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Abstract
Since 2013, the French Animal Health Epidemic Intelligence System (in French: Veille
Sanitaire Internationale, VSI) has been monitoring signals of the emergence of new and
exotic animal infectious diseases worldwide. Once detected, the VSI team verifies the sig-
nals and issues early warning reports to French animal health authorities when potential
threats to France are detected. To improve detection of signals from online news sources,
we designed the Platform for Automated extraction of Disease Information from the web
(PADI-web). PADI-web automatically collects, processes and extracts English-language
epidemiological information from Google News. The core component of PADI-web is a
combined information extraction (IE) method founded on rule-based systems and data
mining techniques. The IE approach allows extraction of key information on diseases,
locations, dates, hosts and the number of cases mentioned in the news. We evaluated
the combinedmethod for IE on a dataset of 352 disease-related news reports mentioning
the diseases involved, locations, dates, hosts and the number of cases. The combined
method for IE accurately identified (F-score) 95% of the diseases and hosts, respectively,
85% of the number of cases, 83% of dates and 80% of locations from the disease-related
news. We assessed the sensitivity of PADI-web to detect primary outbreaks of four emerg-
ing animal infectious diseases notifiable to the World Organisation for Animal Health
(OIE). From January to June 2016, PADI-web detected signals for 64% of all primary out-
breaks of African swine fever, 53% of avian influenza, 25% of bluetongue and 19% of foot-
and-mouth disease. PADI-web timely detected primary outbreaks of avian influenza and
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foot-and-mouth disease in Asia, i.e. they were detected 8 and 3 days before immediate
notification to OIE, respectively.

Introduction
New and exotic animal infectious diseases are one of the major threats to global health security,
especially regarding their zoonotic and pandemic potential, and economic impact on affected
countries. One objective of proactive animal health authorities is therefore the implementation
of epidemic intelligence activities, including early detection, verification and communication
of signals of disease emergence from both formal and informal information sources [1].

Most animal health authorities have long-established formal, indicator-based surveillance,
i.e. collection and reporting of quantitative indicators (e.g. number of cases) obtained from
routine disease surveillance programs [1]. However, indicator-based surveillance has been
shown to lack timeliness in the detection and reporting of exotic pathogen outbreaks. One
example is the transcontinental spread of the African swine fever virus (ASF) from Southeast
Africa into Eastern Europe in 2007 [2]. The first ASF cases were observed before May 2007 in
Georgia, in the Caucasian region, but they were only officially confirmed in June 2007. ASF
detection was based mainly on clinical findings, and only a small proportion of cases led to
laboratory investigations, resulting in widespread infection among the porcine population of
Eastern Europe [3].

The challenge facing most animal health authorities thus lies in developing informal, event-
based surveillance, i.e. detection of disease emergence using a broad range of intelligence
sources (e.g. social networks, online news reports, scientific articles) [4±7]. For example, fol-
lowing the first introduction of ASF in Lithuania in 2014, massive wild boar mortality and sus-
picion of ASF was first reported in the electronic media, followed by official confirmation of
ASF outbreaks in January 2014 [8].

French Animal Health Epidemic Intelligence System
In 2011, a joint initiative of multiple French stakeholders in the animal health sector resulted
in the launch of the French Animal Health Surveillance Platform (ESA Platform). ESA Plat-
form members collaborate to help improve national epidemiological surveillance, centralisa-
tion and dissemination of animal health data.

In 2013, the ESA Platform formed a multidisciplinary team to oversee the Animal Health
Epidemic Intelligence System (Veille Sanitaire Internationale, VSI) to ensure the detection,
verification and communication of signals of infectious animal diseases that emerge outside
France. Current diseases of interest to VSI are African swine fever (ASF), foot-and-mouth dis-
ease (FMD), bluetongue (BTV) and avian influenza (AI), including both low pathogenic avian
influenza (LPAI) and highly pathogenic avian influenza (HPAI).

Epidemiologists and information technology specialists from the VSI team collect data
from indicator- and event-based surveillance systems daily. The team relies on formal notifica-
tions from sources such as the World Organisation for Animal Health (OIE) and the European
Commission (EC) for the indicator-based component, while it consults webpages from general
and animal health news sites, along with biosurveillance systems such as ProMED for the
event-based part. Moreover, the team receives confidential information from a network of
experts from reference laboratories and regional and international disease surveillance pro-
grams, who also verify signals for VSI. For all verified information, the VSI team sends ad-hoc
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reports to members of the ESA Platform, and posts freely available online reports for all offi-
cially confirmed outbreaks [9, 10].

Time-consuming manual consultation of numerous news websites is an ongoing impedi-
ment for VSI despite its substantial human capacities and organisation. In addition, the bio-
surveillance systems consulted by VSI principally cover public health topics and are therefore
of limited value with regard to the diseases of interest.

Here we present the Platform for Automated extraction of Disease Information from the
web (PADI-web), an automated biosurveillance system for collection, processing and extrac-
tion of epidemiological information from online news sources. The core component of PADI-
web is a combined method for information extraction (IE) founded on rule-based systems and
data mining techniques. This combined method generates epidemiological information on
diseases, locations, dates, hosts and number of cases for outbreaks mentioned in the news.

We evaluate the accuracy of the IE component of PADI-web to extract epidemiological
information from a corpus of news reports. We further assess the ability of PADI-web to detect
ASF, FMD, BTV and AI outbreaks that were reported outside France from January to June
2016. We compare our results with two major international biosurveillance systems, one man-
ual and the other semi-automatic.

Methods
In this section we present the main definitions used in this study and describe how PADI-web
collects (step 1), processes (step 2) and extracts (step 3) epidemiological information from
online news sources.

Definitions
Definitions with epidemiological context:

· Outbreak is a verified occurrence of an infectious animal disease. A primary outbreak is the
first occurrence or re-occurrence of a disease notifiable to the World Organisation for Ani-
mal Health (OIE). A primary outbreak is subject to immediate notification to OIE. A sec-
ondary outbreak is a spread of a primary outbreak. A secondary outbreak is subject to
follow-up notification to OIE. Once an outbreak is resolved, a country sends OIE an imme-
diate notification for closure of that event. For outbreaks of enzootic diseases notifiable to
the OIE, countries send OIE 6-monthly reports with summarized quantitative or qualitative
data.

· Epidemiological information is data on the disease, location, date, host and number of
cases from an outbreak.

· Signal is an unverified set of raw epidemiological information for an outbreak. It is based
on a location, associated with epidemiological entities such as disease, hosts or number of
cases (PADI-web evaluation protocol section). Upon verification, the signal can be relevant
(related to an outbreak); but otherwise the signal is irrelevant.

· Disease-related (relevant) news is news mentioning outbreak(s) or suspicion(s) thereof.

Definitions within the IE context:

· Information types are the different entities of epidemiological information that we want to
extract from the news. In the current version of PADI-web, there are five information types:
diseases, locations, dates, hosts and number of cases.

Frenchmonitoring of global emerging animal infectious diseases
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· Candidate is a text fragment of the same type as the desired information type, identified
without taking the epidemiological context into account. For instance, when looking for a
date of a specific outbreak in the news, all dates mentioned in the news are candidates, even
if some of the dates are not related to the outbreak.

