J. Riemer, N. Bulleid, and J. M. Herrmann, Disulfide formation in the ER and mitochondria: two solutions to a common process, Science, vol.324, issue.5932, pp.1284-1291, 2009.

A. R. Frand and C. A. Kaiser, The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum, Mol Cell, vol.1, issue.2, pp.161-70, 1998.

A. Solovyov, R. Xiao, and H. F. Gilbert, Sulfhydryl oxidation, not disulfide isomerization, is the principal function of protein disulfide isomerase in yeast Saccharomyces cerevisiae, J Biol Chem, vol.279, issue.33, pp.34095-100, 2004.

K. Araki, S. Iemura, Y. Kamiya, R. D. Kato, K. Natsume et al., Ero1-alpha and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases, J Cell Biol, vol.202, issue.6, pp.861-74, 2013.

E. Gross, D. B. Kastner, C. A. Kaiser, and D. Fass, Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell, Cell, vol.117, issue.5, pp.601-611, 2004.

E. Gross, C. S. Sevier, A. Vala, C. A. Kaiser, and D. Fass, A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p, Nat Struct Biol, vol.9, issue.1, pp.61-68, 2002.

V. N. Daithankar, S. A. Schaefer, M. Dong, B. J. Bahnson, and C. Thorpe, Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy, Biochemistry, vol.49, issue.31, pp.6737-6782, 2010.

C. K. Wu, T. A. Dailey, H. A. Dailey, B. C. Wang, and J. P. Rose, The crystal structure of augmenter of liver regeneration: a mammalian FAD-dependent sulfhydryl oxidase, Protein Sci, vol.12, issue.5, pp.1109-1127, 2003.

L. Banci, I. Bertini, V. Calderone, C. Cefaro, S. Ciofi-baffoni et al., Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR, Proc Natl Acad Sci, vol.108, issue.12, pp.4811-4817, 2011.

S. Kawano, K. Yamano, M. Naoe, T. Momose, K. Terao et al., Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space, Proc Natl Acad Sci, vol.106, issue.34, pp.14403-14410, 2009.

L. Banci, I. Bertini, C. Cefaro, S. Ciofi-baffoni, A. Gallo et al., Mia40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria, Nat Struct Mol Biol, vol.16, issue.2, pp.198-206, 2009.

J. R. Koch and F. X. Schmid, Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria, Nat Commun, vol.5, p.3041, 2014.

J. R. Koch and F. X. Schmid, Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria, J Mol Biol, vol.426, issue.24, pp.4087-98, 2014.

D. P. Sideris, N. Petrakis, N. Katrakili, D. Mikropoulou, A. Gallo et al., A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding, J Cell Biol, vol.187, issue.7, pp.1007-1029, 2009.

V. Peleh, J. Riemer, A. Dancis, and J. M. Herrmann, Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general, Microbial Cell, vol.1, issue.3, pp.81-93, 2014.

K. Von-der-malsburg, J. M. Muller, M. Bohnert, S. Oeljeklaus, P. Kwiatkowska et al., Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis, Dev Cell, vol.21, issue.4, pp.694-707, 2011.

D. Milenkovic, T. Ramming, J. M. Muller, L. S. Wenz, N. Gebert et al., Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria, Mol Biol Cell, vol.20, issue.10, pp.2530-2539, 2009.

V. Peleh, E. Cordat, and J. M. Herrmann, Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding, Elife, vol.5, 2016.

D. Weckbecker, S. Longen, J. Riemer, and J. M. Herrmann, Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria, EMBO J, vol.31, issue.22, pp.4348-58, 2012.

N. Mesecke, N. Terziyska, C. Kozany, F. Baumann, W. Neupert et al., A disulfide relay system in the intermembrane space of mitochondria that mediates protein import, Cell, vol.121, issue.7, pp.1059-69, 2005.

M. Bien, S. Longen, N. Wagener, I. Chwalla, J. M. Herrmann et al., Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proof read by glutathione, Mol Cell, vol.37, pp.516-544, 2010.

M. Naoe, Y. Ohwa, D. Ishikawa, C. Ohshima, S. Nishikawa et al., Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space, J Biol Chem, vol.279, issue.46, pp.47815-47836, 2004.

