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Gut microbiome modulates response to anti–PD-1 

immunotherapy in melanoma patients

A full list of authors and affiliations appears at the end of the article.

Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to 

checkpoint blockade immunotherapy; however, this has not been well-characterized in 

human cancer patients. Here we examined the oral and gut microbiome of melanoma 

patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were 

observed in the diversity and composition of the patient gut microbiome of responders (R) 

versus non-responders (NR). Analysis of patient fecal microbiome samples (n=43, 30R, 

13NR) showed significantly higher alpha diversity (p<0.01) and relative abundance of 

Ruminococcaceae bacteria (p<0.01) in responding patients. Metagenomic studies revealed 

functional differences in gut bacteria in R including enrichment of anabolic pathways. 

Immune profiling suggested enhanced systemic and anti-tumor immunity in responding 

patients with a favorable gut microbiome, as well as in germ-free mice receiving fecal 

transplants from responding patients. Together, these data have important implications for 

the treatment of melanoma patients with immune checkpoint inhibitors.

Tremendous advances have been made in the treatment of melanoma and other cancers 

using immune checkpoint inhibitors targeting the cytotoxic T-lymphocyte-associated antigen 

(CTLA-4) and the programmed death 1 (PD-1) protein, however responses to these therapies 

are often heterogeneous and not durable (1–3). It has recently emerged that factors beyond 

tumor genomics influence cancer development and therapeutic responses (4–7), including 

host factors such as the gastrointestinal (gut) microbiome (8–10). A number of studies have 

shown that the gut microbiome may influence anti-tumor immune responses via innate and 

adaptive immunity (11, 12), and that therapeutic responses may be improved via its 

modulation (13, 14), however this has not been extensively studied in cancer patients.

To better understand the role of the microbiome in response to immune checkpoint blockade, 

we prospectively collected microbiome samples from patients with metastatic melanoma 

starting treatment with anti-PD-1 therapy (n=112 patients) (fig. S1 and table S1). Oral 

(buccal) and gut (fecal) microbiome samples were collected at treatment initiation, and 
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tumor biopsies and blood samples were collected at matched pre-treatment time points when 

possible to assess for genomic alterations, as well as the density and phenotype of tumor-

infiltrating and circulating immune cell subsets (Fig. 1A and fig. S2). Taxonomic profiling

via 16S rRNA gene sequencing was performed on all available oral and gut samples, with 

metagenomic whole genome shotgun (WGS) sequencing on a subset (n=25). Eligible 

patients (n=89) were classified as responders (R; n=54) versus non-responders (NR; n=35) 

based on radiographic assessment using the Response Evaluation Criteria in Solid Tumors 

(RECIST 1.1) criteria (15) at 6 months after treatment initiation. Patients were classified as 

R if they achieved an objective response (complete or partial response or stable disease

lasting at least 6 months), versus NR if they progressed on therapy or had stable disease 

lasting less than 6 months. This classification accounts for the subset of patients who may 

derive long-term disease benefit despite not achieving a bona fide RECIST response, and has 

been employed in numerous published studies of patients on checkpoint blockade (16–19). 

Of note, patients in R versus NR groups were similar with respect to age, gender, primary 

type, prior therapy, concurrent systemic therapy and serum lactate dehydrogenase (LDH)

(table S2). Prior genomic analyses have demonstrated that patients with tumors having a 

higher mutational load are more likely to respond to anti-CTLA-4 (16, 20, 21) or anti-PD-1 

therapy (21–24), however a high mutational load alone appears neither sufficient nor 

essential for response. In this cohort, the total number and specific melanoma driver 

mutations were within comparable parameters between R and NR following anti-PD-1 

therapy (fig. S3), though the number of tumors available for sequencing (n=10, R=7, NR=3)

was limited and may have reduced our ability to detect a significant association between 

mutational burden and response.

We first assessed the landscape of the oral and gut microbiome in all available samples in 

patients (n=112) with metastatic melanoma via 16S sequencing, noting that both 

communities were relatively diverse, with a high abundance of Lactobacillales in the oral 

microbiome and Bacteroidales in the fecal microbiome (Fig. 1B). Bipartite network analysis 

(25) demonstrated a clear separation of community structure between the oral and fecal

microbiomes in terms of both matched and aggregate samples (fig. S4), suggesting that these 

communities are distinct. Loss of microbial diversity (dysbiosis) is associated with chronic 

health conditions (26–28) and cancer (8–10), and is also associated with poor outcomes to 

certain forms of cancer therapy including allogeneic stem cell transplant (29). Based on 

these data, we examined the diversity of the oral and gut microbiomes in eligible patients on 

anti-PD1 therapy, and found that alpha diversity of the gut microbiome was significantly

higher in R (n=30) compared to NR (n=13) using several indices (p<0.01, Fig. 1C and fig. 

