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Abstract 16 

Competition is a key structuring component of biological communities, which is affected by 17 

both biotic and abiotic environmental stressors. Among the latter, anthropic stressors and 18 

particularly pesticides are noteworthy due to their intrinsic toxicity and large use in 19 

agroecosystems. However this issue has been scarcely documented so far. In this context, we 20 

carried out experiments under laboratory conditions to evaluate stress imposed by the 21 

neonicotinoid insecticide imidacloprid on intra and interspecific competition among two 22 

major wheat pest aphids. The bird cherry-oat aphid Rhopalosiphum padi L. and the English 23 

grain aphid Sitobion avenae F. were subjected to competition on wheat seedlings under 24 

varying density combinations of both species and subjected or not to imidacloprid exposure. 25 

Intraspecific competition does take place without insecticide exposure, but so does 26 

interspecific competition between both aphid species with R. padi prevailing over S. avenae. 27 

Imidacloprid interfered with both intra and interspecific competition suppressing the former 28 

and even the latter for up to 14 days, but not afterwards when a shift in dominance takes place 29 

favoring S. avenae over R. padi, in contrast with the interspecific competition without 30 

imidacloprid exposure. These findings hinted that insecticides are indeed able to mediate 31 

species interaction and competition influencing community structure and raising management 32 

concerns for favoring potential secondary pest outbreaks. 33 

Keywords: Intraspecific competition, interspecific competition, Rhopalosiphum padi, 34 

Sitobion avenae, imidacloprid, dominance shift. 35 

36 
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Introduction  37 

Resource-sharing organisms are the subject of competition when the shared resource is 38 

limited forcing their interaction, what may take place among individuals of the same species 39 

resulting in intraspecific competition, or among individuals of different species leading to 40 

interspecific competition (Reitz and Trumble, 2002; van Veen et al., 2006; Villemereuil and 41 

Lopez-Sepulcre, 2011; Barabás et al., 2016; Naselli et al. 2016; Zhao et al., 2017). 42 

Competition is an important community structuring phenomenon in nature (Iwabuchi and 43 

Urabe, 2012; Soares, 2013) but impact of pesticides on competition processes has been 44 

scarcely studied in agroecosystems. The few studies available suggest that such anthropic 45 

compounds could be important in shaping arthropod communities associated with various 46 

crops or crop-related systems (Oliveira et al., 2007; Cordeiro et al. 2014).  For example 47 

community structure may be compromised as population recovery may be delayed after 48 

pesticide application(s), and species dominance may shift favoring secondary pest outbreaks 49 

(Liess and Foit, 2010; Guedes et al., 2016; 2017) 50 

The outcome of competition varies with the competing species ranging from 51 

potentially negative impact on both species (Oliveira et al., 2007; Moon et al., 2010; Jaworski 52 

et al., 2015), or on the weaker competitors (Paini et al., 2008; Bompard et al. 2013; Jaworski 53 

et al. 2013; Tuelher et al. 2017), to not affecting either or even favoring at least one of them 54 

(Vilca Mallqui et al. 2013). Regardless, intraspecific competition is usually considered more 55 

important and stronger than interspecific competition (Moon et al., 2010; Villemereuil and 56 

Lopez-Sepulcre, 2011; Del Arco et al., 2015), but both need to be considered in any given 57 

scenario to assess their relative impacts. Furthermore, initial evidence is suggestive that 58 

variation in intraspecific competition can change the outcome of interspecific competition 59 

among aphids (Hazell et al., 2006). 60 

 Several environmental factors, both biotic and abiotic, may affect arthropod 61 
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competitive interactions (Gergs et al., 2013; Duan et al., 2016; Jordan and Tomberlin, 2017). 62 

Temperature, light, relative humidity and rainfall among others, are regarded as important 63 

abiotic factors for competition (Marchioro and Foerster, 2011; Savopoulou-Soultani et al., 64 

