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SNP co-association and network 
analyses identify E2F3, KDM5A 
and BACH2 as key regulators of the 
bovine milk fatty acid profile
Sara Pegolo  1, Christos Dadousis1, Núria Mach2, Yuliaxis Ramayo-Caldas2,3, Marcello Mele4, 
Giuseppe Conte4, Stefano Schiavon1, Giovanni Bittante1 & Alessio Cecchinato  1

The fatty acid (FA) profile has a considerable impact on the nutritional and technological quality of milk 
and dairy products. The molecular mechanism underlying the regulation of fat metabolism in bovine 
mammary gland have been not completely elucidated. We conducted genome-wide association studies 
(GWAS) across 65 milk FAs and fat percentage in 1,152 Brown Swiss cows. In total, we identified 175 
significant single nucleotide polymorphism (SNPs) spanning all chromosomes. Pathway analyses 
revealed that 12:0 was associated with the greatest number of overrepresented categories/pathways 
(e.g. mitogen-activated protein kinase (MAPK) activity and protein phosphorylation), suggesting that 
it might play an important biological role in controlling milk fat composition. An Associated Weight 
Matrix approach based on SNP co-associations predicted a network of 791 genes related to the milk FA 
profile, which were involved in several connected molecular pathways (e.g., MAPK, lipid metabolism 
and hormone signalling) and undetectable through standard GWAS. Analysis of transcription factors 
and their putative target genes within the network identified BACH2, E2F3 and KDM5A as key 
regulators of milk FA metabolism. These findings contribute to increasing knowledge of FA metabolism 
and mammary gland functionality in dairy cows and may be useful in developing targeted breeding 
practices to improve milk quality.

Fatty acids (FAs) are energy substrates and important components of the cell membrane in the form of phospho-
lipids. Their biological activities influence cellular and tissue metabolism and function, and signals responsive-
ness, consequently affecting health and disease risk1.

The nutritional and technological quality of milk is largely influenced by the quantity of milk fat and the fatty 
acid profile2. For instance, milk and dairy products are among the major sources of saturated fatty acids (SFAs) in 
the human diet. Epidemiological and clinical studies suggested that dietary SFAs are associated with a higher risk 
of cardiovascular disease, leading to a public health recommendation to decrease SFA intake3. By altering the milk 
fat composition, it may be possible to reduce SFA consumption without dietary intervention and changes in eat-
ing habits4. However, the quality of the evidence on which dietary recommendations are based has been recently 
challenged and it has been suggested that it would be preferable to consider the biological action of individual FAs 
rather than large FA groups5. Bovine milk contains, in fact, several bioactive FA such as butyric acid (4:0), pal-
mitoleate (16:1 c9); oleic acid (18:1 c9), vaccenic acid (18:1 t11) and conjugated linoleic acid (CLA, 18:2 c9, t11)6.

Various factors can influence the milk FA composition, including stage of lactation, physiological state and 
feeding as well as the animal’s genetic background7. Several studies have shown the existence of heritable varia-
tions in the FA profile of bovine milk8,9, while genetic correlations among milk FA traits have been also estimated 
and biologically interpreted9,10. Furthermore, single nucleotide polymorphisms (SNPs) located in genes under-
lying quantitative trait loci for fat yield or content, such as SREBP1, SCD1, DGAT1 and ABCG211–13, and in other 
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genes involved in lipid biosynthesis or metabolism have been shown to affect the milk FA profile in different 
bovine breeds14–16. Genome-wide association studies (GWAS) have also shown several genomic regions to be 
significantly associated to the milk FA profile17–19, supporting the finding that milk fat synthesis and secretion 
are coordinated by a complex network of interrelated genes. The availability of data on the genetic parameters 
of individual FAs and identification of polymorphisms affecting their contents provide useful information for 
developing breeding selection strategies aimed at obtaining a milk FA profile more beneficial to human health.

Studies are available which investigated gene expression changes occurring in the bovine mammary gland 
across lactation20,21, as well as focused on the expression of lipid-related genes22,23 and on the discovery of genetic 
variants functionally implicated in the regulation of milk fat24. Therefore, several loci associated with milk FA 
composition have been identified and the knowledge about the role of genes driving milk fat synthesis in the 
bovine mammary gland has been significantly advanced. Despite that, the functional consequences of variants, 
including the complex molecular interplay of signal transduction, transcriptional, post-transcriptional and met-
abolic events underlying the regulation of milk fat synthesis and secretion in the bovine mammary gland, are still 
far to be extensively elucidated. A greater understanding of how genes or gene variants associated with milk FA 
composition exert their molecular effects could improve our knowledge of the physiological and cellular adap-
tations required for the synthesis and secretion of milk fat in ruminants, advance our understanding of tissue 
function beyond the well-known biochemical pathways and can improve the quality of milk and dairy products 
destined for human consumption.

The integration of GWAS analysis with gene-set enrichment and network analyses turned out to be a valid 
means to extrapolate additional biological information and investigate the functional relationships among sets of 
genes, that individually explain only a relatively small part of phenotypic variation and therefore cannot be iden-
tified by GWAS due to the stringent significance threshold25. These approaches have been recently used to explore 
bovine reproductive26,27 and productive traits28,29, and milk fat composition (including 10 FA traits)19 and have 
provided new insights into the biological pathways, complex gene interactions and key regulators affecting the 
investigated traits. Recently, an approach named Association Weight Matrix and based on SNP co-associations 
has been also proposed as a tool to exploit the results of GWAS and, combined with network inference algorithms, 
build gene networks to infer regulatory and functional interactions among genes30. Therefore, our hypothesis is 
that the milk FA associated alleles exert their effects by influencing transcription of the closest genes through 
multiple mechanisms. The aims of this study, therefore, were i) to perform a GWAS analysis to identify genomic 
regions associated to 65 FA traits and the fat percentage in bovine milk; ii) to characterize the regulatory mech-
anisms of the loci identified to understand the molecular and biological functions involved in the regulation of 
milk fat content and composition through pathway analysis; iii) to use an AWM approach to build gene networks 
for milk FA composition and to identify key transcription factors (TFs) regulating the synthesis and secretion of 
milk fat in dairy cows.

Results
GWAS analysis. Summary statistics and genomic heritabilities for the 65 FA traits and the fat percentage in 
bovine milk are reported in Tables 1 and 2. Heritability estimates varied from low (<0.10; e.g., 14:0 and 18:1c9) 
to moderate (up to 0.35; e.g., 16:0) with some individual FAs having values close to 0 (13:0, 22:0, 16:1t9, 17:1c9, 
18:1t4, 18:2t11,c15, 18:3c9,t11,c15).

The results of the GWAS analysis are summarized in Table 3 and Supplementary Table S1. A total of 175 
significant SNPs (P < 5E-05) were identified across all Bos taurus autosomes (BTAs). Three SNPs had unknown 
positions on the genome. Fifty-seven FA traits and the milk fat percentage exhibited significant signals, some of 
which were shared among the traits. The P-values ranged from 4.94E-05 to 1.36E-09. Around 50% of significant 
SNPs were associated to more than 1 trait. The highest signals were detected on BTA26 (~22.98 Mbp) and on 
BTA8 (~3.66 Mbp). In particular, the marker ARS-BFGL-NGS-32553 located at 22,977,848 bp on BTA26 was 
significantly associated with the 14:1 index (P = 1.36E-09). Other strong signals associated with the 14:1 index 
were detected at 22,951,431 bp and at 22,446,047 bp, which corresponded to markers ARS-BFGL-NGS-39823 
and BTB-00933928 (P = 1.95E-08 and P = 8.07E-08, respectively). These two markers are in high linkage dise-
quilibrium with ARS-BFGL-NGS-32553 (r2 = 0.89 and 0.70, respectively). A total of 4 regions (i.e. windows of 
consecutive SNPs at ≤ 1 Mb distance interval), that were detected on BTA26, were associated with 8 traits. Region 
26a corresponded to only 1 SNP (~9.87 Mbp), which was associated to both 10:1 and 14:1 indices (Table 3). 
Regions 26b, 26c and 26d contained multiple associated SNPs (Table 3 and Fig. 1). In particular, region 26b 
(~14.66–16.71 Mbp) included 4 SNPs associated to 14:1 index and 14:1c9. In the region 26c (~18.17–22.98 
Mbp), signals were detected for 14:1 index, 10:1 index, 14:1c9, MUFAs, 18:1c9, 10:0, 12:0 and 14:0. Finally, 6 
SNPs in region 26d (~25.09–31.58 Mbp) were associated to 14:1 index and 14:1c9. The highest signal on BTA8 
(Hapmap40047-BTA-119117) was significantly associated to 18:1t16. The proportion of additive genetic variance 
explained by this SNP was 44.22% (Supplementary Table S1). We detected regions of consecutive SNPs (≥3) 
on BTA3, BTA5 and BTA13. In particular, a region containing 6 SNPs on BTA3 (~118.57–121.20 Mbp, region 
3 g) was significantly associated with 17:0 iso. Two regions including 5 SNPs were detected on BTA5: region 
5a (~10.37–10.79 Mbp) which showed significant associations with 11:0, 15:0 and odd-chain FAs (OCFAs); 
region 5e (~84.09–85.29 Mbp), which contained signals for 10:0, 12:0, SFAs, monounsaturated FAs (MUFAs), 
medium-chain FAs (MCFAs) and long-chain FAs (LCFAs). Five SNPs on BTA13 (region 13c, ~42.07–42.93 Mbp) 
were associated with short-chain FAs (SCFAs), 8:0, 10:1c9 and 15:0 ante.