S5). No significant differences were observed in the oral microbiome (R=54, NR=32, 

p=0.11, fig. S6). We then tested the relationship of diversity and progression-free survival 

(PFS) in our cohort by stratifying patients based on tertiles of Inverse Simpson scores, 

demonstrating that patients with a high diversity in the fecal microbiome had significantly 

prolonged PFS compared to those with intermediate or low diversity (p=0.02 and 0.04,

respectively; Fig. 1, D and E, and fig. S7). No differences in PFS were noted when 

comparing diversity of the oral microbiome (fig. S8). Importantly, upon visualizing beta 

diversity weighted UniFrac distances (30) by principal coordinate analysis, we found a 
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notable clustering effect by response status in the gut microbiome of these patients, which 

was not observed in the oral microbiome (Fig. 1F and fig. S8E).

Since compositional differences in the microbiome may also influence cancer development 

and response to therapy (12, 14, 15, 23), we sought to determine if differences existed in the

oral or gut microbiomes of R and NR to anti-PD-1 therapy. To test this, we first compared an 

enrichment of operational taxonomic units (OTUs) in R versus NR, demonstrating that 

distinct sets of rare low abundance OTUs were associated with response to anti-PD-1 

therapy, with enrichment of Clostridiales in R and Bacteroidales in NR in the gut 

microbiome (p<0.01, Fig. 2, A and B, and fig. S9, A and C). No significant differences in 

enrichment were noted in the oral microbiome of R versus NR (fig. S9, B and D, and fig.

S10). To further explore these findings, we performed high dimensional class comparisons 

via linear discriminant analysis of effect size (LEfSe) (31), which again demonstrated 

differentially abundant bacteria in the fecal microbiome of R versus NR to anti-PD-1 

therapy, with Clostridiales/Ruminococcaceae enriched in R and Bacteroidales enriched in 

NR (Fig. 2, C and D). No major differences were observed in the oral microbiome between 

R and NR, with the exception of higher Bacteroidales in NR to anti-PD-1 therapy (fig. S11).

Pairwise comparisons were then performed for bacterial taxa at all levels by response. In 

addition to confirming the previous taxonomic differences, these analyses identified the 

Faecalibacterium genus as significantly enriched in R (Fig. 2E and table S3). Metagenomic 

WGS further confirmed enrichment of Faecalibacterium species in addition to others in R, 

while Bacteroides thetaiotaomicron, Escherichia coli, and Anaerotruncus colihominis were 

enriched in NR (Fig. 2F and table S4). Importantly, the gut microbiome was shown to be

relatively stable over time in a limited number of longitudinal samples tested (fig. S12).

We next asked whether bacterial composition and abundances within the gut and/or oral 

microbiomes of patients were associated with a specific treatment outcome to anti-PD-1 

therapy. We grouped all identified OTUs into clusters of related OTUs (crOTUs) via 

construction of a phylogenetic tree from sequence alignment data (32). This technique

involves comparison of abundances of different potential groupings of bacteria based on 16S 

sequence similarity and helps address the sparse distribution of OTU abundances observed

in the absence of this approach (fig. S13). Unsupervised hierarchical clustering of crOTU 

abundances within the gut and oral microbiomes was then performed without input of 

response data. We found that patients segregated into 2 distinct community types. Type 1 

comprised entirely of R and was enriched for Clostridiales, whereas Type 2 comprised a 

mixture of R and NR (p=0.02) and was enriched for Bacteroidales (Fig. 3A). To better 

understand compositional differences between these crOTU community types, we again

performed pairwise comparisons of the gut microbiota, and identified a pattern very similar 

to that seen when clustering by response, with Clostridiales/Ruminococcaceae enriched in 

Type 1, and Bacteroidales enriched in Type 2 (fig. S14A and table S5). Further, these 

communities clustered distinctly using principal coordinate analysis of weighted Unifrac 

distances (fig. S14B). Analysis of crOTUs in the oral microbiome revealed no apparent 

relationship to treatment response (fig. S15, A and B).

