				
445	Food Science and Food Safety, 13, 18–33.				
446	Aswathanarayan, J. B., & Vittal, R. R. (2014). Attachment and biofilm formation of				
447	Pseudomonas fluorescens PSD4 isolated from a dairy processing line. Food				
448	Science and Biotechnology, 23, 1903–1910.				
449 Bénézech, T., & Faille, C. (2018). Two-phase kinetics of biofilm removal during CIF					
450	Respective roles of mechanical and chemical effects on the detachment of single				
451	cells vs cell clusters from a Pseudomonas fluorescens biofilm. Journal of Food				
452	Engineering, 219, 121–128.				
453	Berg, T. H. A., Knudsen, J. C., Ipsen, R., Van Den Berg, F., Holst, H. H., & Tolkach,				
454	A. (2014). Investigation of consecutive fouling and cleaning cycles of				
455	ultrafiltration membranes used for whey processing. International Journal of				
456	Food Engineering, 10, 367–381.				
457	Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., et				
458	al. (2013). Quality-filtering vastly improves diversity estimates from Illumina				
459	amplicon sequencing. Nature Methods, 10, 57-59.				
460	Bouman, S., Lund, D. B., Driessen, F. M., & Schmidt, D. G. (1982). Growth of				
461	thermoresistant streptococci and deposition of milk constituents on plates of heat				
462	exchangers during long operating times. Journal of Food Protection, 9, 788-				
463	883.				
464	Bremer, P. J., Fillery, S., & McQuillan, A. J. (2006). Laboratory scale clean-in-place				

	ACCEPTED MANUSCRIPT				
465	(CIP) studies on the effectiveness of different caustic and acid wash steps on the				
466	removal of dairy biofilms. International Journal of Food Microbiology, 106,				
467	254–262.				
468	Buckingham-Meyer, K., Goeres, D. M., & Hamilton, M. A. (2007). Comparative				
469	evaluation of biofilm disinfectant efficacy tests. Journal of Microbiological				
470	Methods, 70, 236–244.				
471	1 Bucs, S. S., Farhat, N., Kruithof, J. C., Picioreanu, C., van Loosdrecht, M. C. M., &				
472	Vrouwenvelder, J. S. (2018). Review on strategies for biofouling mitigation in				
473	spiral wound membrane systems. Desalination, 434, 189–197.				
474	Burgess, S. A., Lindsay, D., & Flint, S. H. (2010). Thermophilic bacilli and their				
475	importance in dairy processing. International Journal of Food Microbiology,				
476	144, 215–225.				
477	Chamberland, J., Beaulieu-Carbonneau, G., Lessard, MH., Labrie, S., Bazinet, L.,				
478	Doyen, A., et al. (2017a). Effect of membrane material chemistry and properties				
479	on biofouling susceptibility during milk and cheese whey ultrafiltration. Journal				
480	of Membrane Science, 542, 208–216.				
481	Chamberland, J., Lessard, MH., Doyen, A., Labrie, S., & Pouliot, Y. (2017b).				
482	Biofouling of ultrafiltration membranes by dairy fluids: characterization of				
483	pioneer colonizer bacteria using a DNA metabarcoding approach. Journal of				
484	Dairy Science, 100, 981–990.				
485	Chamberland, J., Lessard, MH., Doyen, A., Labrie, S., & Pouliot, Y. (2017c). A				
486	sequencing approach targeting the 16S rRNA gene unravels the biofilm				
487	composition of spiral-wound membranes used in the dairy industry. Dairy				
488	Science & Technology, 96, 827–843.				