· Candidate class can be correct or incorrect. If a candidate is the desired information type,
then it is correct; if not, then it is incorrect.

Data collection
Similarly to other biosurveillance systems [11±13], PADI-web collects online news directly
from structured data services, i.e. Really Simple Syndication (RSS) feeds. PADI-web currently
gathers news via Google News RSS feeds. We opted for Google News in the English language
because it is a free news aggregator with global coverage of about 4,500 news sites. Moreover,
Google News RSS feeds can be customized using search terms proposed by users.

PADI-web thus implements two types of RSS feed to collect relevant Google News. The first
type of feed consists of disease name terms (e.g. ªAfrican swine feverº, ªwarthog diseaseº). The
second type of feed consists of associations of terms describing a clinical sign and host for a
given disease (e.g. ªwild boar mortalityº, ªpig mortalityº with regard to African swine fever).
Through this unique approach, PADI-web is able to detect relevant news for our diseases of
interest, as well as other diseases that share the same host and clinical signs as the diseases we
are interested in.

Moreover, our list of terms of disease names, hosts and clinical signs is derived from vocab-
ulary describing outbreaks in a set of relevant news reports [14]. To obtain our list of terms, we
use BioTex, a tool for automatic extraction of biomedical terms from free text [15]. BioTex
extracts terms based on two principles: i) a relevant combination of information retrieval tech-
niques and statistical methods (e.g. TF-IDF, OKAPI and C-value), and ii) a list of syntactic
structures linked with the Medical Subject Headings (MeSH) biomedical thesaurus.

For each disease of concern, we first collect a set of about 200 relevant news reports and
extract about 2,000 biomedical terms. Next, a veterinary epidemiologist selects the relevant
terms, i.e. disease names (e.g. ªAfrican swine feverº, ªwarthog diseaseº, ªASFº), clinical signs
(e.g. ªmortalityº, ªdeathº, ªfeverº) and hosts (e.g., ªpigº, ªwild boarº). A group of five disease
specialists evaluates the terms highlighted by the veterinary epidemiologist and selects the
most appropriate ones that describe a given disease. The final list includes the terms validated
by the majority of specialists [14]. We also use this list of terms in the data processing and IE
steps.

Data processing
PADI-web uses a simple automated method for processing collected news. Initially, our system
checks if the news title and headline include terms such as ªoutbreakº and a disease name or
an association between a clinical sign and host (see Data collection step). All unique URLs and
contents are considered to be relevant news and are stored in the PADI-web database for the
IE step.

Information extraction
Information extraction (IE) is the core component of PADI-web. The aim is to extract epide-
miological information for an outbreak described in the news, and ultimately to detect the
disease (e.g. ªAfrican swine feverº), location (e.g. ªLithuaniaº, ªAlytus countyº) and date
(e.g. ªFriday, Dec 13º, ªlast Tuesdayº) of an outbreak, while also identifying the affected host

Frenchmonitoring of global emerging animal infectious diseases

PLOSONE | https://doi.org/10.1371/journal.pone.0199960 August 3, 2018 4 / 25

https://doi.org/10.1371/journal.pone.0199960


(e.g. ªcattleº, ªpigº, ªsheepº) and the number of cases (e.g. ª15 casesº). IE consists of two
stages: i) candidate identification, and ii) candidate verification (Fig 1).

Candidate identification. Candidate identification aims to detect all possible candidates
for each information type that we want to extract from the news, regardless of the epidemio-
logical context. This is the IE primary filter stage and has the advantage of being compatible
with external and generic resources and tools for candidate identification, such as:

· Diseases and hosts. Text fragments that match one of the names from the lists previously
compiled in the Data collection step [14, 16].

· Locations. Text fragments that match location names from the gazetteer GeoNames [17]. To
reduce the number of location names from GeoNames, we consider only locations with a
population greater than 150,000 (this threshold was selected empirically to ensure that the
corresponding number of locations will fit in the main memory), and of type A (countries,
regions, states) or P (towns, cities).

· Dates. Dates are identified using the rule-based system HeidelTime [18].

· Number of cases. Every number in the text is a candidate for the number of cases. We use a
list of regular expressions to identify numbers both in numerical or textual form.

The general candidate identification principle is exemplified with the two following sen-
tences (S):

· S1. ª12 pigs have been infected by ASF in Poland.º

· S2. ªAuthorities in Brussels have declared that the situation is taken seriously.º

In S1 and S2, ªPolandº and ªBrusselsº are locations in GeoNames and are therefore candi-
dates for an outbreak location.

Candidate verification. In the previous example, ªPolandº in S1 refers to the location of
an outbreak (correct candidate), while ªBrusselsº in S2 does not. Intuitive rules may be used to
decide whether a location candidate refers to an outbreak location, such as:

· R1: a location found in the same sentence as a host and a disease is probably the outbreak
location.

Fig 1. Information extraction step implemented in PADI-web.

https://doi.org/10.1371/journal.pone.0199960.g001
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· R2: a location preceded by a disease and the word ªinº is probably an outbreak location.

· R3: a location found in the same sentence as the verb ªdeclareº is likely not an outbreak
location.

To avoid having to manually draw up IE rules, we introduce a method where rules such as
R1, R2 and R3 are automatically discovered in a dataset of news where all candidates are pre-
labelled as correct or incorrect. We describe this dataset in the Evaluation protocol for infor-
mation extraction section.

Automatic rule discovery. Our automatic rule discovery is based on frequent itemset dis-
covery, a widely known data mining technique [19, 20]. This technique can reveal correlations
in a large volume of data by providing elements that frequently occur together in the dataset.
In order to use the algorithms for frequent itemset discovery, we first transform every candidate
into a set of elements that describe the candidate and context in which it occurs in the news.
We detail how elements that describe each candidate are constructed based on the example
in S1:

· Elements related to the word. Each word positioned around a candidate is encoded as an
element which describes both the word itself and its position relative to the candidate. For
example, the element (infected, -4) means that the word ªinfectedº is four words before
the location candidate ªPolandº. The position of an element is also expressed according to
the relative position of the sentence or the paragraph in which it is found. For example,
(infected, -1 sent) reveals that the word ªinfectedº is in the sentence preceding the sentence
candidate. We also tailor the definition of the position of an element to make it less precise,
e.g. (infected, -1 to -5) means that the word ªinfectedº is one of the five words preceding our
candidate.

· Elements related to word abstraction. Each word is abstracted with additional information.
For example, a word is associated with its grammatical function (e.g. verb) or its lemma (the
canonical form of a word; e.g. pig is the lemma of pigs), both produced by TreeTagger [21].
Moreover, the element (disease, -2) means that a disease name is found two positions before
the candidate ªPolandº and the elements (verb past participle, -4) and (lemma: infect, -4)
respectively indicate that a past participle is found four tokens before our candidate, with
this verb being ªto infectº.

· Elements related to the position. We also identify the position of a given candidate in the
entire news text. This position is expressed with respect to the paragraph in which this term
is located. For example, the element (position, 0%-10%) means that the current candidate
occurs in the first 10% of the document, while (position, PAR1) means that it is in the first
paragraph.