2012; Marchioro and Foerster, 2016). Nonetheless anthropogenic abiotic stressors are also 65 

potentially important for species competition, but they are frequently neglected in such 66 

framework (Guedes et al., 2016, 2017; Zhao et al., 2017). Pesticides, and particularly 67 

insecticides, are representatives of such stressors, whose distribution in agroecosystems is 68 

ubiquitous and deserves attention (Desneux et al., 2005; 2007; Sánchez-Bayo, 2011; Passos et 69 

al. 2018), as they may promote species outbreaks through changing the arthropod community 70 

structure associated with such environments (Biondi et al. 2012; Lu et al. 2012; Gao et al., 71 

2014; Guedes et al., 2016, 2017; Zhao et al., 2017). 72 

 The relevance of pesticides on competition goes beyond lethal effects, as sublethal 73 

stresses are likely as important or even more important drivers of competition than actual 74 

mortality (Cordeiro et al., 2014; Gao et al., 2014; Guedes et al., 2017; Zhao et al., 2017). 75 

Frequent and widespread use of pesticides in crops lead to an almost chronic exposure to 76 

sublethal concentrations of pesticides in organisms inhabiting such habitats (Boone and 77 

Semlitsch, 2002, Pisa et al., 2017). However, this issue only received only limited attention 78 

(Knillmann et al., 2012; Cordeiro et al., 2014), even less in the case of systemic pesticides 79 

despite their prevalent use in agriculture nowadays (which actually is increasing due to their 80 

versatile use, Miao et al., 2014; Wang et al. 2017; Zhang et al., 2015). The systemic 81 

insecticides and specially neonicotinoids have been the target of concerns because of their 82 

harmful effects on non-target species and their broad agriculture use (Damalas and 83 

Eleftherohorinos, 2011; Wu et al., 2011; Zhu et al., 2017). However, we still lack a thorough 84 

understanding of complex interactions taking place in agroecosystems in which 85 

neonicotinoids are frequently applied, despite that it appears essential for potentially 86 
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improving pest management programs and minimizing environmental impact of crop 87 

protection methods (Chailleux et al., 2014; Bebber, 2015; Mohammed et al., 2018). 88 

Systemic pesticides, notably imidacloprid, have been largely used to target the wheat 89 

pest species, particularly the bird cherry-oat aphid Rhopalosiphum padi L. and the English 90 

grain aphid Sitobion avenae F. (Tang et al., 2013; Chagnon et al., 2015; Simon-Delso et al., 91 

2015; Mohammed et al., 2018) which are two key pests on wheat worldwide (Duan et al. 92 

2017; Luo et al. 2018; Ali et al. 2018; Ortiz-Martinez et al. 2018). However, the relative 93 

impact of this compound in both these aphid species and their interaction remains unknown. 94 

Therefore, the present study aimed to assess the impact of the systemic (neonicotinoid) 95 

insecticide imidacloprid on intra and interspecific competition between R. padi and S. avenae. 96 

The laboratory experiments were carried out by using varying combinations of both aphid 97 

species. The goal was to test whether imidacloprid would mediate and thus affect the intra and 98 

interspecific competitive interaction between both aphid pest species. 99 

 100 

Materials and Methods 101 

Biological materials 102 

Wheat seeds used in competition experiments were provided by the Zhuozhou Experimental 103 

Station of the China Agricultural University (Hebei, China). Seeds were planted in plastic 104 

pots (10 cm in diameter and 9 cm high), and all of the pots were filled with fertile soil 105 

(granularly (mm): 4.0-8.0; pH: 5.5-6.5; N mg/kg: 300-600; P2O5 mg/Kg: 150-300; K2O 106 

mg/kg: 300-550; humidity: % 45-60; organic matter % ≥ 30). The soil was purchased from 107 

the Fangjie Huahui Yingyang Tu Company (Beijing, China). Five days after germination, the 108 

seedlings were thinned to 10 healthy wheat seedlings per pot. The colonies of cherry-oat (R. 109 

padi) and grain aphids (S. avenae) were obtained from laboratory insect cultures and 110 

maintained at the Toxicology Lab of the Department of Entomology, College of Plant 111 
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Protection, China Agricultural University (Beijing, China). Aphid populations of both species 112 

were reared from single parthenogenetic adults and held in the laboratory for several years 113 