489 Cho, T. J., Kim, H. W., Kim, N. H., Park, S. M., Kwon, J. I., Kim, J., et al. (2018). New

	ACCEPTED MANUSCRIPT				
490	insights into the thermophilic spore-formers in powdered infant formula:				
491	Implications of changes in microbial composition during manufacture. Food				
492	Control, 92, 464–470.				
493	Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D. B., & Sorial, G. A. (2005). Effect of				
494	permeate flux and tangential flow on membrane fouling for wastewater				
495	treatment. Separation and Purification Technology, 45, 68–78.				
496	Coghill, D. (1982). Studies on thermoduric psychrotrophic bacteria in south east				
497	Queensland dairy products. Australian Journal of Dairy Technology, 37, 147-				
498	148.				
499	Dufour, M., Simmonds, R. S., & Bremer, P. J. (2004). Development of a laboratory				
500	scale clean-in-place system to test the effectiveness of "natural" antimicrobials				
501	against dairy biofilms. Journal of Food Protection, 67, 1438–1443.				
502	Escudié, F., Auer, L., Bernard, M., Mariadassou, M., Cauquil, L., Vidal, K., et al.				
503	(2017). FROGS: Find, rapidly, OTUs with galaxy solution. Bioinformatics, 34,				
504	1287–1294.				
505	Farhat, N. M., Vrouwenvelder, J. S., Van Loosdrecht, M. C. M., Bucs, S. S., & Staal,				
506	M. (2016). Effect of water temperature on biofouling development in reverse				
507	osmosis membrane systems. Water Research, 103, 149–159.				
508	Gauvry, E., Mathot, A. G., Leguérinel, I., Couvert, O., Postollec, F., Broussolle, V., et				
509	al. (2017). Knowledge of the physiology of spore-forming bacteria can explain				
510	the origin of spores in the food environment. Research in Microbiology, 168,				
511	369–378.				
512	Goecks, J., Nekrutenko, A., Taylor, J., Afgan, E., Ananda, G., Baker, D., et al. (2010).				
513	Galaxy: a comprehensive approach for supporting accessible, reproducible, and				
514	transparent computational research in the life sciences. Genome Biology, 11,				

515 Article R86).

- 516 Habimana, O., Heffernan, R., & Casey, E. (2017). Nanofiltration-induced cell death: an
- 517 integral perspective of early stage biofouling under permeate flux conditions.
 518 *Journal of Membrane Science*, *541*, 93–100.
- 519 Henderson, R., Gandhi, G., Sevart, N., Gragg, S., Phebus, R., & Amamcharla, J. K.
- 520 (2016). Use of ozonated water in removing *Bacillus cereus* biofilms from the
 521 dairy membranes. *Journal of Animal Science*, 94(S5), 342.
- 522 Hijnen, W. A. M., Castillo, C., Brouwer-Hanzens, A. H., Harmsen, D. J. H.,
- 523 Cornelissen, E. R., & van der Kooij, D. (2012). Quantitative assessment of the
- 524 efficacy of spiral-wound membrane cleaning procedures to remove biofilms.
- 525 *Water Research*, 46, 6369–6381.
- İpek, D., & Zorba, N. N. D. (2018). Microbial load of white cheese process lines after
 CIP and COP: A case study in Turkey. *LWT Food Science and Technology*, *90*,
 505–512.
- 529 Kampouris, I. D., Karayannakidis, P. D., Banti, D. C., Sakoula, D., Konstantinidis, D.,
- 530 Yiangou, M., et al. (2018). Evaluation of a novel quorum quenching strain for
 531 MBR biofouling mitigation. *Water Research*, *143*, 56–65.
- Kapsimalis, D. J., & Zall, R. R. (1981). Ultrafiltration of skim milk at refrigerated
 temperatures. *Journal of Dairy Science*, *64*, 1945–1950.
- Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004). Persister cells and
 tolerance to antimicrobials. *FEMS Microbiology Letters*, 230, 13–18.
- 536 Khan, M., Danielsen, S., Johansen, K., Lorenz, L., Nelson, S., & Camper, A. (2014).
- 537 Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO)
- 538 membrane operated in a biofilm membrane reactor. *Biofouling*, *30*, 153–167.
- 539 Knight, G. C., Nicol, R. S., & McMeekin, T. A. (2004). Temperature step changes: a

	ACCEPTED MANUSCRIPT
540	novel approach to control biofilms of Streptococcus thermophilus in a pilot
541	plant-scale cheese-milk pasteurisation plant. International Journal of Food
542	Microbiology, 93, 305–318.
543	Kumari, S., & Sarkar, P. K. (2014). In vitro model study for biofilm formation by
544	Bacillus cereus in dairy chilling tanks and optimization of clean-in-place (CIP)
545	regimes using response surface methodology. Food Control, 36, 153-158.
546	Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2014). Swarm:
547	robust and fast clustering method for amplicon-based studies. PeerJ, 2, e593.
548	Marka, S., & Anand, S. (2017). Feed substrates influence biofilm formation on reverse
549	osmosis membranes and their cleaning efficiency. Journal of Dairy Science,
550	101, 84–95.
551	Maubois, J. L., & Mocquot, G. (1975). Application of membrane ultrafiltration to
552	preparation of various types of cheese. Journal of Dairy Science, 58, 1001-
553	1007.
554	Méthot-Hains, S., Benoit, S., Bouchard, C., Doyen, A., Bazinet, L., & Pouliot, Y.
555	(2016). Effect of transmembrane pressure control on energy efficiency during
556	skim milk concentration by ultrafiltration at 10 and 50°C. Journal of Dairy
557	Science, 99, 8655–8664.
558	Murphy, P. M., Lynch, D., & Kelly, P. M. (1999). Growth of thermophilic spore
559	forming bacilli in milk during the manufacture of low heat powders.
560	International Journal of Dairy Technology, 52, 45–50.
561	Oh, H. S., Tan, C. H., Low, J. H., Rzechowicz, M., Siddiqui, M. F., Winters, H., et al.
562	(2017). Quorum quenching bacteria can be used to inhibit the biofouling of
563	reverse osmosis membranes. Water Research, 112, 29-37.
564	Parkar, S. G., Flint, S. H., & Brooks, J. D. (2004). Evaluation of the effect of cleaning