Each candidate in the labelled dataset is thus associated with a set of elements that describe
its context. The automatic rule discovery algorithm is executed for each candidate class. For
example, the following rule is automatically discovered in the class which corresponds to the
correct number of infected animals: (killed, -1 to -3), (position, PAR1). This rule states that
when the word ªkilledº is found in one of the three words preceding a number (i.e. a candidate
for a number of cases) in the first paragraph of the document, then this number likely belongs
to the class of correct numbers of cases.

Each rule is also associated with its confidence value, which is the probability that a candi-
date complying with this rule belongs to its corresponding class. For instance, the previous
rule (killed, -1 to -3), (position, PAR1) has a confidence of 83%, which means that 83% of can-
didates complying with this rule are correct numbers of cases.
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This confidence is used to perform an automatic selection process and reduce the number
of rules for each class; we only retain rules that have the best confidence among redundant
rules (two rules are redundant if they apply to the same candidates in their class).

Training a classification model for candidate verification. Once rules are generated for
a candidate class, we still need to decide whether a candidate is correct or incorrect. We thus
create a description matrix (Table 1) for each class, where candidates are rows and rules are
columns. A candidate that satisfies a rule then gets a value 1 and otherwise it gets a value 0.

We use this description matrix to train a Support Vector Machine (SVM) model with a
Radial basis function kernel [22±25]. We train the SVM model on candidates from a labelled
dataset described in the Evaluation protocol for information extraction section.

Location disambiguation. For location disambiguations, such as the location name
ªParisº, which according to GeoNames refers to more than 60 different locations worldwide,
we train an additional SVM model to achieve location disambiguation in the news [26]. We
train the model based on four features of a given spatial entity, E:

· The number of occurrences of E in the news report, divided by the total number of spatial
entities therein.

· The number of occurrences of spatial entities from the same country as E in the news report
divided by the total number of spatial entities therein. This feature follows the principle that
if E's country is often mentioned in the news then it is more likely to be the correct spatial
entity.

· The relative position of E in the news (0% when found at the very beginning of the news
report, 100% when found at the very end).

· The total number of spatial entities in the given news report.

Each spatial entity is classified as correct or incorrect according to the same principle as in
the rule-based classification.

Finally, all candidates that are automatically classified as correct represent the epidemiologi-
cal information for an outbreak (a signal). This information is available to the VSI team in a
structured and tabular format and can be used for further verification and analysis.

Evaluation protocol for information extraction
We evaluated the accuracy, precision, recall and F-score of the IE method to correctly classify
candidates for diseases, dates, locations, hosts and number of cases in a dataset of labelled rele-
vant news.

Dataset. Two IE stages require labelled data: i) automatic rule discovery for each candi-
date class, and ii) training of an SVM model for candidate verification.

We therefore created a labelled dataset for each candidate type (diseases, locations, dates,
hosts and number of cases), which we then used for both training and evaluation (S1 Dataset).
The dataset consisted of English language news reports collected from the Google News aggre-
gator that mentioned outbreaks notified to OIE from January 2014 to December 2015. We

Table 1. Description matrix describing candidates (rows) according to the rules they satisfy (columns). The exam-
ple shows a description matrix for candidate locations.

Candidate R1 R2 R3 Class
Poland in S1 1 1 0 correct
Brussels in S2 0 0 1 incorrect

https://doi.org/10.1371/journal.pone.0199960.t001

Frenchmonitoring of global emerging animal infectious diseases

PLOSONE | https://doi.org/10.1371/journal.pone.0199960 August 3, 2018 7 / 25

https://doi.org/10.1371/journal.pone.0199960.t001
https://doi.org/10.1371/journal.pone.0199960


only selected news reports that were published before an OIE notification date. PADI-web is
thus trained to find relevant information early, before official notification.

Among the 532 news pieces collected, 352 were evaluated and classified as relevant by a vet-
erinary epidemiologist (EA), i.e. disease-related news. These 352 news reports constituted the
training and evaluation dataset. In each of these 352 news reports, the candidates were auto-
matically identified using the method described in the Candidate identification step. A veteri-
nary epidemiologist (EA) and a computer scientist (JR) subsequently labelled these candidates
as correct or incorrect regarding their relevance to an outbreak.

Metrics. Accuracy (Acc) was the proportion of correctly classified candidates by PADI-
web over the total number of candidates. Precision (Pr) was the proportion of correct candi-
dates over the total number of candidates classified as correct by PADI-web. Recall (Re) was
the proportion of candidates classified as correct by PADI-web over the total number of cor-
rect candidates. F-score was the harmonic mean of precision and recall.

We evaluated two IE scenarios: i) candidate identification alone, i.e. how IE performed in
cases when all candidates were correct, and excluding candidate verification, and ii) the com-
bined IE candidate identification/verification method.

Libraries and tools. IE was implemented in Java 1.8 using existing libraries and tools. The
existing jLCM implementation of the LCM algorithm was used in the rule discovery process
[20]. Raw text documents were preprocessed using the Readability library (to extract text form
the collected news reports), the Stanford CoreNLP tokeniser [27] (to segment the text into a
sequence of individual components such as words and punctuation marks) and TreeTagger
[21] to generate word abstractions (e.g. lemmas, grammatical functions). The SVM model was
built using the LibSVM library [28].

PADI-web evaluation protocol
We assessed PADI-web regarding the relevance, sensitivity and timeliness in detecting ASF,
FMD, BTV and AI signals outside France from 1 January to 30 June 2016. Using the same dis-
eases, evaluation period, geographical coverage and language, we compared PADI-web to two
major biosurveillance systems operational today, i.e. ProMED and HealthMap. All signals
detected in France were excluded from the analysis since the goal is to monitor disease emer-
gence outside France.

Dataset. PADI-web is an automatic biosurveillance system that has been operational
since January 2016. PADI-web currently collects English language news using the Google
News aggregator. The system design and its detailed description are given in the Methods
section.

We downloaded the freely available PADI-web dataset (S2 Dataset) from the dedicated
webpage [29]. Each row in the PADI-web dataset corresponds to a location candidate
extracted from a news report and classified as ªcorrectº (see Information extraction section).
Each location candidate is associated with all other correct candidates (diseases, dates, hosts
and numbers of cases) extracted from the same news report, and represents a signal (see
Definitions section). First, we cleaned this set of signals by removing duplicates and locations
having a feature code in GeoNames starting with ªPCLº (i.e. political entities, that usually cor-
respond to countries). Such locations were removed because their geographical information
scale was considered too broad to reveal any useful knowledge. Second, for each studied dis-
ease, we selected signals containing: i) at least one reference to the disease, and ii) one or sev-
eral hosts specific to the disease.

ProMED is a human moderated biosurveillance system that has been operating since 1994.
It is the most extensive open-access biosurveillance system and is available in five languages
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[30, 31]. ProMED's main source for signals of animal diseases is the OIE, followed by sanitary
reports sent from subscribers worldwide. ProMED moderators verify the signals before shar-
ing them with its network of subscribers. Any signals that cannot be verified are tagged with
a `requestfor information (RFI)' [31]. Major signals of international concern are shared in
English through ProMED-mail, ProMED's main network. Specific signals of regional concern
are shared with ProMED's regional networks, e.g. English language posts in ProMED-MBDS
(Mekong Basin region of Southeast Asia), ProMED-EAFR (Anglophone Africa), ProMED-
MENA (Middle East) and ProMED-SoAs (South Asia).