Pathway analyses. In the pathway analyses, for each trait 850 significant SNPs (P < 0.05) were on average 
assigned to 700 genes, which were mined using the Bioconductor package goseq31 to reveal the biological pro-
cesses connected with the milk FA synthesis and metabolism in the bovine mammary gland. Significantly enriched 
GO terms and KEGG pathways (q < 0.05) were found for the profile of 20 out of the 65 FA traits in milk (Fig. 2, 
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Mean1 SD1 σa
2 h2 #SNP2

Fat, % 4.23 0.73 0.056 0.102 5

Individual FA, g/100 g fatty acids

 SFA

 4:0 3.46 0.91 0.031 0.109 —

 6:0 2.15 0.39 0.005 0.087 4

 8:0 1.35 0.23 0.005 0.152 1

 10:0 3.17 0.63 0.044 0.197 6

 11:0 0.06 0.04 <0.001 0.050 5

 12:0 3.72 0.75 0.073 0.235 5

 13:0 0.11 0.04 <0.001 <0.001 2

 13:0 iso 0.06 0.04 0.089 0.075 —

 14:0 12.08 1.56 0.089 0.075 4

 14:0 iso 0.17 0.05 <0.001 0.134 8

 15:0 1.19 0.24 0.003 0.094 7

 15:0 iso 0.28 0.08 <0.001 0.099 2

 15:0 ante 0.53 0.12 0.001 0.223 3

 16:0 30.54 3.72 2.297 0.345 3

 16:0 iso 0.32 0.09 0.001 0.149 4

 17:0 0.54 0.12 <0.001 0.090 4

 17:0 iso 0.32 0.08 <0.001 0.098 7

 17:0 ante 0.42 0.09 0.001 0.145 2

 18:0 8.95 1.87 0.471 0.226 2

 20:0 0.13 0.04 <0.001 0.109 1

 22:0 0.06 0.03 <0.001 <0.001 —

 24:0 0.04 0.02 <0.001 0.025 6

MUFA

 10:1c9 0.33 0.09 0.001 0.260 5

 14:1c9 1.08 0.32 0.015 0.286 14

 16:1c9 1.21 0.32 0.012 0.184 —

 16:1t9 0.06 0.03 <0.001 <0.001 1

 17:1c9 0.20 0.08 <0.001 <0.001 7

 18:1t4 0.03 0.02 <0.001 <0.001 2

 18:1t6-t8 0.21 0.07 <0.001 0.081 2

 18:1t9 0.18 0.06 <0.001 0.083 —

 18:1t10 0.29 0.10 <0.001 0.073 1

 18:1t11 (VA) 1.20 0.38 0.006 0.147 3

 18:1c9 18.33 3.21 0.438 0.071 3

 18:1c12 0.24 0.10 0.001 0.167 4

 18:1t16 0.24 0.08 <0.001 0.089 4

 20:1c9 0.11 0.04 <0.001 0.055 6

PUFA

 18:2c9,t11 (RA) 0.65 0.22 0.003 0.184 3

 18:2t11,c15 0.10 0.08 <0.001 <0.001 2

 18:2c9,c12 2.04 0.60 0.017 0.163 1

 18:3c9,c12,c15 0.56 0.17 0.002 0.218 —

 18:3c9,t11,c15 0.04 0.03 <0.001 <0.001 1

 20:3c8,c11,c14 0.10 0.06 <0.001 0.046 2

 20:4c5,c8,c11,c14 0.13 0.05 <0.001 0.220 2

 20:5c5,c8,c11,c14,c17 0.05 0.02 <0.001 0.009 —

 22:4c7,c10,c13,c16 0.03 0.02 <0.001 0.065 4

 22:5c7,c10,c13,c16,c19 0.08 0.03 <0.001 0.049 3

Table 1. Descriptive statistics, additive genetic variance ( )a
2σ  and genomic heritability h( )2  for fat percentage and 

individual milk fatty acids (n = 1,152, Brown Swiss cows). 1From Pegolo et al. (2016). SD: standard deviation; 
σa

2 = genetic variance; h2: genomic heritability; 2#SNP: number of significant SNP (5 × −10 5) for each trait SFA: 
saturated fatty acids; MUFA: mono-unsaturated fatty acids; PUFA: polyunsaturated fatty acids; VA: vaccenic 
acid; RA: Rumenic acid.
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Supplementary Table S2). In particular, the genes associated with 12:0 presented the highest number of overrep-
resented categories/pathways, suggesting a large degree of genetic control for this FA (Fig. 2a). For instance, we 
observed a high association between the 12:0 content in milk and the regulation of mitogen-activated protein 
kinase (MAPK) activity, e.g., MAPK cascade (q = 7.73E-06), MAPK signalling pathway (q = 0.00046), positive 
regulation of extracellular signal-regulated kinase (ERK) 1 and ERK2 cascade (q = 0.00017), and positive regula-
tion of protein phosphorylation (q = 8.70E-06; Fig. 2a). The intermediate filament together with the intermediate 
filament cytoskeleton appeared to be substantially enriched by 18:1c12 (q = 3.99E-06 and q = 8.34E-06, respec-
tively), while vesicle-mediated transport was generally enhanced by 18:2t11,c15-related genes (q = 1.57E-05)  
(Fig. 2a).

Similar to GO terms, KEGG analysis indicated that the 12:0-related genes were involved in the GnRH signal-
ling pathway, MAPK signalling, type I diabetes mellitus and inflammation processes such as graft-versus-host 
disease and systemic lupus erythematosus (Fig. 2b). The same analysis indicated that the systemic lupus ery-
thematosus pathway was also enriched for 18:1t9, 18:1t10, TFA and TFA18:1. The oocyte meiosis pathway was 
ranked at the top of the KEGG list of the most impacted functions for SFA (q = 0.00017; Fig. 2b), whereas the 
ErbB signalling pathway and bacterial invasion of epithelial cells was clearly induced by 18:3c9,c12,c15-related 
genes. Basal transcription factors appeared to be greatly impacted by the 16:1 index-related genes (q = 0.00020; 
Fig. 2b).

AWM matrix construction and gene networks. We retained 15,277 annotated SNPs out of the 37,568 
SNPs for AWM matrix construction analyses. After applying a series of filtering steps (see Material and Methods), 
1,575 SNPs, corresponding to 1,575 unique genes, were used to build the AWM matrix. Hierarchical clustering 
of traits evidenced 2 clusters which best described the FA profiles according to similarities in their origins or in 
their metabolic processes, e.g., alpha-linolenic acid (18:3c9,c12,c15) clustered with the n3 FAs, and 6:0 with the 
SCFAs (Supplementary Fig. S1). Correlations across AWM rows were used to predict gene associations and build 
a network in which each node represented a gene and each edge a significant interaction. In total, 27,050 signif-
icant edges between 1,575 nodes were identified based on the Partial Correlation coefficient with Information 
Theory (PCIT) algorithm. The SNPs detected with the AWM approach explained 67% of the phenotypic var-
iance for 12:0, which was significantly larger (P < 0.001) than the variance explained by the same number of 
randomly selected SNPs (10,000 replicates) (Fig. 3). After applying the gene network reduction strategy (filtering 
for sparse correlations ≥ |0.80|), we obtained a network with 1,628 significant interactions and 791 nodes (Fig. 4). 
The node degree followed an approximate power law distribution (R2 = 0.933; y = −1605x379), which suggests 
that the reduced network was scale-free and that a few gene nodes acted as hubs with a large number of links 
to other gene nodes. Analysis of other network topological parameters, e.g., node closeness, eccentricity and 

Mean1 SD1 σa
2 h2 #SNP2

Group of fatty acids, g/100 g fatty acids

  SFA 69.63 4.11 1.366 0.156 3

  MUFA 24.24 3.46 0.737 0.105 3

  PUFA 3.78 0.79 0.055 0.253 2

  SCFA 10.52 1.72 0.156 0.121 7

  MCFA 52.81 5.26 2.093 0.194 2

  LCFA 34.38 5.14 1.498 0.122 3

  BCFA 2.08 0.41 0.013 0.262 4

  n-3 fatty acids 0.69 0.20 0.003 0.199 4

  n-6 fatty acids 2.31 0.65 0.020 0.167 2

  n6/n3 ratio 3.53 1.18 0.034 0.108 5

  Trans fatty acids 2.22 0.53 0.019 0.195 4

  Trans fatty acids 18:1 2.16 0.52 0.018 0.193 3

Unsaturation index, %

  10:1/(10:0+10:1) 9.54 2.00 <0.001 0.224 8

  14:1/(14:0+14:1) 8.16 2.04 <0.001 0.336 19

  16:1/(16:0+16:1) 3.83 0.90 <0.001 0.176 —

  18:1/(18:0+18:1) 67.22 4.32 <0.001 0.257 5

  RA/(RA+VA) 34.98 5.53 <0.001 0.109 1

Table 2. Descriptive statistics, additive genetic variance and genomic heritability for groups of fatty acids and 
unsaturation indices (n = 1,152, Brown Swiss cows). 1From Pegolo et al. (2016). SD: standard deviation; 
σa