without insecticide exposure (Lu and Gao, 2009; Lu et al., 2009; Lu et al., 2013). The aphid 114 

populations used as stock cultures for the laboratory experiments were reared on insecticide-115 

free wheat seedling in rearing cages (30 cm in width, 30 cm in length and 30 cm in height) 116 

within growth chamber (23 - 25 C°, 60- 70% RH, and 16:8 L:D). The competition 117 

experiments were carried out under the same environmental conditions.  118 

Insecticide  119 

The neonicotinoid insecticide imidacloprid was used in the competition experiments as the 120 

abiotic agent of stress. The commercial formulation of imidacloprid (Bi Chong Lin, 10 %) 121 

used was purchased from the Jiang Su Kesheng Company (Jiangsu, China). This formulation 122 

is one of the main formulations registered and used in China at the manufacture’s label rate 123 

for aphid control in the wheat field (40-70 g a.i. ha -1). Concentration-mortality bioassays with 124 

this insecticide and formulation were carried out to assess its toxicity to both aphid species 125 

allowing to recognize the sublethal range based on the LC5. The commercial formulation of 126 

imidacloprid was diluted in distilled water for use in the experiments described below. 127 

Insecticide bioassay 128 

Imidacloprid toxicity was assessed with apterous adult aphids by using the leaf dip method 129 

(Guo et al. 2013; Liu et al. 2017). Six serial dilutions (mg/L) of imidacloprid were prepared 130 

for treating the wheat seedlings (5 days old), which were dipped into the desired 131 

concentrations for 10 seconds; the seedlings were subsequently removed from the solution, 132 

whose excess was adsorbed off with clean, dry filter paper pieces. The treated seedlings were 133 

then transferred to plastic Petri dishes lined with moistened filter paper (to keep humidity on 134 

seedling roots) and placed under room temperature. Twenty apterous adults of either aphid 135 

species were used for each insecticide concentration using three replicates per concentration 136 
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and species. The aphids in the control group fed on seedlings dipped in distilled water. The 137 

insects were then maintained under laboratory conditions at 23-25 °C temperature, 60-70% 138 

relative humidity, and 16:8 h [L:D] photoperiod. Insect mortality was recorded after 24 h 139 

exposure and the aphids were recognized as dead when failing to exhibit movement after a 140 

gentle touch with a camel's hair brush. The results obtained were subjected to probit analysis 141 

and the respective LC5 was thus estimated. The estimated LC5 of each aphid species was 142 

further checked against the control insects in an additional 24 h exposure bioassay where 143 

mortality was again recorded as detailed above, but using 12 replicates. These estimated LC5 144 

were subsequently used to in the competition experiments.  145 

Imidacloprid and intraspecific competition  146 

The intraspecific (single species) competition experiments were carried out under the same 147 

experimental conditions detailed above. Three densities of either aphid species (5, 15, 30 148 

apterous adults) were inoculated on each pot containing wheat seedlings treated or not with 149 

imidacloprid at 6.86 mg/l a.i. (= LC5), following a three-way factorial arrangement (2 species 150 

x 3 densities x 2 insecticidal treatment conditions) in a completely randomized design. The 151 

insecticide was sprayed to the seedlings at the desired concentration always using distilled 152 

water for the dilutions; only distillated water was used to spray the seedlings of the control 153 

pots and insects. The aphid species were released in each experimental unit 24 hours after 154 

spraying. The pots were subsequently covered with cylindrical transparent plastic bag (9 cm 155 

in diameter, and 21 cm high, with 0.5 mm mesh from top) to prevent the aphids from 156 

escaping. The number of live aphids in each experimental unit was recorded after 7 days. 157 

Each treatment was replicated 12 times. 158 

Imidacloprid and interspecific competition  159 

Two experiments of interspecific competition between the cherry-oat and the grain aphids 160 

were performed. The first followed a treatment series placing the two competing species in 161 
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three even densities (5:5, 15:15, and 30:30). The second set followed a uneven treatment 162 

series using the following density combinations 30:0, 25:5, 20:10, 15:15, 10: 20, 5:25 and 163 