To explore how specific bacterial taxa impact patient treatment response, we compared PFS

following anti-PD-1 therapy as it related to the “top hits” consistently observed across our 
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analyses. From the Ruminococcaceae family of the Clostridiales order, we focused on the

Faecalibacterium genus in R, and Bacteroidales order in NR, and stratified patients into high 

versus low categories based on the median relative abundance of these taxa in the gut

microbiome. Patients with high Faecalibacterium abundance had a significantly prolonged 

PFS versus those with a low abundance (p=0.03). Conversely, patients with a high 

abundance of Bacteroidales had a shortened PFS compared to those with a low abundance 

(p=0.05, Fig. 3D). This is in line with recently published data in a small cohort of patients 

on CTLA-4 blockade, where patients with a higher abundance of Faecalibacterium had a 

prolonged PFS compared to those with a higher abundance of Bacteroidales in the gut

microbiome (33). In addition, univariate Cox proportional hazards analyses demonstrated 

that the strongest microbial predictors of response to anti-PD-1 therapy were alpha diversity 

[Intermediate hazard ratio (HR)=3.60, 95% C.I.=1.02-12.74; Low HR=3.57, 95% 

confidence interval (C.I.)=1.02-12.52], and abundance of Faecalibacterium (HR=2.92, 95% 

C.I.=1.08-7.89) and Bacteroidales (HR= 0.39, 95% CI=0.15-1.03) in the fecal microbiome. 

There was no association found between PFS and stage in our cohort. Our final multivariate

model was selected by forward stepwise selection and included Faecalibacterium abundance

(HR=2.95, 95% C.I.=1.31-7.29, p=0.03) and prior immunotherapy (HR=2.87, 95% 

C.I.=1.10-7.89, p=0.03) (table S6). Abundance of Faecalibacterium and Bacteroidales also 

outperformed relevant clinical variables in receiver operating characteristic curve (ROC) 

analysis (fig. S16).

Next, we sought to gain insight into the mechanism through which the gut microbiome may 

influence response to anti-PD-1 therapy, and first conducted functional genomic profiling of

gut microbiome samples via metagenomic WGS sequencing (n=25) in R (n=14) vs NR 

(n=11). Organism-specific gene hits were assigned to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) orthology (KO), and based on these annotations, metagenomes for each 

sample were reconstructed into metabolic pathways using the MetaCyc hierarchy of 

pathway classifications (34, 35). Unsupervised hierarchical clustering of predicted pathway 

enrichment identified two groups of patient samples, with response rates of 69.2% and

41.7% (Fig. 3E). A similar pattern was also noted for KO-abundances with 70.6% and 

37.5% response rates (fig. S17). Comparisons of pathway enrichment across these groups 

showed changes in metabolic functions, with anabolic functions predominating in R 

including amino acid biosynthesis (Fig. 3E), which may promote host immunity (36), 

whereas catabolic functions predominated in NR (Fig. 3E, fig. S16, and table S7).

There is clear evidence in pre-clinical models that differential composition of the gut 

microbiome may influence therapeutic responses to anti-PD-1 therapy at the level of the

tumor microenvironment (12), thus we next examined the relationship between the gut 

microbiota and systemic and anti-tumor immune responses in our cohort of patients on anti-

PD-1 therapy. We compared the tumor-associated immune infiltrates via multi-parameter 

immunohistochemistry (IHC) and observed a higher density of CD8+ T cells in baseline 

samples of R versus NR (p=0.04), consistent with prior reports (Fig. 4A and fig. S18) (18, 

37). Pairwise comparisons using Spearman rank correlations were then performed between

specific bacterial taxa enriched in the gut microbiome of R and NR and immune markers in 

the tumor microenvironment, demonstrating a statistically significant positive correlation

between the CD8+ T cell infiltrate in the tumor and abundance of the Faecalibacterium 
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genus, the Ruminococcaceae family and the Clostridiales order in the gut and a non-

significant but negative correlation with Bacteroidales (Fig. 4, B and C, and figs. S19 and 

S20). No associations were seen between CD8+ T cell density and diversity or crOTU

community type membership (fig. S21). Analysis of systemic immune responses via flow 

cytometry and cytokine assays revealed that patients with a high abundance of Clostridiales, 

Ruminococcaceae or Faecalibacterium in the gut had higher levels of effector CD4+ and 