2 = genetic variance; h2: genomic heritability; 2#SNP: number of significant SNP (5 × 10 5− ) for each trait SFA: 
saturated fatty acids; MUFA: mono-unsaturated fatty acids; PUFA: polyunsaturated fatty acids; SCFA: short-
chain fatty acids; MCFA: medium-chain fatty acids; LCFA: long-chain fatty acids; BCFA: branched-chain fatty 
acids; OCFA: odd-chain fatty acids; RA: rumenic acid; VA: vaccenic acid SCFA included the 4:0, 6:0, 8:0 and 
C10:0 fatty acids; MCFA included all linear fatty acids from 11:0 to 16:1; LCFA included all linear fatty acids 
from 17:0 to 24:0; trans fatty acids included all trans fatty acids; trans fatty acids 18:1 included all trans isomers 
of 18:1.
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BTA1 #SNP Interval, Mbp P-value (range) Top SNP name/rs number
Top SNP 
location, bp

Top SNP 
MAF Trait2

1 1 — 3.75E–05 DPI-28/rs109146949 37046480 0.21 13:0

1 1 — 2.83E–05 Hapmap49149-BTA-39529/rs43253949 81271586 0.21 18:1c12

1 1 — 4.00E–05 ARS-BFGL-NGS-23253/rs43248299 89900842 0.06 14:1 index

1 1 — 1.37E–05 BTB-01748272/rs42864406 92171349 0.01 17:1c9

1 1 — 4.04E–05 BTA-49368-no-rs/rs41578200 121093829 0.48 n6/n3 ratio

1 1 — 1.20E–07 ARS-BFGL-NGS-42512/rs43003942 138452988 0.13 BCFA, 14:0iso, 16:0iso

1 1 — 1.34E–05 BTB-01839901/rs42951145 140996730 0.09 n6/n3 ratio

1 1 — 4.23E–06 ARS-BFGL-NGS-97531/rs110831311 148969868 0.07 18:1t11

2 2 129.054–130.511 (6.94E–06, 3.00E–06) ARS-BFGL-NGS-56131/rs110614098 130511453 0.20 OCFA, 18:2c9,t11

3a 1 — 3.06E–05 ARS-BFGL-NGS-100336/rs109285212 13148505 0.01 n6/n3 ratio

3b 1 — 1.09E–05 ARS-BFGL-NGS-108225/rs109664220 45572779 0.01 17:1c9

3c 1 — 5.73E–06 Hapmap59096-rs29024776/rs29024776 49335664 0.01 17:1c9

3d 2 56.959–57.516 (8.50E–06, 3.49E–06) ARS-BFGL-NGS-69251/rs208524162 57515766 0.01 17:1c9

3e 1 — 1.56E–05 BTB-00135284/rs43342803 72743814 0.01 OCFA

3 f 1 — 1.73E–05 ARS-BFGL-NGS-34260/rs43578470 78170557 0.06 10:1c9

3 g 6 118.567–121.204 (8.99E–06, 1.28E–06) BTB-01730472/rs42844513 120283544 0.34 17:0iso

4 1 — 4.90E–06 Hapmap49725-BTA-72716/rs41653969 25155275 0.13 24:0

4 1 — 1.49E–05 ARS-BFGL-NGS-43812/rs110040170 84080999 0.03 n3

5a 5 10.336–10.789 (2.85E–05, 1.02E–05) BTA-23621-no-rs/rs41607929 10735432 0.09 11:0, 15:0, OCFA

5b 1 — 7.18E–06 Hapmap30002-BTA-142983/rs110558219 26876852 0.01 18:1 index

5c 1 — 3.66E–05 ARS-BFGL-NGS-22065/rs110164442 41695035 0.19 18:0

5d 1 — 4.24E–05 BTA-73516-no-rs/rs41657461 48752237 0.33 18:0

5e 5 84.087–85.289 (2.00E–05, 4.58E–06) ARS-BFGL-NGS-72008/rs109763804 85160180 0.35 10:0, 12:0, SFA, MUFA, 
MCFA, LCFA

5 f 1 — 1.64E–05 ARS-BFGL-NGS-99256/rs109920572 104714350 0.37 PUFA, n6

5 g 1 — 3.15E–05 ARS-BFGL-NGS-91167/rs41565304 108721301 0.11 20:1c9

6a 1 — 1.11E–07 Hapmap46514-BTA-122322/rs42706774 1091047 0.01 20:4c5,c8,c11,c14, CLA 
index

6b 2 21.830–23.148 (1.28E–05, 6.17E–06) ARS-BFGL-NGS-118959/rs42960052 21829670 0.18 18:1t16

6c 1 — 1.06E–05 Hapmap23862-BTC-069949/rs42974158 40530400 0.01 17:0ante

6d 1 — 2.80E–05 Hapmap38352-BTA-76628/rs41567758 70865694 0.04 18:2t11,c15

6e 1 — 2.31E–05 BTA-76070-no-rs/rs41651324 78598487 0.01 18:1t6–8

7 1 — 3.51E–07 ARS-BFGL-NGS-106506/rs110440837 8491850 0.17 BCFA, 15:0ante

7 1 — 6.38E–06 ARS-BFGL-NGS-27096/rs42584535 34158112 0.03 18:1c12

7 1 — 7.80E–06 BTB-01848865/rs42957016 87008149 0.13 fat

7 1 — 3.05E–05 BTB-01862398/rs42974286 89421646 0.01 16:0

8a 1 — 2.53E–09 Hapmap40047-BTA-119117/rs42871459 3663959 0.01 18:1t16

8b 1 — 4.83E–05 ARS-BFGL-NGS-103495/rs109183089 9393962 0.28 15:0ante

8c 1 — 3.51E–05 BTA-109900-no-rs/rs41611360 22479821 0.24 16:0

8d 1 — 3.24E–05 Hapmap31882-BTA-80969/rs41607560 36781224 0.13 SFA

8e 1 — 2.82E–05 ARS-BFGL-NGS-66921/rs43557108 63901386 0.08 24:0

8 f 1 — 2.39E–05 ARS-BFGL-NGS-79292/rs109397331 76353681 0.03 20:3c8,c11,c14

8 g 1 — 1.58E–05 ARS-BFGL-NGS-25285/rs110783907 86501009 0.01 13:0

8 h 1 — 2.43E–05 BTB-00372235/rs43575220 102000000 0.12 18:1c12

8i 2 109.112–110.602 (3.87E–05, 1.59E–05) Hapmap57174-rs29021038/rs29021038 109000000 0.03 LCFA, MCFA, MUFA, 
SFA, 17:1c9

9a 3 10.454–10.859 (8.76E–06, 4.69E–06) Hapmap38633-BTA-83140/rs41592651 10858927 0.42 14:0iso, 24:0

9b 1 — 3.67E–05 ARS-BFGL-NGS-82987/rs109263914 13141454 0.01 20:1c9

9c 1 — 3.71E–06 BTB-00389124/rs43593890 35036949 0.01 18:1 index

9d 1 — 4.02E–05 BTB-00396747/rs43601252 61292190 0.11 22:4c7,c10,c13,c16

9e 1 — 1.23E–06 BTB-00403297/rs43607069 91346194 0.42 fat

9 f 1 — 3.00E–05 ARS-BFGL-NGS-25581/rs109138962 97050334 0.34 17:0

9 g 1 — 9.79E–06 ARS-BFGL-NGS-72947/rs110309954 102301291 0.47 16:0

9 h 1 — 2.98E–05 ARS-BFGL-NGS-34445/rs108973184 104529625 0.38 20:0, TFA, TFA 18:1

10 1 — 3.29E–05 BTB-00415258/rs43621939 28680745 0.25 SCFA

10 1 — 3.79E–05 BTB-00424023/rs43627019 51775341 0.31 10:1 index

10 1 — 5.78E–06 BTA-111053-no-rs/rs43712043 98541920 0.40 15:0

Continued
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BTA1 #SNP Interval, Mbp P-value (range) Top SNP name/rs number
Top SNP 
location, bp