HealthMap is a semi-automatic biosurveillance system that was launched in 2006 [13]. The
system automatically collects, processes and displays signals from online sources available in
seven languages. HealthMap sources for signals of animal diseases include news aggregators
(e.g. Google News, Baidu, Soso, VeriSign), the OIE, as well as national (animal) health authori-
ties and other biosurveillance systems (currently ProMED). Before publishing, HealthMap
moderators rate signals on a 1 to 5 scale according to relevance. Signals of minor international
concern are rated as 1, while signals of major international concern are rated as 5 [32]. For
accurate comparison with PADI-web, we only included HealthMap data obtained from its
news aggregators, hereafter referred to as HealthMap (Agg.).

Data from ProMED and HealthMap (Agg.) were freely downloaded from the HealthMap
webpage [33]. For each studied disease, one veterinary epidemiologist (EA) filtered the signals
reported outside France from January to June 2016. The epidemiologist evaluated each signal
by reading the news report content, the location of the event, date and, where relevant, the
affected hosts. One news report may consist of one or several signals. A ProMED report some-
times summarizes information on several outbreaks within the same geographical zone or out-
breaks subject to the same immediate notification to OIE. Each summarized ProMED report
was considered as one signal. One veterinary epidemiologist (EA) cross-checked the ProMED
signals in the HealthMap database with reports published on the ProMED webpage [34], and
supplemented the dataset if signals were missing. We assessed ProMED using signals from all
networks publishing English language reports, i.e. ProMED-mail, ProMED-MBDS, ProME-
D-EAFR, ProMED-MENA and ProMED-SoAs.

Confirmed outbreaks included all data collected from the Emergency prevention system
(Empres-i) of the UN Food and Agriculture Organization (FAO) with the same geographical
coverage and diseases as included in data collected from PADI-web, ProMED and HealthMap
(Agg.). Empres-i centralises data for outbreaks of major diseases of animal and public health
concern, collected from OIE (immediate notifications for ongoing and resolved primary out-
breaks and follow-up reports for ongoing secondary outbreaks), WHO, national (animal)
health authorities, FAO field officers, reference laboratories and research. We downloaded
open-access Empres-i data from the Empres-i webpage [35].

The Empres-i dataset does not provide the reasons for outbreak notifications. Therefore,
for OIE-sourced Empres-i data, one veterinary epidemiologist (EA) manually matched out-
breaks that corresponded to an immediate OIE notification (primary outbreak) or follow-up
report (secondary outbreak). All immediate notifications and follow-up reports sent to OIE
from January to June 2016 were available in the OIE World Animal Health Disease Informa-
tion System (WAHID) immediate notification and follow-up report archive [36].

Metrics. Relevance (Rel) was the percentage of signals detected by PADI-web, ProMED
and HealthMap (Agg.) that corresponded to: i) diseases notifiable to OIE where an outbreak
was recorded in the Empres-i database during the evaluation period, from January to June
2016 (notifiable, current epizootic category), or before the evaluation period, from January
2014 to December 2015 (notifiable, recent epizootic category), or 6 months after the evaluation
period, from July to December 2016 (notifiable, new epizootic category), ii) diseases notifiable
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to OIE where no outbreaks were recorded in the Empres-i database during the evaluation
period, from January to June 2016, and according to the OIE 6-monthly country reports [37]
or disease timeline reports, the disease was noted as continuously present or suspected in the
country or in one or more of its zones, [38], since at least January 2013 (notifiable, enzootic
category), iii) outbreak of another disease, notifiable or not to OIE (other diseases category),
iv) disease outbreak awareness, prevention and surveillance (disease vigilance category). If a
signal could not be confirmed through the OIE 6-monthly reports or the Empres-i database,
and consisted of relevant epidemiological information on the spread or (re-)emergence of a
disease, it was categorized as `alert'.Signals were considered irrelevant if they did not fit in
these categories. Two veterinary epidemiologists (EA and SV) evaluated the relevance of sig-
nals based on the content (disease, location, host and date of the events) detected by PADI-
web, ProMED and HealthMap (Agg.).

Sensitivity (Se) was the percentage of ongoing primary outbreaks from immediate notifica-
tions to OIE (hereafter referred to as primary outbreaks) that were recorded in the Empres-i
database and which were detected by PADI-web, ProMED and HealthMap (Agg.) (True Posi-
tive, TP). False Negatives (FN) were all primary outbreaks from immediate notifications to
OIE which were not detected by the evaluated biosurveillance systems.

Timeliness was the lag in days from the date of immediate notification to OIE (day 0),
as recorded in the Empres-i database, to the date of detection by PADI-web, ProMED and
HealthMap (Agg.) during the evaluation period. A negative lag meant that a biosurveillance
system was timely in detecting a primary outbreak, i.e. before the date of immediate notifica-
tion. A positive lag indicated that a biosurveillance system was untimely in detecting a primary
outbreak, i.e. after the immediate notification date.

Libraries and tools. All statistical computing and evaluations were performed with the R
statistical language [39] using existing libraries. Detected signals and notified outbreaks were
plotted using the world map of the Natural Earth project (1:50 m resolution) implemented in
the R ªmapsº library [40].

Results
Information extraction evaluation
The results of the assessment of our combined IE candidate identification/verification based
method, ranged from 80% to 96% (Fig 2). Our results were obtained via tenfold cross-valida-
tion on a manually labelled dataset used both for training and evaluation (see Evaluation pro-
tocol for information extraction section).

Our combined IE method achieved the highest performance to correctly classify diseases
and hosts (F-score of 95%) and lower performance to classify the number of cases, spatial and
temporal information types (F-score of 85%, 80%, and 83%, respectively).

The IE accuracy when based only on candidate identification ranged from 45% to 97%. Our
combined method for IE was, on average, 30% more accurate than the baseline method which
considered all candidates as correct.

These results show that candidate verification is an essential stage for obtaining epidemio-
logical information relevant to PADI-web users.

Evaluation of PADI-web
Confirmed outbreaks. From January to June 2016, Empres-i reported 1,616 ASF, FMD,

BTV and AI outbreaks that emerged outside France. OIE contributed 77% (n = 1,240) of the
data and national authorities contributed 22% (n = 361). The majority of reported outbreaks
concerned ASF in Europe (49%, n = 791) and AI in Africa (24%, n = 381) and Asia (20%,
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n = 323), respectively. Only 4% (n = 67) were OIE immediate notifications for ongoing
(n = 61) and resolved (n = 6) primary outbreaks (Table 2).

In January 2016, Georgia submitted an immediate notification to OIE for a first occurrence
of BTV in the country. In late January, Georgia submitted a notification to OIE that the event
had been resolved, as it was ruled-out that BTV was not the causative agent of the outbreak.
Due to the epidemiological importance, we included the alert for the primary BTV outbreak
in Georgia in our evaluation of the relevance, sensitivity and timeliness of the three biosurveil-
lance systems.

Fig 2. Accuracy of information extraction on a labelled dataset of 352 news reports. A. Comparison of the accuracy
(in percentage) of candidate identification alone and of the combined candidate identification/verification based
method. B. Precision, recall and F-score (in percentage) of the combined candidate identification/verification based
method.

https://doi.org/10.1371/journal.pone.0199960.g002

Table 2. Source and geographical distribution of confirmed outbreaks of African swine fever (ASF), foot-and-mouth disease (FMD), bluetongue (BTV) and avian
influenza (AI), reported outside France, from January to June 2016. Percentages for under nine outbreaks are not shown.