CD8+ T cells in the systemic circulation with a preserved cytokine response to anti-PD-1 

therapy, whereas patients with a higher abundance of Bacteroidales in the gut microbiome 

had higher levels of regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC)

in the systemic circulation, with a blunted cytokine response (Fig. 4D and figs. S22 and 

S23). To better understand the influence of compositional differences in the gut microbiome 

on antigen processing and presentation within the tumor microenvironment, we next 

performed multiplex IHC targeting the myeloid compartment (38). In these studies, patients 

with a high abundance of Faecalibacterium in the gut microbiome had a higher density of 

immune cells and markers of antigen processing and presentation compared to those with a

high abundance of Bacteroidales (Fig. 4, E and F, and figs. S24 and S25), suggesting a 

possible mechanism through which the gut microbiome may modulate anti-tumor immune 

responses (12), though this must be validated in a larger cohort.

To investigate a causal link between a “favorable” gut microbiome and response to immune 

checkpoint blockade, we performed Fecal Microbiome Transplantation (FMT) experiments 

in germ-free recipient mice (Fig. 4G). In these studies, mice that were transplanted with 

stool from R to anti-PD-1 therapy (R-FMT) had significantly reduced tumor growth (p=0.04,

Fig. 4H and fig. S26A) by day 14 compared to those transplanted with stool from NR (NR-

FMT). Importantly, mice transplanted with R-FMT also exhibited improved responses to 

anti-PD-L1 therapy (Fig. 4I) in contrast to mice that were transplanted with stool from NR 

(NR-FMT). Next we performed 16S sequencing on fecal samples collected from mice 

treated with FMT, demonstrating that R-FMT mice also had significantly higher abundance 

of Faecalibacterium in their gut microbiome (p<0.01) (fig. S27). We also wanted to better

understand the mechanism through which the gut microbiome may influence systemic and 

anti-tumor immune responses, and performed correlative studies on tumors, peripheral blood 

and spleens from these mice. These studies demonstrated that tumors of mice receiving R-

FMT had a higher density of CD8+ T cells than mice receiving NR-FMT, consistent with 

human data (Fig. 4J and fig. S26B, top series). Analysis of CD45+ myeloid and lymphoid 

tumor infiltrating cells by flow cytometry confirmed this result (fig. S26C). Moreover, FMT

from R locally increased the number of CD45+ immune and CD8+ T cells in the gut 

compared to NR-FMT (Fig. 4K and fig. S26B, bottom series). Mass cytometry analysis 

using t-SNE dimension reduction was performed on tumors from mice, and demonstrated 

up-regulation of PD-L1 in the tumor microenvironment of mice receiving R-FMT versus 

NR-FMT (fig. S26D), suggesting the development of a “hot” tumor microenvironment. 

Further phenotypic studies of tumor immune infiltrates revealed a significant enrichment of

innate effector cells (expressing CD45+CD11b+Ly6G+) in mice receiving R-FMT (fig. 

S26E). A lower frequency of suppressive myeloid cells (expressing CD11b+CD11c+) was 

observed in mice receiving R-FMT compared to mice receiving NR-FMT (fig. S26F). 

Finally, an increase in the frequency of RORγT+ Th17 cells in the tumor was also detected 
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in NR-FMT mice (fig. S26G), in line with what we observed in tumors from patients who 

failed to respond to anti-PD-1 therapy. Mice receiving NR-FMT also had higher levels of 

regulatory CD4+ FoxP3+ T cells (fig. S26H) and CD4+ IL-17+ (fig. S26I) cells in the

spleen, suggesting impaired host immune responses.

Our results indicate that the gut microbiome may modulate responses to anti PD-1 

immunotherapy in melanoma patients. We propose that patients with a “favorable” gut 

microbiome (e.g., high diversity and abundance of Ruminococcaceae/Faecalibacterium) 

have enhanced systemic and anti-tumor immune responses mediated by increased antigen 

presentation, and improved effector T cell function in the periphery and the tumor 

microenvironment. In contrast, patients with an “unfavorable” gut microbiome (e.g., low

diversity and high relative abundance of Bacteroidales) have impaired systemic and anti-

tumor immune responses mediated by limited intratumoral lymphoid and myeloid 

infiltration and weakened antigen presentation capacity. These findings highlight the 

therapeutic potential of modulating the gut microbiome in patients receiving checkpoint 

blockade immunotherapy, and warrant prompt evaluation in cancer patients through clinical 