Top SNP 
MAF Trait2

11 1 — 1.99E–05 Hapmap36552-SCAFFOLD185127_16827/rs29014822 2767247 0.01 11:0

11 1 — 4.74E–05 ARS-BFGL-NGS-37630/rs109094066 46590323 0.20 SCFA

11 1 — 1.57E–05 ARS-BFGL-NGS-22364/rs110219158 72900738 0.04 20:3c8,c11,c14

12 2 81.184–82.564 (2.29E–05, 4.09E–06) ARS-BFGL-NGS-113366/rs109738803 82564341 0.03 18:1t6–8, 20:1c9

13a 1 — 4.36E–05 ARS-BFGL-NGS-93056/rs41679436 8880814 0.27 18:1c12

13b 1 — 1.71E–05 Hapmap51705-BTA-24478/rs41608666 21822462 0.03 15:0

13c 5 42.071–42.928 (3.21E–05, 4.71E–06) ARS-BFGL-NGS-74106/rs109854819 42148059 0.01 SCFA, 8:0,10:1c9,15:0ante

13d 1 — 1.43E–05 ARS-BFGL-NGS-26401/rs109111862 56128139 0.02 22:5c7,c10,c13,c16,c19

13e 1 — 1.72E–05 BTB-00534445/rs41702380 60198826 0.01 22:5c7,c10,c13,c16,c19

13 f 1 — 6.76E–06 ARS-BFGL-NGS-36046/rs109889561 79523868 0.43 17:0

13 g 1 — 2.82E–05 ARS-BFGL-NGS-19988/rs110209373 83018263 0.06 17:0ante

14a 1 — 3.60E–05 Hapmap25183-BTC-049425/rs110642420 6910008 0.34 18:1t4

14b 1 — 2.82E–05 ARS-BFGL-NGS-114730/rs109081077 17378950 0.02 11:0

14c 1 — 8.25E–06 Hapmap25446-BTC-054694/rs110267285 26003598 0.46 fat

14d 1 — 2.38E–06 Hapmap50929-BTA-28833/rs42488778 40785938 0.02 14:0iso, 15:0iso

14e 2 57.146–58.849 (3.82E–05, 3.71E–05) ARS-BFGL-NGS-18262/rs110902895 58848872 0.05 14:0iso, 15:0iso

15a 1 — 4.94E–05 ARS-BFGL-NGS-89820/rs41749553 9041018 0.38 22:4c7,c10,c13,c16

15b 2 22.960–23.155 (4.93E–05, 4.02E–05) Hapmap49882-BTA-121007/rs41633877 22960231 0.48 17:0, 18:1c9, LCFA

15c 1 — 1.38E–06 ARS-BFGL-BAC-27778/rs110822031 41043816 0.01 10:1c9, 14:1c9, 14:1 index

15d 1 — 1.33E–05 Hapmap43354-BTA-77081/rs41655008 70284345 0.41 18:1t10, 15:0

16 1 — 1.74E–05 ARS-BFGL-NGS-87853/rs110144946 30262349 0.19 fat

16 1 — 2.74E–05 Hapmap41467-BTA-18750/rs42936429 34021608 0.23 n3

16 1 — 1.20E–05 BTA-38719-no-rs/rs41800166 37229378 0.11 11:0

16 1 — 3.13E–05 ARS-BFGL-NGS-77903/rs109547989 48694547 0.13 n3

16 1 — 2.38E–05 BTA-105815-no-rs/rs42703002 79192647 0.32 14:0iso

17 1 — 8.10E–06 Hapmap47504-BTA-111690/rs41567580 11231535 0.02 18:3c9,c12,c15, n3

17 1 — 2.79E–05 Hapmap42781-BTA-105847/rs41611446 20593969 0.32 18:1t11

17 1 — 2.60E–05 Hapmap41708-BTA-99722/rs41596865 61624831 0.01 18:1t4

17 1 — 3.78E–05 ARS-BFGL-NGS-13495/rs42392402 69267462 0.07 24:0

18 1 — 4.84E–05 ARS-BFGL-NGS-116944/rs110779574 53071113 0.13 20:1c9

19a 1 — 5.83E–06 ARS-BFGL-NGS-107289/rs110773010 10305065 0.13 18:1t11, TFA,TFA 18

19b 2 38.366–39.202 (3.25E–05, 2.08E–05) ARS-BFGL-NGS-20183/rs109740434 38365974 0.39 22:4c7,c10,c13,c16

19c 1 — 1.36E–05 UA-IFASA-6210/rs41579737 59715027 0.11 OCFA

19d 3 61.585–62.830 8.28E–06 ARS-BFGL-NGS-31729/rs110634188 62829939 0.42 10:1c9,18:1c9, 20:1c9

20a 2 36.757–37.839 (7.31E–06, 1.13E–06) ARS-BFGL-NGS-5430/rs110515218 37838938 0.08 18:1 index

20b 1 — 4.66E–05 Hapmap26422-BTA-148751/rs110477372 40754324 0.01 17:0

20c 2 61.402–61.765 (4.44E–05, 2.80E–05) ARS-BFGL-NGS-99194/rs110456601 61764939 0.08 24:0, 18:2c9,c12

20d 1 — 9.33E–06 ARS-BFGL-NGS-103163/rs110692744 68933034 0.38 10:1c9

20e 1 — 2.56E–05 ARS-BFGL-NGS-60835/rs110404528 71271028 0.42 14:1c9

21a 1 — 4.06E–05 Hapmap39215-BTA-105710/rs41617177 4706119 0.27 22:5c7,c10,c13,c16,c19

21b 1 — 2.76E–05 ARS-BFGL-NGS-119424/rs109012245 12684633 0.02 n6

21c 1 — 1.75E–05 Hapmap59970-rs29026939/rs29026939 42413671 0.28 6:0, SCFA

21d 2 63.985–64.085 (4.12E–05, 1.67E–06) ARS-BFGL-NGS-43652/rs109547826 64085350 0.15 BCFA

22a 1 — 3.13E–05 ARS-BFGL-NGS-19546/rs109794490 21547900 0.01 18:3c9,t11,c15

22b 1 — 3.10E–06 ARS-BFGL-NGS-20317/rs109201435 29854903 0.02 17:1c9

22c 3 46.782–47.365 (2.42E–05, 6.60E–06) ARS-BFGL-NGS-8294/rs42011605 46781645 0.10 6:0

22d 1 — 2.00E–06 ARS-BFGL-NGS-82789/rs42286369 58458470 0.10 n6/n3 ratio

23 1 — 2.00E–05 Hapmap40178-BTA-55802/rs41641235 21748514 0.36 18:1t16

23 1 — 8.29E–06 ARS-BFGL-NGS-109297/rs110759282 36139914 0.07 15:0, OCFA

24 1 — 4.20E–05 ARS-BFGL-NGS-19695/rs110816279 14841074 0.02 14:0iso

24 1 — 2.11E–05 ARS-BFGL-NGS-104621/rs109735501 48334377 0.13 20:1c9

25 1 — 1.68E–05 Hapmap29767-BTC-015734/rs109968431 2084697 0.10 16:0iso

25 1 — 4.53E–06 ARS-BFGL-NGS-108964/rs110840614 4566007 0.02 18:1 index

25 1 — 2.47E–05 Hapmap43893-BTA-60736/rs41645892 9862811 0.19 17:0iso

25 1 — 3.14E–07 BTA-118965-no-rs/rs42074723 32648759 0.14 18:2c9,t11, PUFA

26a 1 — 3.05E–06 ARS-BFGL-NGS-13746/rs110924756 9866940 0.13 10:1 index, 14:1 index

Continued
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betweenness (network centrality indices), showed that some of the genes involved in lipid metabolism, such as 
INTS8, SACM1L, AGMO and PTGR1, might be relevant to the SNP co-association network. Table 4 summarizes 
the 10 most highly-connected nodes based on significant interactions (node degree) and Supplementary Table S3 
shows their positions in close proximity to the QTLs related to milk fat or milk FAs deposited in the Cattle QTL 
database32. As the SNP marker Hapmap54104-rs29010930 was located ~ 2 kb up-stream of CNNM1 (at ~20.3 Mb 
on BTA26), we investigated whether this SNP affected the transcriptional regulation of CNNM1 by comparing 
genomic regions up-stream of CNNM1 across different species using mVISTA. The results revealed the presence 
of a cluster of conserved non-coding elements (CNEs) surrounding Hapmap54104-rs29010930 (Supplementary 
Fig. S2).

We used IPA to investigate the co-enriched functions/pathways and other biological features within the net-
work. Enriched pathways included MAPK related pathways (e.g. “ERK/MPK signaling”, P = 8.32E-03; “GnRH 
signaling”, P = 1.55E-06), “Phosphatidylglycerol Biosynthesis II” (P = 6.76E-03); pathways related to lipid metab-
olism such as “Fatty acid activation”(P = 9.12E-03), “Adipogenesis pathway”(P = 1.91E-02), “Triacylglycerol 
Biosynthesis” (P = 8.51E-03), “Triacylglycerol degradation” (P = 3.02E-02), “PPAR signalling” (P = 1.38E-
03) and “CDP-diacylglycerol Biosynthesis I” (P = 4.47E-03); pathways related to hormone signalling, e.g., 
“Pregnenolone Biosynthesis” (P = 1.91E-02). The top IPA computed networks showed that the genes in the net-
works were associated with “Cell Morphology, Cellular Function and Maintenance, Carbohydrate Metabolism” 
and “Immunological Disease, Inflammatory Disease, Inflammatory Response”. The full list of enriched pathways 
and computed networks is reported in Supplementary Table S4.