Disease Source Africa America Asia Europe Total
n (%) n (%) n (%) n (%) n (%)

ASF OIE imm notif 6 - - 5 11 (1%)
OIE follow-up 3 - - 786 (49%) 789 (49%)
Sub-total 9 (1%) - - 791 (49%) 800 (50%)

FMD OIE imm notif 1 - 15 (1%) - 16 (1%)
OIE follow-up 15 (1%) - 21 (1%) - 36 (2%)
Ref laboratory - - 1 - 1
Sub-total 16 (1%) - 37 (2%) - 53 (3%)

BTV OIE imm notif 1 4 - 3 8
OIE follow-up - - - 6 6
Sub-total 1 4 - 9 14 (1%)

AI OIE imm notif 2 10 (1%) 16 (1%) 4 32 (2%)
OIE follow-up 247 (15%) 30 (2%) 64 (4%) 1 342 (21%)
Nat authority 121 (7%) - 240 (15%) - 361 (22%)
FAO field officer 11 (1%) - 2 - 13 (1%)
Ref laboratory - - 1 - 1
Sub-total 381 (24%) 40 (2%) 323 (20%) 5 749 (46%)
Total 407 (25%) 44 (3%) 362 (22%) 805 (50%) 1616 (100%)

https://doi.org/10.1371/journal.pone.0199960.t002

Frenchmonitoring of global emerging animal infectious diseases

PLOSONE | https://doi.org/10.1371/journal.pone.0199960 August 3, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0199960.g002
https://doi.org/10.1371/journal.pone.0199960.t002
https://doi.org/10.1371/journal.pone.0199960


Relevance of signals. From January to June 2016, PADI-web detected 1,065 signals,
compared to 158 from ProMED and 361 from HealthMap (Agg.). The majority of signals
detected by PADI-web, ProMED and HealthMap (Agg.) were for AI and FMD. Signals for AI
accounted for 40% of all signals detected by PADI-web, 60% of those detected by ProMED and
58% of those detected by HealthMap (Agg.). Signals for FMD represented 31% of all signals
detected by PADI-web, 36% of those detected by ProMED and 19% of those detected by
HealthMap (Agg.) (Table 3).

African swine fever (ASF). From January to June 2016, 32% of all signals that PADI-web
detected for ASF were relevant to the disease or its current outbreaks, compared to ProMED
and HealthMap (Agg.), where all signals for ASF were relevant. The incorrect location of an
event was the reason for the 68% of irrelevant signals that PADI-web detected (Table 3, Fig 3).

The majority of signals detected by ProMED and HealthMap were related to current epizo-
otic ASF outbreaks (94% and 79%, respectively), compared to 13% of the PADI-web detected
signals that were related to current epizootic ASF outbreaks (Table 3).

Both PADI-web (n = 1) and HealthMap (n = 9) detected signals for ASF outbreaks within
an Eastern European zone that we could not confirm via the WAHID 6-monthly country
reports and Empres-i databases. In addition, HealthMap (Agg.) reported four signals of vigi-
lance for potential ASF outbreaks within unaffected zones in Eastern Europe, three of which
reported primary ASF outbreaks, after our study period, from July to September 2016 (data
shown in category new outbreaks) (Table 3, Fig 3).

In African zones where ASF is enzootic, PADI-web detected signals (n = 12) for intensified
ASF outbreaks. Similarly, HealthMap, detected signals (n = 4) for intensification of ASF out-
breaks in ASF enzootic zones in Eastern Europe. PADI-web also reported signals (n = 10) for
ASF preventive measures and vigilance for intensification of outbreaks in epizootically affected
countries in Africa and Europe (Table 3, Fig 3).

Foot-and-mouth disease (FMD). From January to June 2016, 41% of the signals that
PADI-web detected for FMD were relevant to the disease or its current outbreaks, compared
to all signals detected by ProMED and 97% of the signals detected by HealthMap (Agg.) that
were relevant to FMD. Incorrect location of an event was the reason for 61% of irrelevant sig-
nals detected by PADI-web and the two irrelevant signals from HealthMap (Agg.) (Table 3,
Fig 4).

The majority of signals from ProMED and HealthMap (Agg.) were related to current epizo-
otic FMD outbreaks (24% and 13%, respectively). In contrast, PADI-web was more exhaustive,
detecting signals for current epizootic (4%) and enzootic FMD outbreaks (10%), along with
FMD vigilance (18%) (Table 3).

Both PADI-web (n = 2) and ProMED (n = 1) detected signals for FMD outbreaks in zones
in Asia that we could not confirm via the WAHID 6-monthly country reports and Empres-i
databases. PADI-web also detected signals (n = 27, 8%) for current outbreaks of diseases non-
notifiable to OIE (Seneca Valley virus and vesicular stomatitis) in North America and an out-
break of classical swine fever in East Asia, an OIE notifiable disease. Six signals that PADI-web
detected for FMD actually concerned cases of hand foot-and-mouth disease in North America
(Table 3, Fig 4).

Bluetongue (BTV). From January to June 2016, PADI-web detected 66% relevant signals
for BTV, compared to all BTV relevant signals from ProMED and HealthMap (Agg.). Among
the irrelevant signals detected by PADI-web for BTV, 33% had incorrect location of the event
and 77% originated from irrelevant news reports (Table 3, Fig 5).

PADI-web was the most exhaustive of all three biosurveillance systems, detecting a variety
of relevant BTV signals, whereas ProMED focused on current BTV epizootics (four immediate
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notifications to OIE and two alerts on BTV in Georgia) and HealthMap (Agg.) reported two
signals for BTV vigilance as a result of current BTV outbreaks in Europe (Table 3, Fig 5).

PADI-web also detected signals for current epizootic events in Europe, including two
signal alerts for the first occurrence of BTV in Georgia (subsequently ruled-out by national

Table 3. Relevance of signals detected by PADI-web, ProMED and HealthMap (Agg.) for African swine fever (ASF), foot-and-mouth disease (FMD), bluetongue
(BTV) and avian influenza (AI), from January to June 2016.