trials.
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Figure 1. Enhanced gut microbiome diversity is associated with improved response to anti-PD-1 
immunotherapy in patients with metastatic melanoma
(A) Schema of sample collection and analyses. (B) Stacked bar plot of phylogenetic 

composition of common bacterial taxa (>0.1% abundance) at the order level in oral (n=109, 

top) and fecal (n=53, bottom) samples by 16S rRNA sequencing. (C) Inverse Simpson 

diversity scores of the gut microbiome in R (n=30) and NR (n=13) to anti PD-1 

immunotherapy by Mann-Whitney (MW) test. Error bars represent the distribution of 

diversity scores. (D) Phylogenetic composition of fecal samples (n=39) at the family level 

(>0.1% abundance) at baseline. High (blue) (>11.63, n=13), intermediate (gold) (7.46-11.63, 

n=13) and low (red) (<7.46, n=13) diversity groups were determined using tertiles of Inverse 

Simpson scores. (E) Kaplan-Meier (KM) plot of progression-free survival (PFS) by fecal 

diversity; high (median PFS undefined), intermediate (median PFS=232 days), and low 

(median PFS=188 days). High vs intermediate diversity (HR 3.60, 95% C.I. 1.02-12.74) and 

high vs low (HR 3.57, 95% C.I. 1.02-12.52) by univariate Cox model. *p<0.05, **p<0.01. 

(F) Principal coordinate analysis of fecal samples (n=43) by response using Weighted 

UniFrac distances.

Gopalakrishnan et al. Page 14

Science. Author manuscript; available in PMC 2018 February 27.

A
utho

r M
anuscrip

t
A

utho
r M

anuscript
A

utho
r M

anuscrip
t

A
utho

r M
anuscript



Figure 2. Compositional differences in the gut microbiome are associated with responses to anti-
PD-1 immunotherapy
(A) Heatmap of OTU abundances in R (n=30) and NR (n=13). Columns denote patients 

grouped by response and sorted by diversity within R and NR groups; rows denote bacterial 

OTUs grouped into 3 sets according to their enrichment/depletion in R versus NR: Set 1 

(enriched in R), Set 2 (unenriched), and Set 3 (enriched in NR), and then sorted by mean 

abundance within each set. (B) Phylogenetic composition of OTUs within each set at the 

order level. Set 1 (enriched in R); Set 2 (unenriched); Set 3 (enriched in NR). (C) 

Taxonomic cladogram from LEfSe showing differences in fecal taxa. Dot size is 

proportional to the abundance of the taxon. Letters correspond to the following taxa: (a) 

Gardnerella vaginalis, (b) Gardnerella, (c) Rothia, (d) Micrococcaceae, (e) Collinsella 
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stercoris, (f) Bacteroides mediterraneensis, (g) Porphyromonas pasteri, (h) Prevotella 
histicola, (i) Faecalibacterium prausnitzii, (j) Faecalibacterium, (k) Clostridium hungatei, (l) 
Ruminococcus bromii, (m) Ruminococcaceae, (n) Phascolarctobacterium faecium, (o)

Phascolarctobacterium, (p) Veilonellaceae, (q) Peptoniphilus, (r) Desulfovbrio alaskensis. 
(D) LDA scores computed for differentially-abundant taxa in the fecal microbiomes of R 

(blue) and NR (red). Length indicates effect size associated with a taxon. p=0.05 for the 

Kruskal-Wallis test; LDA score > 3. (E) Differentially-abundant gut bacteria in R (blue) vs 

NR (red) by MW test (FDR-adjusted) within all taxonomic levels. (F) Pairwise comparisons 

by MW test of abundances of metagenomic species (MGS) identified by metagenomic WGS 

in fecal samples (n=25): R (n=14, blue), NR (n=11, red). *p<0.05, **p<0.01. Colors reflect 

gene abundances visualized using “barcodes” with the following order of intensity: 

white(0)<light blue<blue<green<yellow<orange<red for increasing abundance and each 

color change corresponds to a 4x fold abundance change. In these barcodes, MGS appear as 

vertical lines (co-abundant genes in a sample) colored according to the gene abundance.
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Figure 3. Abundance of crOTUs within the gut microbiome is predictive of response to anti-PD-1 
immunotherapy
(A) Top: Unsupervised hierarchical clustering by complete linkage of Euclidean distances of 

crOTU abundances in 43 fecal samples. Bottom: Stacked bar plot of relative abundances at 

the order level by crOTU community-type. (B) Association of crOTU community types with 

response to anti-PD-1 by Fisher’s exact test. crOTU community type 1 (black, n=11: R=11, 