- regimes on biofilms of thermophilic bacilli on stainless steel. *Journal of Applied Microbiology*, 96, 110–116.
- 567 Pompei, C., Resmini, P., & Peri, C. (1973). Skim milk protein recovery and purification
 568 by ultrafiltration, Influence of temperature on permeation rate and retention.
- 569 Journal of Food Science, 38, 867–870.
- 570 Quigley, L., McCarthy, R., O'Sullivan, O., Beresford, T. P., Fitzgerald, G. F., Ross, R.
- 571 P., et al. (2013a). The microbial content of raw and pasteurized cow milk as
- 572 determined by molecular approaches. *Journal of Dairy Science*, *96*, 4928–4937.
- 573 Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F.,
- 574 et al. (2013b). The complex microbiota of raw milk. *FEMS Microbiology*
- 575 *Reviews*, *37*, 664–698.
- 576 Ridgway, H., Ishida, K., Rodriguez, G., Safarik, J., Knoell, T., & Bold, R. (1999).
- 577 Biofouling of membranes: Membrane preparation, characterization, and analysis 578 of bacterial adhesion. *Methods in Enzymology*, *310*, 463–494.
- 579 Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a

580 versatile open source tool for metagenomics. *PeerJ*, *4*, e2584.

- 581 Sadiq, F. A., Flint, S., Yuan, L., Li, Y., Liu, T., & He, G. (2017). Propensity for biofilm
- 582 formation by aerobic mesophilic and thermophilic spore forming bacteria

isolated from Chinese milk powders. *International Journal of Food Microbiology*, 262, 89–98.

- Sambrook, J., & Russell, D. W. (2001). *Molecular cloning: a laboratory manual, third edition*. New York: CSHL Press.
- Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et
 al. (2009). Introducing mothur: open-source, platform-independent, communitysupported software for describing and comparing microbial communities.

	ACCEPTED MANUSCRIPT					
590	Applied and Environmental Microbiology, 75, 7537–7541.					
591	Scott, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M. R., & Flint, S. H. (2007). The					
592	formation of thermophilic spores during the manufacture of whole milk powder.					
593	International Journal of Dairy Technology, 60, 109–117.					
594	94 Seale, B., Bremer, P., Flint, S., Brooks, J., & Palmer, J. (2015a). Overview of the					
595	problems resulting from biofilm contamination in the dairy industry. In K. H.					
596	Teh, S. Flint, J. Brooks, & G. Knight (Eds.), Biofilms in the dairy industry (pp.					
597	49–64). Wiley-Blackwell, John Wiley & Sons, Inc.					
598	Seale, B., Burgess, S., Flint, S., Brooks, J., Bremer, P., & Parkar, S. (2015b).					
599	Thermophilic spore-forming bacilli in the dairy industry. In K. H. Teh, S. Flint,					
600	J. Brooks, & G. Knight (Eds.), Biofilms in the dairy industry (pp. 112-137).					
601	Wiley-Blackwell, John Wiley & Sons, Inc.					
602	Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent					
603	biofilm control strategies. LWT - Food Science and Technology, 43, 573–583.					
604	St-Gelais, D., Haché, S., & Gros-Louis, M. (1992). Combined effects of temperature,					
605	acidification, and diafiltration on composition of skim milk retentate and					
606	permeate. Journal of Dairy Science, 75, 1167–1172.					
607	Suwarno, S. R., Chen, X., Chong, T. H., McDougald, D., Cohen, Y., Rice, S. A., et al.					
608	(2014). Biofouling in reverse osmosis processes: the roles of flux, crossflow					
609	velocity and concentration polarization in biofilm development. Journal of					
610	Membrane Science, 467, 116–125.					
611	Tang, X., Flint, S., Bennett, R., Brooks, J., & Zain, S. N. M. (2015). Biofilm					
612	contamination of ultrafiltration and reverse osmosis plant. In K. H. Teh, S. Flint,					
613	J. Brooks, & G. Knight (Eds.), Biofilms in the Dairy Industry (pp. 138-153).					
614	Wiley-Blackwell, John Wiley & Sons, Inc.					