Disease Relevance PADI-web ProMED HealthMap Agg.
n (%) n (%) n (%)

ASF Notifiable, epizootic
- current 18 (13%) 16 (94%) 63 (79%)
- recent 2 (1.5%) - -
- new - - 3 (4%)
- alert 1 (1%) - 9 (11%)
Notifiable, enzootic 12 (9%) - 4 (5%)
Disease vigilance 10 (7.5%) 1 (6%) 1 (1%)
Other diseases - - -
Irrelevant 92 (68%) - -
Total 135 (100%) 17 (100%) 80 (100%)

FMD Notifiable, epizootic
- current 13 (4%) 12 (24%) 9 (13%)
- recent 1 (0.4%) 1 (2%) -
- new - - -
- alert 2 (0.6%) 1 (2%) -
Notifiable, enzootic 34 (10%) 21 (41%) 54 (79%)
Disease vigilance 60 (18%) 16 (31%) 3 (4%)
Other diseases 27 (8%) - -
Irrelevant 198 (59%) - 2 (3%)
Total 335 (100%) 51 (100%) 68 (100%)

BTV Notifiable, epizootic
- current 4 (2%) 4 (67%) -
- recent 4 (2%) - -
- new - - -
- alert 2 (1%) 2 (33%) -
Notifiable, enzootic 2 (1%) - -
Other diseases 14 (9%) - -
Disease vigilance 83 (51%) - 2 (100%)
Irrelevant 55 (34%) - -
Total 164 (100%) 6 (100%) 2 (100%)

AI Notifiable, epizootic
- current 118 (27%) 69 (82%) 143 (68%)
- recent 44 (10%) 5 (6%) 2 (1%)
- new - - -
- alert - 3 (4%) 5 (2%)
Notifiable, enzootic - 3 (4%) -
Other diseases 41 (10%) - 11 (5%)
Disease vigilance 83 (18%) 4 (5%) 47 (22%)
Irrelevant 145 (34%) - 3 (1%)
Total 431 (100%) 84 (100%) 211 (100%)

https://doi.org/10.1371/journal.pone.0199960.t003
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authorities). PADI-web also detected signals for recent BTV outbreaks in North America and
signals for the BTV enzooty in Southeast Asian zones. However, the majority of relevant BTV
signals from PADI-web were for BTV vigilance, prevention and surveillance in Europe (51%).
PADI-web also detected signals (n = 14) for current outbreaks of animal diseases non-notifi-
able to OIE, adenovirus hemorrhagic disease, Cache Valley virus and chronic wasting disease

Fig 3. African swine fever (ASF) outbreaks reported in Empres-i and relevant ASF signals detected by PADI-web,
ProMED and HealthMap (Agg.) from January to June 2016.

https://doi.org/10.1371/journal.pone.0199960.g003

Fig 4. Foot-and-mouth disease (FMD) outbreaks reported in Empres-i and FMD relevant signals detected by
PADI-web, ProMED and HealthMap (Agg.) from January to June 2016.

https://doi.org/10.1371/journal.pone.0199960.g004
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in North America, as well as malignant catarrhal fever in Europe and North America (Table 3,
Fig 5).

Avian influenza (AI). From January to June 2016, 66% of the signals that PADI-web
detected for AI were relevant to the disease or its current outbreaks, compared to all signals
detected by ProMED and 99% of the signals detected by HealthMap (Agg.). Incorrect location
of an event was the reason for 34% irrelevant signals detected by PADI-web and the three irrel-
evant signals detected by HealthMap (Agg.) (Table 3, Fig 6).

All three biosurveillance systems were exhaustive, covering a range of signals for current,
recent and enzootic AI outbreaks, as well as disease vigilance. However, the majority of signals
detected by PADI-web, ProMED and HealthMap (Agg.) were related to current epizootic AI
outbreaks (27%, 82% and 68%, respectively). ProMED alerted signals (n = 3) on suspicion of
primary AI outbreaks in Europe, Africa and Asia. Meanwhile, HealthMap (Agg.) alerted sig-
nals (n = 5) on outbreaks in Southeast Asian zones that we were not able to confirm via the
WAHID 6-monthly country reports and the Empres-i databases (Table 3, Fig 6).

Both PADI-web and HealthMap (Agg.) reported signals on disease vigilance (n = 83, 18%
and n = 47, 22%) for awareness and preparedness for a possible spread of AI due to the current
AI outbreaks in North America and Asia. These two biosurveillance systems also reported sig-
nals on human cases of AI (n = 41, 10% and n = 11, 5%, respectively)(Table 3, Fig 6).

Sensitivity and timeliness of signals. African swine fever (ASF). From January to June
2016, OIE received immediate notifications for 11 primary ASF outbreaks in Ukraine (n = 5),
South Africa (n = 2), Burundi (n = 2), Kenya (n = 1) and Mali (n = 1). The majority of primary
outbreaks (64%) were notified to OIE within 7 days of their onset. The remaining 36% of pri-
mary outbreaks were notified to OIE 30 days after their onset (Fig 7A).

ProMED detected signals for all 11 primary ASF outbreaks, followed by PADI-web
(Se = 64%) and HealthMap (Agg.) (Se = 55%) (Table 4). ProMED and PADI-web detected sig-
nals for primary ASF outbreaks on average 2 days after notification, compared to HealthMap
which detected the signals on average 5 days after notification to OIE (Table 4).

Fig 5. Bluetongue (BTV) outbreaks reported in Empres-i and BTV relevant signals detected by PADI-web,
ProMED and HealthMap (Agg.) from January to June 2016.

https://doi.org/10.1371/journal.pone.0199960.g005
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Overall, 22% of the PADI-web signals detected the primary ASF outbreaks on the day of
notification to OIE, compared to 14% and 33% of the signals detected by ProMED and Health-
Map (Agg), respectively. HealthMap (Agg.) was both the timeliest in detecting one primary
ASF outbreak in Eastern Europe one day before notification, and the least timely in detecting
another primary ASF outbreak in Eastern Europe 21 days after notification to OIE (Table 4,
Fig 7A).

Foot-and-mouth disease (FMD). From January to June 2016, OIE received immediate
notifications for 16 primary FMD outbreaks in Armenia (n = 1), Angola (n = 1), Iran (n = 1),
Kuwait (n = 12) and the Republic of Korea (n = 1). Primary outbreaks were notified from 1 to
98 days after their onset, with 38% being notified within 7 days of their onset and only one out-
break 30 days after its onset (Fig 7B).

Among the three biosurveillance systems, ProMED detected signals for all primary FMD
outbreaks with the earliest signals being detected on the day of notification to OIE.

PADI-web did not detect the primary FMD outbreaks in Kuwait and Iran, thus reducing its
sensitivity (Se = 19%). However, PADI-web was the most proactive by detecting the earliest
signal for a primary FMD outbreak in East Asia 3 days before notification to OIE. HealthMap
(Agg.) detected signals for primary FMD outbreaks in Angola and Armenia (Se = 13%), 14
and 35 days after notification to OIE, respectively. These lags for HealthMap (Agg.) were not
surprising as the main focus of the news reports was preventive measures against the spread of
FMD outbreaks in Angola and Armenia (Table 4, Fig 7B).

Bluetongue (BTV). From January to June 2016, OIE received immediate notifications for 3
primary BTV outbreaks in Croatia (n = 1), Botswana (n = 1) and Ecuador (n = 1). OIE also
received one immediate notification for BTV in Georgia, this was subsequently ruled out in
January 2016. All BTV primary outbreaks were notified from 5 to 51 days after their onset,
with only two outbreaks notified within 7 days of their onset (Fig 7C).

ProMED detected signals for all primary BTV outbreaks, including the notification from
Georgia, with the earliest signal being reported on the day of notification to OIE. PADI-web

Fig 6. Avian influenza (AI) outbreaks reported in Empres-i and AI relevant signals detected by PADI-web,
ProMED and HealthMap (Agg.) from January to June 2016.

https://doi.org/10.1371/journal.pone.0199960.g006
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detected two signals for the primary BTV outbreak in Georgia (Se = 25%), with the earliest sig-
nal being detected 3 days after the outbreak was notified to OIE. HealthMap (Agg.) did not
detect any BTV outbreak signals (Table 4, Fig 7C).