In parallel, we have also generated a supplementary TF network by investigating the potential impact of the 
combination of one or more TFs on the expression of the other genes in the network with the lowest redundancy. 
Hence, we explored 383,306 possible combinations of TF trios among the 1,977 TFs identified by33. The analysis 
allowed us to identify BTB domain and CNC homolog 2 (BACH2), E2F transcription factor 3 (E2F)3, and lysine 
demethylase 5 A (KDM5A) TFs, which controlled the transcription of 877 unique genes in our network (~56% 
of the genes in the AWM matrix) (Fig. 5) and which might play a pivotal role in orchestrating adaptations of 
the FA metabolism in the mammary gland. Functional analyses of these 877 target genes by ClueGo revealed 
the metabolic pathways to be the most highly impacted, of which lipid and carbohydrate metabolism were the 
most important. Among lipid metabolism, glycerophospholipid metabolism and sphingolipid metabolism were 
the most highly induced, followed by the MAPK activity-related pathways (e.g., the MAPK signalling pathway) 
and the GnRH signalling pathway. We also found overrepresentation of pathways related to reproduction (e.g., 
progesterone-mediated oocyte maturation) as well as the glutamatergic synapse and oxytocin signalling pathway. 
The full list of significantly enriched pathways and GO terms is presented in Supplementary Table S5.

In addition, to analyze in depth the TFs potentially controlling the network, we examined the putative binding 
sites within the promoter region of these TFs using the LASAGNA tool. Interestingly, the promoter region of 

BTA1 #SNP Interval, Mbp P-value (range) Top SNP name/rs number
Top SNP 
location, bp

Top SNP 
MAF Trait2

26b 4 14.655–16.708 (2.71E–06, 1.67E–08) ARS-BFGL-NGS-43432/rs110578080 15336560 0.28 14:1 index, 14:1c9

26c 9 18.170–22.978 (2.52E–05, 3.46E–09) ARS-BFGL-NGS-39823/rs42089958 22951431 0.09
14:1 index,10:1 index, 
14:1c9, MUFA, 18:1c9, 
10:0, 12:0, 14:0

26d 6 25.088–31.577 (1.61E–05, 9.05E–09) ARS-BFGL-NGS-118712/rs42095154 25088146 0.19 14:1 index, 14:1c9

27 1 — 6.56E–07 ARS-BFGL-NGS-87845/rs109663833 42118037 0.03 fat

28 1 — 2.52E–05 ARS-BFGL-NGS-118662/rs110810782 2947166 0.01 18:2c9,t11

29 1 — 4.39E–05 ARS-BFGL-NGS-67720/rs42636308 17876279 0.06 22:4c7,c10,c13,c16

29 1 — 4.60E–06 BTA-65012-no-rs/rs42168039 19966479 0.10 14:0iso

U3 1 — 5.30E–06 ARS-BFGL-NGS-102692/rs43587199 0 0.46 16:0iso

U3 1 — 3.22E–05 BTB-00021257/ rs43232419 0 0.38 18:2t11,c15

U3 1 — 4.90E–05 Hapmap43001-BTA-63377/ rs41650170 0 0.19 16:1t9

Table 3. Summary results of the genome-wide association analysis for milk fatty acid traits. 1BTA = Bos taurus 
autosome; #SNP = number of the single nucleotide polymorphisms significantly associated to the trait; Interval: 
The region on the chromosome spanned among the significant SNP(s) (in Mb); P-value (range) = The P-value 
of the highest significant SNP adjusted for genomic control and the range of the P-values when multiple SNP 
were significantly associated to one trait; Top SNP location (bp) = position of the highest significant SNP on the 
chromosome in base pairs on UMD3.1 (http://www.ensembl.org/index.html); Top SNP MAF = minor allele 
frequency of the top SNP. 2OCFA: odd-chain fatty acids; BCFA: branched-chain fatty acids; SFA: saturated fatty 
acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; SCFA: short-chain fatty acids; 
LCFA: long-chain fatty acids; TFA: trans fatty acids; TFA 18:1: trans fatty acids 18:1; CLA: conjugated linoleic 
acid. SCFA included the 4:0, 6:0, 8:0 and C10:0 fatty acids; MCFA included all linear fatty acids from 11:0 to 
16:1; LCFA included all linear fatty acids from 17:0 to 24:0; trans fatty acids included all trans fatty acids; trans 
fatty acids 18:1 included all trans isomers of 18:1. The trait with the highest P-value in each genomic region is 
bolded. 3U:Undefined chromosome and position on the genome.

http://www.ensembl.org/index.html
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E2F3 and KDM5A was predicted to contain binding sites for several regulators of cholesterol and lipid metabo-
lism such as ARNT:AhR, HNF4A, CREB1, SP1, MAFB and PPARG:RXRA (Supplementary Table S6).

Discussion
GWAS results. We have reported here GWAS results for the profiles of 65 FA traits and the fat percentage in 
Brown Swiss cows’ milk, including also lesser-studied FAs and/or those present in small concentrations. Genomic 
heritabilities exhibited a medium-high relationship with the genetic heritabilities estimated using a standard ani-
mal model (r = 0.70). Similarly, we found a moderate agreement between AWM column-wise correlations and 
the genetic correlations among FAs (r = 0.70)9. Several GWAS studies are available for bovine milk FA profiles 
in Holstein and Jersey populations17–19,34,35. However, only the main or most representative individual FAs or FA 
groups have generally been investigated. We found some correspondence with previous results, e.g., the presence 

Figure 1. Manhattan plots of the genome-wide association studies on Bos taurus autosome 26 (BTA26). (a) 
14:0; (b) 14:1c9; (c) 12:0; (d) 10:0; (e)18:1c9; (f) MUFA; (g) ID10:1; (h) ID14:1. The red horizontal lines indicate 
a −log10 (P-values) of 4.30 (corresponding to P-value = 5 × 10−5). Regions 26b, 26c and 26d are highlighted for 
each trait.
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of overlapping regions on BTA26 (~2.5–39.0 Mbp) for 14:1c9 and 14:1 index17,18,34, on BTA13 (~41.40–68.40 
Mbp) for 8:0 and SCFAs17, and on BTA5 for 18:1 index (~25.4–28.0 Mbp) and unsaturated FA (UFA) (84.1–
104.70 Mbp)35. In particular, the region on BTA26 covers the known candidate gene SCD1 (located at ~21.14 
Mbp), confirming its notable influence on 14:1 index and consequently on 14:1c9. Indeed, although mammary 
SCD1 may act on several substrates (i.e. 14:0; 16:0, 17:0; 18:0; 18:1t11), 14:1 index has been considered the best 
proxy for SCD activity in the mammary gland, being 14:0 almost exclusively produced via de novo synthesis in 
the mammary gland36. Accordingly, the strongest association in the present study was found for 14:1 index (ARS-
BFGL-NGS-32553, P = 1.36E-09) at 22.98 Mbp on BTA26, which is 1.84 Mb away from SCD1. Interestingly, we 
identified CNEs surrounding the marker Hapmap54104-rs29010930, which was located on BTA26 at 20.20 Mb, 
~2 kb upstream of CNNM1, one of the top nodes in the reduced network. This marker was also detected by 
standard GWAS analysis and significantly associated to 14:0 (P = 2.16E-05; Supplementary Table S1). Because 
CNEs are now known to contribute 4.8% to 9.5% of the variability in the genome37, SNPs within this region 
may have important functional consequences on FA metabolism or synthesis in mammary gland. Indeed, recent 

Figure 2. Distribution of the significantly enriched terms/pathways using genes associated to the fatty acid 
traits. The SNP (P < 0.05) were assigned to genes if they were located within the gene or in a flanking region 
of 15 kb up- and downstream of the gene using the biomaRt R package. For mapping, the Ensembl Bos taurus 
UMD3.1 assembly was used as reference. Gene-set enrichment analysis was carried out using the goseq R 
package. Only the traits showing significantly enriched terms are reported (FDR < 0.05). (a) GO terms; (b) 
KEGG-pathways. ID14:1: 14:1/(14:1+14:0); ID16:1: 16:1/(16:0+16:1); MUFA: monounsaturated fatty acids; 
PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; TFA: trans fatty acids.
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Figure 3. Proportion of phenotypic variance explained by 1575 randomly selected SNP (10,000 replicates). The 
dashed green vertical line represents the proportion of phenotypic variance explained by the SNPs include in 
the AWM.