0:30. Both experiments were performed as described for the intraspecific experiments 164 

established in a three-way factorial arrangement in a completely randomized design with 12 165 

replications. The number of aphids of each species was recorded in each replicate and 166 

treatment 7 days after the start of the experiments.  167 

Statistical analyses  168 

The mortality results from the concentration-mortality bioassays were subjected to probit 169 

analyses using the software PoloPlus 2.0 (LeOra software, 2006) to allow the assessment of 170 

the imidacloprid toxicity to each aphid species, which also allowed the estimates of the LC5 171 

and LC50
’s.  The toxicity curves were considered as significantly different when the 172 

confidence limits (95%) at their LC5 and LC50 values did not overlap (Prabhaker et al., 2011). 173 

The instantaneous rate of population growth (ri), a strong surrogate estimator of the intrinsic 174 

rate of population growth (rm) (Stark and Banks 2003), was calculated using the formula ri= 175 

[Ln(Nj /Ni )]/Dt, where Nj and Ni are the final and initial number of live insects (in each 176 

cage), respectively, and Dt is the duration of the experiment (i.e., 7 days). The following 177 

statistical analyses were performed using R version 3.3.3. After checking the assumptions of 178 

normality and homoscedasciticy, three-way analyses of variance using generalized linear 179 

model were carried out to test the impact of the initial aphid density (intra and interspecific 180 

competition) and the presence of insecticide on the final insect population and on the 181 

instantaneous rate of population growth (ri). The results of interspecific competition were 182 

subjected to regression analyses with initial insect density of both aphid species as 183 

independent variables and their final density and rate of population growth as dependent 184 

variables. The regressions models were obtained using the curve-fitting procedure of the 185 

software TableCurve 3D (Systat, San Jose, CA, USA). The significant regression models were 186 
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selected based on the criteria of parsimony, high F-value, and sudden increase in R2 with 187 

model complexity. The residual distributions were checked to validate parametric 188 

assumptions.  189 

 190 

Results 191 

Concentration-mortality response  192 

The results of the leaf dip bioassays of imidacloprid toxicity to adult aphids enabled 193 

estimating the toxicity of the neonicotinoid to both aphid species; it proved to be about 3-fold 194 

less toxic to the grain aphid S. avenae than to the cherry-oat aphid R. padi (Table 1). LC5 195 

values for S. avenae and R. padi were 10.22 and 3.49 ppm, respectively (Table 1), with an 196 

average LC5 for both species of 6.86 ppm (this average value was used when both species 197 

were exposed to the insecticide simultaneously i.e. during the inter-specific competition 198 

experiments). Control mortality was < 5% in all replicates. 199 

Imidacloprid and intra-specific competition  200 

The presence of insecticide had a negative impact on the final population density and ri of 201 

both aphid species 7 days after treatment (F1,132 = 1030.10, P < 0.001 and F1,132 = 547.14, P < 202 

0.001 respectively), as were the effects of insect species and density combinations (F1,132 > 203 

35.35, P < 0.001). The cherry-oat aphid R. padi exhibited steady increase in final density with 204 

increase in initial density, as did the wheat aphid S. avenae although always at lower densities 205 

(Fig. 1A). Such trend was however inverted when the insects were exposed to imidacloprid 206 

and the density of R. padi became slightly lower than S. avenae for the whole range of initial 207 

densities considered (Fig. 1B). The same trends were observed when the rate of population 208 

growth was considered, with the cherry-oat aphid maintaining higher growth without 209 

insecticide exposure (Fig. 2A), but the reverse taking place when imidacloprid was used (Fig. 210 

2B). At the highest density of each species, there was a convergence in population growth of 211 
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both species exhibiting similar values (Fig. 2B). 212 

Imidacloprid and inter-specific competition  213 

The regression analyses assessing the final aphid populations based on their competing initial 214 

densities subjected or not to imidacloprid exposure indicated a contrasting pattern between R. 215 

padi and S. avenae. Without imidacloprid R. padi was significantly affected by its own initial 216 

density and that of S. avenae, although at a smaller degree (Fig. 3). The final population 217 

densities of R. padi reached levels above 500 insects per experimental unit at initial 218 

conspecific densities as low as 20 insects/unit and such high densities took place even with up 219 

densities of the competing S. avenae as high as 30 insects/unit. In contrast, the final density of 220 