Avian influenza (AI). From January to June 2016, OIE received immediate notifications
for 30 primary AI outbreaks in Bangladesh (n = 1), Cambodia (n = 1), Cameroon (n = 1),
Hong Kong Special Administrative Region (SAR) (n = 1), India (n = 2), Iraq (n = 6), Italy
(n = 1), Lebanon (n = 1), Myanmar (n = 1), Netherlands (n = 1), Niger (n = 1), Republic of
Korea (n = 1), Russian Federation (n = 1), United Kingdom (n = 1) and the United States of

Fig 7. A. African swine fever, B. Foot-and-mouth disease, C. Bluetongue, D. Avian influenza. The figures show the lag in days from the
onset of a primary outbreak, its immediate notification to the World Organisation for Animal Health (OIE) and its detection by PADI-web,
ProMED and HealthMap (Agg.) from January to June 2016. Zero-day represents the date of immediate notification. The figures show the range
from 55 days before to 25 days after immediate notification.

https://doi.org/10.1371/journal.pone.0199960.g007
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America (n = 10). The earliest primary AI outbreak was notified 1 day after its onset, while the
latest was notified 131 days after onset. Overall 60% of all primary AI outbreaks were notified
within 7 days of their onset, and 23% of all primary outbreaks were notified 30 days after their
onset (Fig 7D).

PADI-web detected signals for 16 primary AI outbreaks (Se = 53%) from 8 days before noti-
fication and up to 6 days after notification to OIE. Overall, 21% of all PADI-web signals for pri-
mary AI outbreaks were detected before notification and 5% on the day of notification to OIE
(Table 4, Fig 7D).

ProMED detected signals for all primary AI outbreaks, with the earliest signal being
reported 90 days before notification and the latest 7 days after notification to OIE. Overall,
25% of all ProMED signals for primary AI outbreaks were reported before notification and
11% on the day of notification to OIE (Table 4, Fig 7D).

HealthMap (Agg.) detected signals for 18 primary AI outbreaks (Se = 60%), with the earliest
signal being detected 8 days before notification and the latest 8 days after notification to OIE.
Overall, 40% of the HealthMap signals for AI detected primary AI outbreaks before notifica-
tion and 10% on the day of notification to OIE (Table 4, Fig 7D).

Discussion and conclusion
In this paper, we presented the Platform for Automated extraction of Disease Information
from the web (PADI-web), a web-based animal health biosurveillance system designed to
monitor the worldwide emergence of new and exotic animal infectious diseases. We further
described the method used in PADI-web to automatically collect, process and extract epidemi-
ological information from online news sources. Information extraction is a key step of PADI-

Table 4. Sensitivity and timeliness of PADI-web, ProMED and HealthMap (Agg.) in detecting primary outbreaks of African swine fever (ASF), foot-and-mouth dis-
ease (FMD), bluetongue (BTV) and avian influenza (AI) from January to June 2016.

Disease Signals PADI-web ProMED HealthMap (Agg.)
ASF True positive 7 11 6

False negative 4 0 5
Sensitivity 64% 100% 55%
Average delay (days) 2 2 5
Range of delays (days) 0 to 5 0 to 4 -1 to 21

FMD True positive 3 16 2
False negative 13 0 14
Sensitivity 19% 100% 13%
Average delay (days) 12 2 25
Range of delays (days) -3 to 28 0 to 4 14 to 35

BTV True positive 1 4 0
False negative 3 0 4
Sensitivity 25% 100% 0
Average delay (days) 5 2 -
Range of delays (days) 3 to 6 0 to 3 -

AI True positive 16 30 18
False negative 14 0 12
Sensitivity 53% 100% 60%
Average delay (days) 2 -6 1
Range of delays (days) -8 to 6 -90 to 7 -8 to 8

https://doi.org/10.1371/journal.pone.0199960.t004
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web and it combines candidate identification/verification to identify epidemiological informa-
tion in news reports.

Key information extraction features
The IE method that we implement in PADI-web offers several key features. We obtain relevant
results regarding accuracy and F-score using a unique IE approach applicable to different
information types (diseases, locations, dates, hosts and the number of cases). While some
methods are specially designed and fine-tuned for a given information type, our IE approach
is flexible and can cover multiple information types. Moreover, our IE approach has prospects
for further development, e.g. integration of new information types and multiple languages.

We also show that the IE efficiency depends on the information type that we want to extract
from the news. For example, the extraction of diseases and hosts is equally efficient with the
candidate identification based method alone and the combined candidate identification/verifi-
cation based method (F-score of 95%). The reason for similar results obtained by the two
methods is twofold. First, our lists of disease and host names (Data collection step) are accurate
for identifying candidates that have a high probability of being the right ones. Second, candi-
dates for diseases and hosts are less likely to be ambiguous terms compared to other candi-
dates, such as location and date candidates.

Compared to candidate identification based IE alone, the combination of the rule-based
system HeidelTime and candidate verification slightly improves the accuracy of date extraction
(increases from 86% to 88%) while achieving an F-score of 83%. Other rule-based systems for
extraction of temporal entities obtain results within the same range, such as HeidelTime [18],
which achieves 85% accuracy and an F-score of 86%, SUTime [41] which achieves an F-score
of 90% and TimeText [42] which correctly extracts 84% of all temporal entities from free text
documents.

Compared to candidate identification based IE alone, our combined IE method signifi-
cantly improves the accuracy of location extraction (increases from 60% to 80%) and achieves
an F-score of 80%. Our results are similar to those obtained in previous studies that used
machine learning algorithms to extract locations from news reports, such as the CRF algorithm
(F-score of 86%) [18] and neural networks (F-score of 64%) [43]. These results should, how-
ever, be interpreted with caution. While traditional methods use simple recognition of loca-
tions based on mentions in texts, the IE problem that we address in PADI-web differs in one
essential aspect. In PADI-web, we first recognise mentions of locations and then determine
whether a given location is related to an outbreak, and we address the location disambiguation.
In our future studies, however, we intend to enhance our current classification model for loca-
tion disambiguation with more complex features.

Finally, the combined IE method, compared to candidate identification alone, significantly
improves the accuracy of extraction of the number cases (increases from 45% to 85%) and
achieves an F-score of 85%. As each number (in numerical or textual form) is a potential can-
didate for being the number of cases, the candidate identification stage alone leads to poor
results, with only 45% of extracted numbers found to be the real number of cases. The candi-
date verification stage therefore improves this outcome. We intend to refine automatic rule
discovery as part of the candidate verification stage to improve the accuracy of extraction of
the number of cases. We also intend to enlarge the corpus of labelled data so that automatic
rule discovery will encounter more examples of correct and incorrect candidates, and we will
be able to draw up better rules to distinguish them.

Overall, our results show that the IE efficiency varies according to the information type
that we want to extract from the news. For candidates such as hosts, diseases and dates, both
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candidate identification alone and the combined candidate identification/verification based
method produce similar results. For some information types, candidates are almost always cor-
rect (despite the method used). For instance, in a given news report, it is very uncommon that
a disease name is mentioned without being related to an outbreak. On the contrary, for infor-
mation types that allow more errors (such as the number of cases and locations), the context is
necessary to be able to distinguish correct from incorrect candidates, so here the candidate ver-
ification stage is playing its full role.