Figure 4. Regulatory network of the genes significantly associated with fatty acid profiles in bovine milk. In 
the network, every node represents a gene, whereas every edge connecting two nodes represents a significant 
interaction (correlation value ≥|0.80|). The nodes shape indicates whether the node is a transcription factor 
(triangles), a miRNA (hexagon), a metabolite (round rectangle), a membrane receptor (rectangle), a transporter 
(parallelogram), or other type of genes (ellipses). Information of molecule type was obtained using Ingenuity 
Pathway Analysis (IPA; version 5.5, Ingenuity Systems, USA). The list of identified TF was updated with that 
reported by33. The node colour represents the biological function of the gene, according to IPA. The edge colour 
intensity indicates the level of the association: red = positive correlation - and blue = negative correlation 
between two nodes. The width of the edge indicates the value of the correlation; a wider edge corresponds to a 
higher correlation in absolute value.
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findings suggest that CNEs are potentially involved in gene regulation, often encoding for enhancer elements, 
which may also be located far from their target gene38,39. Support for this hypothesis might be gathered by the 
results of GWAS analysis obtained after conditioning for Hapmap54104-rs29010930, which evidenced a large 
drop in h2 for 14:0 (from 0.075 to 0.017). The window of consecutive SNPs significantly associated with 14:1 
index and 14:1c9 in region 26b is very close to SORBS1 (located at ~16.72–16.92 Mbp), which is involved in the 
regulation of insulin signalling in human adipose tissue40. Insulin acts as powerful regulator for the transcription 

SNP/Gene Illumina Chip SNP/rs number Ap1 Connections Functional consequence

CNNM1 Hapmap54104-rs29010930/ rs29010930 16 45 Upstream variant 2 kb

MED21 ARS-BFGL-NGS-110407/ rs109351348 12 45 Intron variant

SSPN Hapmap49290-BTA-74411/ rs41652667 22 43 Inter-genic variant

FBXO7 ARS-BFGL-NGS-76692/ rs110166704 10 41 Downstream variant 500 bp, utr variant 
3 prime

LRMP ARS-BFGL-NGS-110708/ rs109690396 18 35 Intron variant

LARGE1 Hapmap39452-BTA-94180/ rs41572821 15 34 Intron variant

KRAS ARS-BFGL-NGS-72008/ rs109763804 14 34 Inter-genic variant

BCAT1 ARS-BFGL-NGS-39913/ rs109168591 14 32 Intron variant

BTRC BTB-00932332/rs42088972 12 32 Intron variant

DNAH5 ARS-BFGL-NGS-119072/ rs110338011 19 31 Intron variant

Table 4. Description of the ten most connected nodes in the co-association network*. 1Ap: associated 
phenotypes. *Network represented in Fig. 4 which was obtained after filtering the complete PCIT-gene network 
for sparse correlation ≥|0.80|.

Figure 5. Activators and repressors of the regulatory network of genes associated with the bovine milk fatty 
acid profile. In the network, the best trio of transcription factors is showed: E2F3, KDM5A and BACH2. The 
nodes shape indicates whether the node is a transcription factor (triangles), a miRNA (hexagon), a metabolite 
(round rectangle), amembrane receptor (rectangle), a transporter (parallelogram), or other type of genes 
(ellipses). The node colour represents the biological function of the gene according to Ingenuity Pathway 
Analysis (IPA) annotation. The list of identified TF was updated with that reported by33. The edge colour 
intensity indicates the level of the association: red = positive correlation - and blue = negative correlation 
between two nodes.
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of bovine SCD according to its pro-lipogenic role41. The ruminant mammary gland does not have a total require-
ment for insulin to activate lipogenesis but the lipogenic role of insulin signaling in the bovine mammary gland 
might acquire a biological meaning with the advancing of lactation and the increase in insulin sensitivity42. The 
SORBS1 gene has also been previously reported as a potential candidate gene associated with bovine milk FA 
profile35. The same SNP at 104.71 Mbp on BTA5 (ARS-BFGL-NGS-99256) significantly affected PUFAs and n6 
FAs (present work) and UFAs35. This SNP is located 4.46 Mbp from the OLR1 gene, which can bind and degrade 
oxidized low-density lipoprotein and has already been identified as a candidate gene for milk fat composition18,43. 
Significant associations were detected on BTA2 (~129.05 Mbp), BTA25 (~32.65 Mbp) and BTA28 (~2.95 Mbp) 
for the CLA 18:2 c9,t11. A significant association for CLA on BTA2 was found also by44, although in a different 
position (98.2 Mbp). The SNP on BTA28 (ARS-BFGL-NGS-118662) was located 0.4 Mbp from GNPAT, which 
is involved in the lipid metabolic process and has previously been associated with Δ9-desaturase44. Other sig-
nificant associations were discovered in close proximity of previously identified candidate genes34,35 such as GH 
(ARS-BFGL-NGS-102154), LIPJ and LIPK (ARS-BFGL-NGS-13746), PRLR (Hapmap26422-BTA-148751) and 
NFKB2 (BTB-00933928) (Supplementary Table S1).

On the other hand, we also found some of our results to be inconsistent with previous studies. The most 
important differences were found on BTA14, where DGAT1 (located at ~1,8Mbp) is recognised as influencing 
the profile of several FA traits, including RA, 14:1, 16:1, 16:0, 18:1c9, 14:1 index, 16:1 index, 18:1 index 18:2c9,c12, 
18:3c9,c12,c1518,25 and milk fat19,45. In the present study, we also found a significant association with the milk 
fat but at a different position (~26.00 Mbp). Other associations on BTA14 were with 18:1t4 (~6.91 Mbp), 11:0 
(~17.38 Mbp), 14:0 iso (~40.79 and 57.15 Mbp) and 15:0 iso (~40.79 and 58.85 Mbp). These differences can be 
attributed to the fact that DGAT1 is nearly monomorphic in the Italian Brown Swiss12,46, therefore the observed 
associations might reflect the effect of other multiple genes. For instance, Hapmap25446-BTC-054694 was located 
~0.3 Mbp from CYP7A1 which catalyses a rate-limiting step in cholesterol catabolism47. Furthermore, a polymor-
phism on this gene has been shown to influence plasma lipids in humans48.

Our GWAS study did not detected SNPs associated to some of the well-known candidate genes for milk FA 
profile (e.g. FASN, MGST1). On the other hand, some other previously reported candidate genes were confirmed 
(e.g. ORL1, GNPAT, GH). GWAS power depends on sample size, effect size, causal allele frequency, and marker 
allele frequency and its correlation with the causal variant49. Some divergences with previous results might be 
attributed to several factors such as differences in the populations studied (breed, number of animals, environ-
ment and management conditions, physiological and metabolic factors, structure of the linkage disequilibrium 
among the genetic markers), and differences in the statistical model used for GWAS analysis and/or in the marker 
densities.

Pathway and network analyses. Pathway and network analyses from GWAS data were performed to 
find both candidate regulatory sites and the most likely functional variants. We identified 12:0-related genes as 
uncovering the greatest number of pathways/GO terms, suggesting that 12:0 may play a key biological role in the 
control of milk fat composition. It is worth mentioning that the palm kernel oil, which is a rich source of 12:0, can 
be used as supplement in the feed industry. However, in Italy palm kernel oil is not regularly adopted as indirectly 
suggested by recent studies carried out in Northern Italy50,51. Concentrates might be integrated with lipids to 
increase the energy content of the diets but generally soybean, linseed and sunflower (as whole seeds, expellers 
or oil) are used.

The genes related to 12:0 were mostly involved in MAPK activity, ERK1 and ERK2 cascade and protein phos-
phorylation. The MAPK pathway has been found to be responsive to ApoA-1/ABCA1 activity in bovine mam-
mary epithelial cells in vitro52. Further, the presence of ABCA1 and ABCG1 has been detected in mammary 
epithelial cells and in the membrane of milk fat globules which suggest that these proteins might be involved in 
cholesterol exchange between mammary epithelial cells and milk53. In the ruminants, only a small part of choles-
terol in milk seemed to be synthetised in the mammary gland while it is mainly derived from the blood uptake54. 
Genes related to the cholesterol synthesis are induced in the bovine liver after parturition55, suggesting that high 
levels of cholesterol are delivered by lipoproteins to the mammary gland56. Therefore, we might speculate that the 
significance of the association between 12:0 and alleles related to genes involved in MAPK pathway could be likely 
related to role of cholesterol in the fat globule membrane. Finally, capric and lauric acid have been also shown 
to have anti-bacterial and anti-inflammatory activities in vitro and in mouse model57,58. The anti-inflammatory 
effect seemed to be partially mediated by the inhibition of NF-κB activation and phosphorylation of MAPK58, 
suggesting a putative link between the immune signalling pathways and the mammary cells’ anti-inflammatory 
response. Activation of the GnRH pathways suggests a link between lauric acid, MAPK activity and cholesterol 
synthesis and release. The MAPK are also acknowledged as being involved in the transcriptional activation of a 
wide variety of genes regulating the biosynthesis and secretion of the gonadotropins, e.g., the luteinizing hormone 
(LH) and the follicle-stimulating hormone (FSH), both related to sex steroid hormone synthesis, follicle growth 
and oocyte maturation59. Cholesterol is also the precursor for the biosynthesis of steroid hormones, including sex 
steroids and corticosteroids60. The enrichment of pathways related to reproduction, e.g. oocyte meiosis, has been 
also previously associated to the milk profile of 12:0 in Danish Jersey19. All these novel putative biological roles for 
12:0 in the bovine mammary gland are summarized in Fig. 6.