NR=0); crOTU community type 2 (orange, n=32: R=19, NR=13). Blue bars indicate 

responders, whereas red bars indicate non-responders. (C) Comparison KM PFS curves by 

long-rank test in patients with high abundance (dark blue, n=19, median PFS=undefined) or 
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low abundance (light blue, n=20, median PFS=242 days) of Faecalibacterium (top PFS 

curve). High abundance (dark red, n=20, median PFS=188 days) or low abundance (light 

red, n=19, median PFS=393 days) of Bacteroidales (bottom PFS curve). (D) Unsupervised 

hierarchical clustering of pathway class enrichment calculated as the number of MetaCyc 

pathways predicted in the metagenomes of fecal samples from 25 patients (R=14, NR=11). 

Columns represent patient samples (blue=R, red=NR) and rows represent enrichment of 

predicted MetaCyc pathways (blue=low enrichment, black=medium enrichment, yellow= 

high enrichment). Black text: biosynthetic pathways, blue text: degradative pathways. 

*p<0.05.
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Figure 4. A favorable gut microbiome is associated with enhanced systemic and anti-tumor 
immunity
(A) Quantification by IHC of the CD8+ T cell infiltrate at pre-treatment in tumors in R 

(n=15, blue) and NR (n=6, red) by one-sided MW test. Error bars represent the distribution 

of CD8+ T cell densities. (B) Pairwise Spearman rank correlation heatmap of significantly 

different taxa in fecal samples (n=15) at baseline and CD3, CD8, PD-1, FoxP3, Granzyme 

B, PD-L1 and RORγT density by H-score in matched tumors. (C) Univariate linear 

regression between CD8+ counts/mm2 in the tumor versus Faecalibacterium (blue, r2=0.42, 

p<0.01) and Bacteroidales (red, r2=0.06, p=0.38) abundance in the gut. (D) Pairwise 

Spearman rank correlation heatmap between significantly different fecal taxa and frequency 

of indicated cell types by flow cytometry in peripheral blood at baseline. (E) Representative 

Gopalakrishnan et al. Page 19

Science. Author manuscript; available in PMC 2018 February 27.

A
utho

r M
anuscrip

t
A

utho
r M

anuscript
A

utho
r M

anuscrip
t

A
utho

r M
anuscript



multiplex IHC images and (F) Frequency of various immune cell types in patients having 

high Faecalibacterium (n=2) or Bacteroidales (n=2) in the gut. (G) Experimental design of 

studies in germ-free (GF) mice. Time in days (indicated as D) relative to tumor injection 

(2.5-8x105 tumor cells). (H) Difference in size by MW test of tumors at day 14, implanted in 

R-FMT (blue) and NR-FMT mice (red) expressed as fold change (FC) relative to average 

tumor volume of Control GF mice. Data from 2 independent FMT experiments (R-FMT, 

n=5, median FC=0.18; NR-FMT, n=6, median FC=1.52). (I) Representative tumor growth 

curves for each GF mouse from α-PD-L1 treated R-FMT (blue n=2, median tumor 

volume=403.7 mm3), NR-FMT (red n=3, median tumor volume=2301 mm3), and Control 

(black, n=2, median tumor volume=771.35 mm3) mice. Statistics are as follows: p=0.20 (R-

FMT vs NR-FMT), p=0.33 (NR-FMT vs Control) by MW test. Dotted black line marks 

tumor size cutoff for α-PD-L1 treatment (500mm3). (J) Quantification of CD8+ density in 

tumor of R-FMT (n=2, median=433.5 cells/HPF across 12 regions), NR-FMT (NR-FMT 

n=2, median=325 cells/HPF across 12 regions) and Control mice (n=2, median=412 

cells/HPF across 9 regions). MW test p=0.30 (R-FMT vs Control). (K) Quantification of 

CD8+ density in gut (R-FMT n=2, median=67 cells/HPF across 7 regions), NR-FMT (n=2, 

median=24 cells/HPF across in 5 regions), Control n=2 (median=47 cells/HPF across 10 

regions). MW test p=0.17 (R-FMT vs Control). *p<0.05, **p<0.01, ****p<0.0001.
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