What type of new knowledge does PADI-web identify?
PADI-web is an exhaustive biosurveillance system. It enables the discovery of four types of
new knowledge:

· Emergence of epizootic diseases. PADI-web successfully identified signals for current out-
breaks of diseases that are notifiable to OIE and thus of major international importance.
Moreover, PADI-web achieved timely detection, ahead of the date of immediate notification
to OIE primary FMD and AI outbreaks in East Asia, thus raising awareness of possible dis-
ease spread and prevention. PADI-web also provided alerts of ASF, FMD and BTV emer-
gence within new zones, for which we could not find any official confirmation, thus
highlighting PADI-web's potential as an early warning tool.

· Dynamics of enzootic diseases. PADI-web detected signals of possible re-emergence and
intensification of outbreaks in countries where our studied diseases were enzootic, such as
ASF and FMD outbreaks in Africa and Asia. These signals can provide risk managers with
relevant sanitary information, especially regarding disease dynamics and eventual improve-
ment of disease surveillance and eradication policies.

· Emergence of other diseases that are non-notifiable to OIE. The specific combination of key
terms that PADI-web uses to detect online news allows the detection of signals for diseases
that have clinical signs similar to those we want to study. This original approach allows
PADI-web to detect potential emergence of other diseases. For example, PADI-web detected
signals for outbreaks of Cache Valley virus, chronic wasting disease in North America and
signals for vigilance for Schmallenberg infections in Europe which have clinical signs similar
to those of BTV. PADI-web also detected signals for human cases of AI in Asia in people
who were in close contact with birds. PADI-web could develop into a `Onehealth' monitor-
ing biosurveillance system thanks to this zoonotic disease detection feature.

· Disease vigilance. Among the relevant signals that PADI-web detected, 7.5% of the signals
for ASF, 18% for FMD, 51% for BTV and 18% for AI were for disease awareness, outbreak
preparedness, surveillance and preventive measures. These signals give risk managers a
broader vision of the potential geographical scope of disease spread, thus enabling them to
take early mitigation measures.

Current limitations of PADI-web
PADI-web currently detects a substantial number of false positive signals. Based on our defini-
tion, each single location extracted from the news and labelled as correct creates a PADI-web
signal. This approach allows detection of all potentially relevant locations. However, it leads to
numerous false positive signals due to: i) multi-references to the same location in the same
article, but not identified as duplicates (e.g. references to the same place at different levels of
granularity), ii) reference to an irrelevant location regarding a current outbreak (e.g. reference
to a former outbreak in another geographical zone). As this was the reason underlying most of
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the irrelevant signals, we aim to improve the quality of our signal dataset by identifying the
nested locations contained in each report, as well as by removing the irrelevant locations.

Compared to ProMED, both HealthMap and PADI-web had lower sensitivity and timeli-
ness in detecting signals for primary outbreaks of emerging diseases notifiable to OIE. On con-
trary, ProMED's main source of information is the OIE, thus achieving the highest sensitivity
for the primary outbreaks reported to OIE. These results illustrate the varying ability of biosur-
veillance systems to adequately detect, efficiently process and communicate disease emergence
signals. Non-moderated biosurveillance systems, such as PADI-web and partially HealthMap,
search the web and detect information in an unbiased manner, but with a risk of getting false
positive signals. Compared to PADI-web, which uses a simple filtering method to categorize
collected news reports, HealthMap implements an algorithm for automatic classification of
collected news, and both HealthMap and ProMED have human verification before online pub-
lication of signals.

One interesting aspect to consider with regard to PADI-web is that, while IE assessment
alone provides satisfactory results, the overall performance of PADI-web is lower. The IE step
has been trained and evaluated in ideal conditions, using only relevant data, while PADI-web
handles real-time news streams. PADI-web combines the data collection, data processing and
IE steps to obtain the final results, so PADI-web performs in more challenging conditions.
Errors that occur at each step of the PADI-web method impact its overall performance.

For example, in real-time conditions, errors that occur in the IE step cannot be corrected
if PADI-web collects irrelevant news and the Data processing step does not efficiently filter
out irrelevant news. Similarly, PADI-web's efficiency is negatively affected if it identifies rele-
vant news but the IE process fails to extract epidemiological information. We are thus cur-
rently evaluating an SVM model as part of the Data processing step. We intend to tap the
labelled dataset used for candidate verification to train the SVM model to filter news more
efficiently.

Additional factors that may have influenced the performance of PADI-web were the lan-
guage and scope of geographical coverage of the news providers [44]. PADI-web currently
collects English language news from Google News. In comparison, HealthMap has access to
several news aggregators in seven languages, and ProMED gets first-hand information from
subscribers from around the world and its regional networks. Other automated biosurveillance
systems, such as BioCaster have achieved high performance for given regions, sources and lan-
guages, such as the Asia-Pacific region [45]. The MedISys system favors broader coverage of
sources in more than 40 languages but its efficiency has yet to be evaluated [46]. For the future
improvements of PADI-web we intend to take these geographical and language factors into
account.

Finally, the results of our evaluations revealed some of the limitations of conventional indi-
cator-based surveillance systems, especially regarding lags in official reporting [47]. In average
43% of the primary outbreaks that we analysed in this study were notified to OIE 1 week after
their onset and 27% after 30 days of their onset. These lags may have major impacts such as
rapid spread into uninfected territories such as the spread of ASF in Eastern Europe in 2007
[3]. Our findings highlighted the necessity for timelier outbreak notification and evaluation of
factors that influence official reporting [32, 47, 48].

Conclusion
In conclusion, PADI-web incorporates intelligent systems based on natural language process-
ing, machine learning and data mining techniques. Our contribution enhances the state-of-
the-art of epidemic intelligence and biosurveillance systems. PADI-web has the means
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necessary to ensure easy monitoring of online news for multiple animal infectious diseases of
importance to risk evaluators and risk managers.

Supporting information
S1 Dataset. PADI-web corpus: News manually labelled. Dataset of news reports in English
language used to evaluate and train the information extraction module of PADI-web (http://
epia.clermont.inra.fr/vsi). This dataset is composed of 532 news reports (in JSON), with infor-
mation about the report itself (publication date, title, content, url), as well as processing infor-
mation related to the information extraction process (candidates for extraction information,
correct or incorrect labels for each candidate). The named entity candidates (locations, dis-
eases, hosts, dates, number of cases) are manually labelled in each article. Data are shared
under a CC BY license and are freely available for download at: https://dataverse.cirad.fr/
dataset.xhtml?persistentId=doi:10.18167/DVN1/KMTIFG.
(GZ)

S2 Dataset. PADI-web dataset manually evaluated. Dataset of manually evaluated and
labelled for relevance signals detected by PADI-web (http://epia.clermont.inra.fr/vsi) from
January 1st to June 30th 2016, for African swine fever (ASF), foot-and mouth disease (FMD),
bluetongue (BTV) and avian influenza (AI). Each row represents the extracted epidemiological
information about a potential outbreak (signal) from the collected news. Each signal is con-
structed with one location automatically detected as correct in the news, which is combined
with all other epidemiological information types that are detected in the same news article.
Data are shared under a CC BY license and are freely available for download at: https://
dataverse.cirad.fr/dataset.xhtml?persistentId=doi:10.18167/DVN1/JZM34U.
(XLS)
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