Pathway analyses of the set of genes included in the regulatory network further confirmed the relevance 
of alleles involved in MAPK signalling, cholesterol biosynthesis, hormonal signalling and reproduction. 
Overrepresentation of the “Oxytocin signalling pathway” may be explained by oxytocin (OXT) effects in the 
regulation of milk secretion from lactating mammary gland in mammals including ruminants61. Oxytocin 
was suggested to have direct effects on the mammary epithelium in mammals, in that it stimulates milk lipid 
secretion, although the mechanisms are still not clear62,63. Finally, OXT also plays an important role in many 
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reproduction-related functions in female ruminant; accordingly, steroid hormones seemed to act as (indirect) 
regulators of the OXT-receptor signalling64.

Identification of transcription factors within the regulatory network. Mining for transcription 
factors and their putative target genes is an important component of the system biology approach and allows 
transcriptional networks, which may have important regulatory functions for FA metabolism and synthesis, to 
be uncovered. The AWM approach allowed inferring gene interactions and computing networks based on the 
co-association patterns across phenotypes, using the PCIT algorithm which is based on partial correlations and 
information criteria. On the other hand, IPA provided relevant networks and up-stream regulators analysis based 
on the information deposited in the expert-annotated Ingenuity Knowledge Base. Integrating these approaches 
allowed to formulate molecular mechanistic hypotheses and identify upstream regulators likely responsible for 
phenotypic or functional outcomes.

The TF network analyses revealed that the best trio of TFs (E2F3, KDM5A and BACH2) presented 
co-association with a large number of genes involved in processes related to lipid and energy metabolism 
described in mammary tissue of ruminants, e.g., fatty acid β-oxidation65, PPAR/RXR activation66 and triacylglyc-
erol biosynthesis67. This is of interest because manipulation of those TFs networks either directly (e.g., inhibiting 
or activating one or several TFs in the network) or indirectly (e.g., through selection) can lead to changes in milk 
FA synthesis. E2F3, one of the key regulators, is a cell cycle-related factor whose function in non-ruminants 
is associated with the regulation of adipocyte differentiation68 and lipid metabolism69. This TF exhibited 
co-association with 487 target genes playing a role in regulating lipid metabolism/transport and glucose metab-
olism (e.g., DGKB, SCD5, ARNTL2, HMGCR, DAGLA, PLA2G4A, ACOXL and LPCAT2). For instance, the con-
centrations of trans-FA and CLA isomers in milk have been positively associated to SCD5 expression in bovine 
mammary gland70; however, its substrate affinity and role in the mammary tissue are still unclear71. The second 
predicted key TF was BACH2, which was co-associated with 250 genes. The BACH2 functions as transcriptional 
repressor at the immune system level in human72; however, this gene has also been associated with intramuscu-
lar fat content in cattle73. Predicted target genes included lipid-related genes, such as INSIG1, ABCG1, RORA, 
HMGA2, ESR1 and ACSL3. The insulin-induced gene 1 (INSIG1) regulates the responsiveness of SREBP1 and 2 
processing via SCAP, thereby altering the rate of lipogenesis22. Indeed, changes in dietary lipid composition affect 
the expression of INSIG1 in bovine mammary gland74. Furthermore, SNPs on INSIG1 were significantly associ-
ated with differences in UFAs, SFAs and desaturation indices in bovine milk11. Acyl-CoA synthetase long-chain 
family member 3 (ACSL3) plays a role in the conversion of free LCFAs into fatty acyl-CoA esters controlling lipid 
biosynthesis and FA oxidation. Previous works have identified SNPs on ACSL3, that were associated with bovine 
milk FA composition75,76. The third predicted TF was KDM5A, which exhibited co-association with 269 target 
genes. The KDM5A functions as histone demethylases and contributes to co-repression of gene transcription. The 
KDM5A target genes include a large set of cell cycle regulators and genes involved in lipid metabolism, such as 
LPIN1, ACACA, CHPT1, DGKG, GNPAT, PLD1 and ADCY3. The LPIN1 functions as a nuclear transcriptional 
co-activator to regulate the channeling of FAs toward milk triglyceride synthesis in the bovine mammary gland77, 
whereas ACACA catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, which is the rate-limiting reaction 
in FA biosynthesis78. Polymorphisms on LPIN1 and ACACA have been recently associated to the bovine milk FA 
profile14,16.

These TF identified as being responsive to the milk FA profile might represent new targets for more detailed 
functional studies. However, it is worth mentioning that no direct evidence for E2F3, KDM5A and BACH2 genes 

Figure 6. Potential roles of lauric acid in the bovine mammary gland. The Figure summarize the proposed roles 
for lauric acid based in the bovine mammary gland based on the results of functional and network analyses 
from the GWAS data. FSH: Follicle-stimulating hormone; LH: Luteinizing hormone.
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expression in bovine mammary gland is currently available79; therefore, investigation of their expression level in 
bovine mammary epithelial cells is needed to gain support for their potential role as regulators of milk FA profile 
at molecular level. On the other hand, in cow these TFs are expressed in tissues related to nervous system, i.e. 
hypothalamus (E2F3, KDM5A and BACH3) and brain (E2F3)79; it is well known that molecular pathways con-
trolling FA metabolism are highly interconnected and therefore we might assume a putative relationship with FA 
even if these genes are not expressed in the mammary gland.

Current limitations for a more complete systems biology approach to milk FA regulation in dairy cows include 
a lack of additional “omics” data (e.g., metabolomics, proteomics, microRNAomics, epigenomics) and the incom-
plete genome annotation. Further, functional pathways available in livestock animals are still limited and most of 
the information is derived from human and animal models studies28. Consequently, the identification of compet-
itive functional pathways is often challenging. Despite these limitations, our results show that genetic variants in 
the E2F3, BACH2 and KDM5A genes probably play a key role in modulating bovine milk fat profile. Interestingly, 
these genes and many other lipid-related genes were not identified by standard GWAS approach, due to the strin-
gent P-value threshold. The use of GWAS analysis coupled to network analysis allowed for a more holistic study 
of the multi-faceted control of fatty acid composition in milk. Even if some of our findings do not fully agree with 
previous GWAS studies in terms of (re)discovery of well-known candidate genes for bovine milk FA profile, the 
presented results are substantially coherent with biological processes and cellular functions implicated in the 
regulation of lipid metabolism in bovine mammary gland. Such information provides the basis for more detailed 
functional studies at the level of transcription factors and the subsequent effects on transcriptional networks. 
The new knowledge of the genetic control of milk FA composition could help in the development of selection 
strategies aimed at improving the quality of milk for human consumption. In particular, the information inferred 
from the present study might be incorporated as biological prior into prediction models such as BayesRC80 and 
GFBLUP81 to shed more light into the genetic basis of complex traits such as milk FA profile and to improve the 
accuracy of genomic prediction. On the other hand, the potential limitation of this approach relies on the need 
to underpin the actual role of the predicted gene regulators in the bovine mammary gland. Supporting evidences 
might be obtained by using co-expression analyses82, aiming to validate the predicted gene-gene interactions and 
to shed more light on the biological pathways driving variations in milk fat profile. It is likely that establishing a 
functional rationale underlying the importance of allelic variation and candidate genes for milk FA composition 
will become a major component of following up the genes emerging from GWAS.

Methods
Ethics statement. The cows included in this study belonged to commercial private herds and were not 
subjected to any invasive procedures. Milk and blood samples were previously collected during the routine milk 
recording coordinated by technicians working at the Breeder Association of Trento Province (Italy) and therefore 
authorized by a local authority.

Animals, phenotypes and genotypes. Milk samples from 1,264 Italian Brown Swiss cows belonging 
to 85 herds located in Trento province in north-eastern Italy were collected once during the evening milking, 
as described in83. Herds were selected to represent different environments and dairy farming systems including 
feeding regimens (e.g. different amount and type of forage, amount of compound feed or type of ration). Details 
about dairy farming systems including animals feeding conditions are reported in84. Immediately after milking, 
the milk samples (without preservative) were refrigerated at 4 °C and transferred to the laboratory.

Analysis of the milk fat composition has been previously described9. In short, fat percentage was determined 
in individual milk samples using a MilkoScan FT6000 (Foss, Hillerød, Denmark) and analysis of the FA profile 
was performed using gas chromatography (GC) with 65 milk FA traits included (47 individual FAs, 13 FA groups 
and 5 desaturation indices).

The Illumina BovineSNP50 v.2 BeadChip (Illumina Inc., San Diego, CA) was used to genotype 1,152 cows 
(blood samples were not available for all phenotyped animals). Quality control excluded markers that did not 
satisfy the following criteria: (1) call rate > 95%, (2) minor allele frequency > 0.5%, and (3) no extreme deviation 
from Hardy-Weinberg proportions (P > 0.001, Bonferroni corrected). After this filtering step, 1,011 cows and 
37,568 SNP were retained.