S, avenae was much lower reaching 300 insects/unit just at its highest initial densities and just 221 

with little or non-existent heterospecific competition by R. padi (Fig. 3). Both outcomes 222 

indicate interference between competing species, but with a stronger effect of R. padi, which 223 

is the dominant competitor when facing S. avenae. 224 

 Imidacloprid exposure allowed for a very different scenario imposing a drastic stress 225 

on the competition between R. padi and S. avenae. The high final populations of R. padi 226 

observed without imidacloprid did not occur with contamination by this insecticide reaching 227 

final peak of populations barely extending to 200 insects/unit and only at its highest initial 228 

density (i.e., 30 insects/unit) (Fig. 3). In contrast, the performance of S. avenae suffered little 229 

change with imidacloprid contamination, although its final population levels were slightly 230 

reduced (Fig. 3). Again, the effect of heterospecific competition was significant for both 231 

species, as indicated by the respective regression models where the initial density of both 232 

species was necessary to reliably estimate the final population densities of both R. padi and S. 233 

avenae, although the influence of conspecifics was always stronger (Fig. 3). 234 

 The effect of intraspecific competition on the population growth of both competing 235 

aphid species was even more revealing than that of the final populations although the general 236 
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trends were similar. Again R. padi was a much stronger competitor without imidacloprid 237 

contamination maintaining high rates of population growth at initial conspecific densities 238 

lower than 5 insects/unit with only limited effect of S. avenae. The opposite is true for S. 239 

avenae, which was more drastically affected by R. padi and reached only intermediary rates 240 

of population growth (≤ 35 insects/ day) even at highest S. avenae density (Fig. 3). 241 

Imidacloprid nullified the species interference in the intraspecific competition (i.e., 242 

heterospecific initial density was not necessary for the regression models) and favored higher 243 

population growth of S. avenae rather than the previously dominant R. padi shift their 244 

respective status as competitors (Fig. 3). 245 

 246 

Discussion 247 

Anthropic contaminants such as pesticides are considered as one of the factors threating 248 

ecosystem sustainability, notably through interfering with direct and indirect biotic 249 

relationships in arthropod communities (Boone and Semlitsch, 2002; Knillmann et al., 2012; 250 

Cordeiro et al., 2014; Biondi et al. 2015; Guedes et al., 2016, 2017; Xiao et al. 2016). We 251 

demonstrated that the presence of pesticide on wheat plants modulated both intraspecific and 252 

interspecific competitions involving the cherry-oat aphid R. padi and the wheat aphid 253 

S. avenae.  254 

The performance of each species under intraspecific competition conditions diverged 255 

with and without imidacloprid exposure, with R. padi suffering more with the insecticide, 256 

which greatly suppressed the population of this species while exhibiting only milder impact 257 

on S. avenae. Imidacloprid exposure relaxed intraspecific competition leading to increased 258 

rate of population growth under this condition reverting the trend of reduced population 259 

growth with increased initial density from the insecticide-free environment. In addition, 260 

imidacloprid exposure also led to a shift in the outcome of interspecific competition between 261 
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R. padi and S. avenae compromising the dominance of the former species in insecticide-free 262 

plants, while favoring the prevalence of the latter species, the wheat aphid, under imidacloprid 263 

exposure.  The mutual interference between species observed without imidacloprid 264 

contamination was virtually nullified when the insecticide was applied. This finding is also 265 

suggestive of the importance of interspecific competition in shaping the associated 266 

community in contrast with the usual emphasis given to intraspecific competition (Kaplan and 267 