- Tang, X., Flint, S. H., Bennett, R. J., & Brooks, J. D. (2010). The efficacy of different
- 616 cleaners and sanitisers in cleaning biofilms on UF membranes used in the dairy
- 617 industry. *Journal of Membrane Science*, *352*, 71–75.
- 618 Tang, X., Flint, S. H., Brooks, J. D., & Bennett, R. J. (2009). Factors affecting the
- 619 attachment of micro-organisms isolated from ultrafiltration and reverse osmosis
- 620 membranes in dairy processing plants. *Journal of Applied Microbiology*, 107,
- 621 443–451.
- 622 Teh, K. H., Flint, S., Palmer, J., Andrewes, P., Bremer, P., & Lindsay, D. (2014).
- Biofilm An unrecognised source of spoilage enzymes in dairy products? *International Dairy Journal*, *34*, 32–40.
- 625 Trägårdh, G. (1989). Membrane Cleaning. Desalination, 71, 325–335.
- 626 Wood, T. L., Guha, R., Tang, L., Geitner, M., Kumar, M., & Wood, T. K. (2016).
- 627 Living biofouling-resistant membranes as a model for the beneficial use of
- engineered biofilms. *Proceedings of the National Academy of Sciences*, 113,
 e2802–e2811.
- Yan, S. H., Hill, C. G., & Amundson, C. H. (1979). Ultrafiltration of whole milk. *Journal of Dairy Science*, 62, 23–40.
- 632 Yeon, K. M., Cheong, W. S., Oh, H. S., Lee, W. N., Hwang, B. K., Lee, C. H., et al.
- 633 (2009). Quorum sensing: a new biofouling control paradigm in a membrane
- bioreactor for advanced wastewater treatment. *Environmental Science and Technology*, *43*, 380–385.
- 636 Yuan, L., Burmølle, M., Sadiq, F. A., Wang, N., & He, G. (2018). Interspecies variation
- 637 in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese
- 638 raw milk. *Food Control*, *91*, 47–57.

1 Figure legends

2

13

3 Fig. 1. Biofilm reactor (A) consisting of a feed tank (1) maintained at 4 °C in an 4 incubator (2), bacterial air vents (3), a peristaltic pump (4), a flow break (5), a CDC 5 biofilm reactor (6), a temperature sensor (7), eight membrane holder rods (8) and eight membranes (9), a stir bar (10), a stirring/hot plate (11) and a waste collector (12), and 6 7 (B) biofilm reactor seen from the top. 8 9 Fig. 2. Portrait of bacterial communities formed on membranes (A) and bacteria found 10 in milk (B) inside the bioreactor at 15 °C or 50 °C. Bars with the same letter do not have 11 a significantly different gene copy number (Fischer's least significant difference test, P 12 > 0.05, n = 3). The percentages indicate the proportion of each genus.

Table 1

Ecological metrics of communities formed on membranes at 15 $^\circ$ C and at 50 $^\circ$ C. ^a

Temperature	Time	Sobs	Diversity index	Richness index
(°C)	(h)		(Inverse Simpson)	(Chao)
15	0	149	13.69	162.42
	20	125	20.58	132.18
	24	142	19.44	149.99
	28	88	12.78	94.49
	32	60	8.35	63.51
	36	98	11.69	109.44
	48	148	20.11	172.40
	After cleaning	172	12.70	180.70
50	0	18	6.57	18.00
	7.5	62	5.35	67.83
	10	61	5.41	65.34
	12.5	50	1.27	57.87
	15	15	1.01	25.41
	20	5	1.00	7.84
	After cleaning	25	1.14	27.61

^a Abbreviation: S_{obs}, number of OTU observed. For diversity and richness indices, each sample had sequencing coverage of greater than 99%; analyses were performed on

rarefied samples containing 16,536 sequence reads.