Genome-wide association study. A single marker regression model was fitted for GWAS using the 
GenABEL package85 in the R environment and the GRAMMAR-GC (Genome wide Association using Mixed 
Model and Regression - Genomic Control) approach with the default function gamma86. The GRAMMAR-GC 
procedure consists of 3 steps. Firstly, an additive polygenic model with a genomic relationship matrix is fitted. 
The polygenic model was:

y X a e, (1)β= + +

where y is a vector of milk FA traits; β is a vector with fixed effects of days in milk (classes of 30 days each), parity 
of the cow (classes 1, 2, 3, ≥4) and herd-date (n = 85); X is the incidence matrix that associates each observation 
to specific levels of the factors in β. The two random terms in the model were animal and the residuals, which 
were assumed to be normally distributed as a N G(0, )g

2~ σ  and σe N I(0, )e
2~ , where G is the genomic relation-

ship matrix, I is an identity matrix, and σg
2 and σe

2 are the additive genomic and residual variances, respectively. 
The G matrix was constructed in the GenABEL R package, where for a given pair of individuals i and j, the iden-
tical by state coefficients ( fi j, ) is calculated as:



www.nature.com/scientificreports/

1 5SciENtiFic REPORtS | 7: 17317  | DOI:10.1038/s41598-017-17434-7

∑=
− × −

× −
f

N
x p x p

p p
1 ( ) ( )

(1 ) (2)i j k
i k k j k k

k k
,

, ,

where N is the number of markers used, xi k,  is the genotype of the ith individual at the kth SNP (coded as 0, ½ and 
1), pk is the frequency of the “+” allele and k = 1, …, N.

In the second step of GRAMMAR-GC, the residuals obtained in (1) are regressed on the SNP (single marker 
regression) to test for associations. In the last step, the Genomic Control (GC) approach corrects for conservative-
ness of the GRAMMAR procedure and estimates of the marker effects are obtained87. A P-value threshold of 
5 × −10 5 was adopted to determine significant associations88. Manhattan plots were drawn using the R package 
qqman89. The variance explained by each SNP was calculated as 2pqa2, where p is the frequency of one allele, 
q = 1-p is the frequency of the second allele and a is the estimated additive genetic effect. A scan for genes around 
1Mbp upstream-downstream from the significant SNP was performed using the Ensembl Bos taurus UMD3.1 
database (http://www.ensembl.org/index.html).

Model (1) was also used to estimate variance components and the genomic heritability of the traits based on 
the genomic relationship matrix. Heritability was estimated as:

σ

σ σ
=

+
h

(3)

g

g e

2
2

2 2

The proportion of the phenotypic variance explained by the SNPs included in the AWM was estimated using 
GenABEL and the previously described model. Firstly, a G matrix based only on the SNP s included in the AWM 
was constructed. Secondly, the same number of randomly selected SNPs was used to build 10,000 G matrices 
(10,000 replicates) and estimate the proportion of phenotypic variance explained by these randomly selected 
SNPs.

The r-squared statistic was chosen to predict the extent of LD using the R package LDheatmap90.
Conserved non-coding elements were explored using mVISTA, a web tool for comparative genomic analysis 

(http://genome.lbl.gov/vista/index.shtml), which allows sequences from multiple species to be compared and 
visualized with annotation information.

Pathway analyses. Pathway analyses were performed to identify the biological mechanisms contributing 
to the milk fat profile, as previously detailed29. Briefly, the SNPs were divided into two categories “non-relevant” 
and “relevant” based on a nominal P-values < 0.05. By using a less stringent significance threshold (respect to the 
GWAS study), we aimed to capture the effect of less significant SNP which however can contribute to explain the 
variability for the investigated traits, possibly as part of organized pathways and/or biological processes. Then, 
the relevant SNPs were assigned to a gene if they were located within the gene or within a flanking region 15 kb 
up- and downstream it91, using the BiomaRt R package92,93 and the Ensembl Bos taurus UMD3.1 assembly as 
reference94. For functional annotation, the Kyoto Encyclopaedia of Genes and Genomes (KEGG)95 and the Gene 
Ontology (GO)96 databases were used to define pathways and functional categories associated to the gene sets. 
Only GO and KEGG terms with >10 and <1000 genes were included in the analyses to avoid testing broad or 
narrow functional categories. For each functional category, a Fisher’s exact test was applied to test for overrep-
resentation of significant gene sets. A false discovery rate (FDR) correction was used to control for false positives 
with the cut-off for significant enrichments set at FDR < 0.05. The gene-set enrichment analysis was performed 
using the Bioconductor package goseq in the R environment31.

SNP co-association and network analyses. Along with the biological pathway analysis, SNP 
co-association and network analyses were carried out in order to detect key gene regulators, functional connec-
tions and networks of genes affecting the milk fat profile.

Given that many of the original annotations for the BovineSNP50 v.2 BeadChip (Illumina Inc., San Diego, 
CA) have been found to be incomplete, the Illumina BovineSNP50 v.3 Genotyping Beadchip annotation (availa-
ble since June 2016 at http://www.illumina.com/products/by-type/microarray-kits/bovine-snp50.html) was used 
to re-assign the probes to new probe sets based on SNP position.

The AWM was built starting from the results of a GWAS analysis carried out without imposing a signifi-
cance threshold. In particular, the AWM was constructed from two matrices that contained row-wise SNPs and 
column-wise phenotypes, as previously reported in detail30,97. Elements in the first matrix were equal to the P 
value of association for each SNP and phenotype, while in the second matrix corresponded to the SNP z-score 
standardised additive effect. Based on the results of the pathway analyses, which showed that the 12:0 FA was 
associated with the greatest number of overrepresented categories/pathways, the 12:0 FA was selected as the key 
phenotype and the associated SNPs (P ≤ 0.05) were included in the AWM. In the next step, dependency among 
phenotypes was explored by estimating the average number of other phenotypes (Ap) that were associated with 
these SNPs at the same P-value threshold (≤0.05) (Ap = 8). Subsequently, all SNPs that were associated with at 
least 8 phenotypes at P ≤ 0.05 were included in the AWM. In the next steps, the AWM was built following the 
procedure described by30, but only SNPs within genes or located close to intergenic SNPs (within 10 kb of the 
coding region) were selected. A distance of 10 kb was chosen because the probable size of the promoter region of 
a given gene is heterogeneous. In addition, to identify putative regulators, the TFs reported by33 and the microR-
NAs (miRNAs) that were mapped to the UMD3.1 bovine genome assembly (GenBank assembly accession: 
GCA_000003055.3) were also included in this analysis. The Pearson correlations obtained from pair-wise corre-
lations of columns were computed and visualised as a clustering tree using the hclust R function98. The table-like 
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structure of the AWM was used as input to the information theory (PCIT) algorithm, which uses a partial corre-
lation in an information theory framework to ascertain significant gene–gene interactions (co-associations)99. To 
consider only the high-confidence gene co-associations determined by PCIT, those with correlation ≥|0.80| were 
retained, on the assumption that those genes have relevant biological significance for the key phenotype from 
which the AWM-PCIT was derived. The co-association network was automatically laid out using the organic 
layout algorithm in Cytoscape V2.7 (http://cytoscape.org). Network topological parameters and node centrality 
values were calculated using NetworkAnalyzer100 and CentiScape plugins101 to gain insights into the organisation 
and structure of the complex networks formed by the interacting molecules. In parallel, the list of co-associated 
genes was also fed into an Ingenuity Pathway Analysis (IPA, version 5.5; Ingenuity Systems, USA) to identify 
relevant categories of molecular functions, cellular components and biological processes. The IPA enabled us to 
identify (i) significantly overrepresented functional GO annotations, (ii) their over- or under-expression, and 
(iii) group-specific transcriptional networks. All listed or reconstructed cellular pathways were derived from the 
Ingenuity Knowledge Base which collects biological interactions and functional annotations derived from various 
experimental contexts and manually curated for accuracy from the literature and third-party databases. The IPA 
output a statistical assessment (based on a Fisher’s exact test) of the significance of representation for biological 
functions and signaling pathways (P-value < 0.05). The IPA computed networks and ranked them according to a 
statistical likelihood approach.

Once the TFs and their target genes to which they were potentially connected were identified in the 
AWM-derived network, an information lossless approach102 was used to identify the optimal subset of TFs 
spanning the majority of the network topology. Pathway and ontology analyses of the predicted target genes 
(co-associated with the best TF trio) were carried out using the Cytoscape plugin ClueGo103. The Benjamini & 
Hochberg correction for multiple testing was used with the cut-off for significant enrichment set at FDR < 0.05. 
The LASAGNA-Search 2.0 web tool104 was used to search for TFs binding site using matrices in the TRANSFAC 
public database and a P-value significance threshold of 0.001.
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