Denno, 2007; Moon et al., 2010; Villemereuil and Lopez-Sepulcre, 2011).  268 

Differential (acute) toxicity 269 

The susceptibility of both aphid species to imidacloprid was different, what is likely a 270 

contributing factor for the observed outcome of competition (Zhao et al., 2017). The 271 

concentration-mortality bioassays performed indicated that R. padi is about 3-fold more 272 

susceptible to imidacloprid than S. avenae. Therefore, imidacloprid exposure should lead to 273 

higher mortality of the former species than of the latter, but this expectation is based solely in 274 

a mortality assessment while the demographic impact of the compound is of greater 275 

importance although frequently neglected (Stark and Banks, 2003; Guedes et al., 2016), 276 

allowing even the recognition of potential hormesis-like stimulatory effects that may take 277 

place (Guedes and Cutler, 2014). For example, low imidacloprid concentrations can exert 278 

stimulatory effects on reproduction and immature development in the soybean aphid Aphis 279 

glycines (Qu et al. 2015). Regardless, a range of factors may determine such differential 280 

susceptibility, including distinct rates of insecticide penetration, detoxification activity, and 281 

even minute differences in the target site of insecticide action, but S. avenae seems to exhibit 282 

higher insecticide detoxification activity than R. padi, as suggested by previous studies (Lu et 283 

al., 2013; Xiao et al., 2015; Lu and Gao, 2016). 284 

Imidacloprid impact on intraspecific competition  285 

Intraspecific competition did occur in both aphid species, R. padi and S. avenae, when no 286 



13 

 

insecticide was present and as already suggested by field results from Jarosik et al. (2003). In 287 

contrast, when aphids were exposed to the imidacloprid intraspecific competition was relaxed 288 

and the aphids exhibited higher population with higher initial population. Indeed, low initial 289 

densities afford lower mating opportunities reducing later competition (Huston, 1979), what 290 

was enhanced with higher initial densities particularly under imidacloprid contamination. 291 

Nonetheless, population growth was highest at the lowest initial densities of both species in 292 

without imidacloprid contamination indication that densities as low as 5 insects/pot of 10 293 

seedlings, while the highest density likely approached the carrying capacity of the 294 

experimental units used.  295 

When the intraspecific competition of both aphid species are compared, the prevalence 296 

of R. padi over S. avenae without imidacloprid contamination was nullified in the presence of 297 

the insecticide. The higher acute toxicity of imidacloprid to R. padi causing higher mortality 298 

in this species than in S. avenae is a likely cause for such outcome, but sublethal and 299 

transgenerational effects are also arguably playing a relevant role for this observed outcome 300 

(Xiao et al., 2015). An aided concern is the fact that the relaxation of intraspecific competition 301 

with imidacloprid exposure affords higher changes of survival and selection for insecticide 302 

resistance in both species (Cordeiro et al., 2014; Guedes et al., 2016, 2017). Nonetheless, the 303 

strength of selection will probably be stronger for R. padi since it is the most susceptible 304 

species (and thus subjected to stronger selection pressure for resistance). 305 

Imidacloprid impact on interspecific competition  306 

The sublethal insecticide concentrations are expected to interfere with not only intra-, but also 307 

with interspecific competition (Liess et al., 2013; Cordeiro et al., 2014; Guedes et al., 2016). 308 

Our study also provides support for this notion and consistent with our results of intraspecific 309 

competition for both aphid species. Again imidacloprid contamination relaxed competition 310 

reducing the final population and population growth of both species, but much more so of 311 
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R. padi, the most susceptible and previously dominant species. Even the species interference 312 

when under competition, which is suggested by the results without insecticide contamination, 313 

are suppressed with imidacloprid exposure, unlike suggested observations with whiteflies, 314 

leafminers and thrips (Sun et al., 2013; Gao et al., 2014; Zhao et al., 2017). Again, both lethal 315 

and sublethal effects on each aphid species are likely playing a role for the observed outcome 316 

(Cordeiro et al., 2014; Xiaon et al., 2015).  317 

 Both species were able to co-exist under competition, regardless of sublethal 318 

imidacloprid contamination. However, the insecticide contamination shifted the species 319 

dominance greatly compromising the prevalence of R. padi over S. avenae. This result 320 

consistent with several earlier reports about the interactions among sap feeder arthropods 321 

under natural colonization (Pascual and Callejas, 2004; Qureshi and Michaud, 2005; Umina 322 

and Hoffmann, 2005; Paini et al., 2008; Tapia et al., 2008; Sun et al., 2013; Zhao et al., 2017). 323 

These reports showed that all competing species can be negatively affected by competition, 324 

and the weaker competitors will be more affected. In addition, these reports also suggest that 325 

pesticide application may induce a shift in competitive potential of competing species, 326 

possibility demonstrated by Cordeiro et al. (2014) in density-dependent and concentration-327 

dependent experiments with grain beetles. 328 

 The findings reported here showing a shift in dominance between competing aphid 329 

species when subjected to imidacloprid-contaminated plants is consistent with the 330 

intermediate disturbance hypotheses. This hypothesis was earlier developed to explain the 331 

maximization of species diversity under intermediate levels of disturbance able to reduce the 332 

abundance of the competitively dominant species (Connell, 1978; Shea et al., 2004). The 333 

rational and hypothesis was more recently used to in the context of insecticide disturbance 334 

mediating competitive interactions (Cordeiro et al., 2014; Guedes et al., 2016), context 335 

equality applicable to the present study with the competing aphids R. padi and S. avenae. This 336 
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is the case because a low imidacloprid concentration (LC5) favored the weaker competing 337 

species compromising the dominance of the stronger competitor, R. padi in our case. High 338 

concentrations of imidacloprid would likely greatly compromise both species, while very low 339 

concentrations would not affect them, but intermediate concentrations would potentially allow 340 

higher diversity and a shift in ecological dominance, as reported here. The extended use of 341 

imidacloprid will likely change the associated arthropod community and may favor secondary 342 

pest outbreaks, particularly of S. avenae, what is a management concern and should be 343 

considered when designing pest management programs. 344 
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Table 1. Relative toxicity of imidacloprid to two aphid species, Rhopalosiphum padi 

and Sitobion avenae, after 24 hours post treatment. 

 

Species n* Slope ± 

SE 

χ2 df LC5 (ppm) LC50 (ppm) 

Confidence Limits 95% 

R.  padi 30

0 

2.55±0.26 6.21

5 

13 3.49 (2.20-4.81) 15.46  (12.91-

18.19) 

S.  

avenae 

30

0 

2.50±0.27 7.36

7 

13 10.22 (6.93-

13.39) 

46.50 (39.53-

55.81) 

* n: Number of insects per each experiment. 
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Figure captions 

Fig. 1. Effect of initial (conspecific) density on the final population of two species of 

aphids, the bird cherry-oat aphid Rhopalosiphum padi and the English grain aphid 

Sitobion avenae, maintained in wheat seedlings contaminated or not with the 

neonicotinoid insecticide imidacloprid. Each symbol (± SE) represents the mean of 12 

replicates.  

Fig. 2. Effect of initial (conspecific) density on the rate of population growth of two 

species of aphids, the bird cherry-oat aphid Rhopalosiphum padi and the English grain 

aphid Sitobion avenae, maintained in wheat seedlings contaminated or not with the 

neonicotinoid insecticide imidacloprid. Each symbol (± SE) represents the mean of 12 

replicates.  

Fig. 3. Filled contour plots showing the effect of conspecific and heterospecific 

densities on the final population of two species of aphids, the bird cherry-oat aphid 

Rhopalosiphum padi and the English grain aphid Sitobion avenae, maintained in 

wheat seedlings contaminated or not with the neonicotinoid insecticide imidacloprid. 

The regression models predicting the reported outcomes are indicated in each plot. 

Fig. 4. Filled contour plots showing the effect of conspecific and heterospecific 

densities on the rate of population growth of two species of aphids, the bird cherry-oat 

aphid Rhopalosiphum padi and the English grain aphid Sitobion avenae, maintained 

in wheat seedlings contaminated or not with the neonicotinoid insecticide 

imidacloprid. The regression models predicting the reported outcomes are indicated in 

each plot. 

  



28 

 

Fig. 1. 

 

 

  



29 

 

Fig. 2. 

 



30 

 

 

Fig. 3. 

 

 

  



31 

 

Fig. 4. 

 