A. Chacinska, S. Pfannschmidt, N. Wiedemann, V. Kozjak, S. Szklarz et al., Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins, EMBO J, vol.23, pp.3735-3781, 2004.

N. Terziyska, T. Lutz, C. Kozany, D. Mokranjac, N. Mesecke et al., Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions, FEBS Lett, vol.579, pp.179-84, 2005.

N. Terziyska, B. Grumbt, C. Kozany, and K. Hell, Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria, J Biol Chem, vol.284, issue.3, pp.1353-63, 2009.

J. R. Koch and F. X. Schmid, Mia40 is optimized for function in mitochondrial oxidative protein folding and import, ACS Chem Biol, vol.9, issue.9, pp.2049-57, 2014.

L. Böttinger, A. Gornicka, T. Czerwik, P. Bragoszewski, A. Loniewska-lwowska et al., In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins, Mol Biol Cell, vol.23, issue.20, pp.3957-69, 2012.

H. L. Tienson, D. V. Dabir, S. E. Neal, R. Loo, S. A. Hasson et al., Reconstitution of the Mia40-Erv1 oxidative folding pathway for the small Tim proteins, Mol Biol Cell, vol.20, issue.15, pp.3481-90, 2009.

S. E. Neal, D. V. Dabir, H. L. Tienson, D. M. Horn, K. Glaeser et al., Mia40 protein serves as an electron sink in the Mia40-Erv1 import pathway, J Biol Chem, vol.290, issue.34, pp.20804-20818, 2015.

D. Stojanovski, D. Milenkovic, J. M. Muller, K. Gabriel, A. Schulze-specking et al., Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase, J Cell Biol, vol.183, issue.2, pp.195-202, 2008.

S. K. Ang and H. Lu, Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p, J Biol Chem, vol.284, issue.42, pp.28754-61, 2009.

S. Basu, J. C. Leonard, N. Desai, D. A. Mavridou, K. H. Tang et al., Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists, Eukaryot Cell, vol.12, issue.2, pp.343-55, 2013.

E. Eckers, C. Petrungaro, D. Gross, J. Riemer, K. Hell et al., Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome c oxidoreductase Erv in opisthokonts and parasitic protists, J Biol Chem, vol.288, issue.4, pp.2676-88, 2013.

Z. Liu, X. Li, P. Zhao, J. Gui, W. Zheng et al., Tracing the evolution of the mitochondrial protein import machinery, Comput Biol Chem, vol.35, issue.6, pp.336-376, 2011.

C. Carrie, G. E. Duncan, O. Xu, L. Wang, Y. Huang et al., Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes, J Biol Chem, vol.285, issue.46, pp.36138-36186, 2010.

A. Levitan, A. Danon, and T. Lisowsky, Unique features of plant mitochondrial sulfhydryl oxidase, J Biol Chem, vol.279, pp.20002-20010, 2004.

D. Fass, The Erv family of sulfhydryl oxidases, Biochim Biophys Acta, vol.1783, issue.4, pp.557-66, 2008.

T. Ilani, A. Alon, I. Grossman, B. Horowitz, E. Kartvelishvily et al., A secreted disulfide catalyst controls extracellular matrix composition and function, Science, vol.341, issue.6141, pp.74-80, 2013.

E. Vitu, M. Bentzur, T. Lisowsky, C. A. Kaiser, and D. Fass, Gain of function in an ERV/ ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide, J Mol Biol, vol.362, issue.1, pp.89-101, 2006.

S. Reddehase, B. Grumbt, W. Neupert, and K. Hell, The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1, J Mol Biol, vol.385, pp.331-339, 2009.

L. A. Sturtz, K. Diekert, L. T. Jensen, R. Lill, and V. C. Culotta, A fraction of yeast Cu, Znsuperoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, J Biol Chem, vol.276, issue.41, pp.38084-38093, 2001.

C. Klöppel, Y. Suzuki, K. Kojer, C. Petrungaro, S. Longen et al., Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol, Mol Biol Cell, vol.22, issue.20, pp.3749-57, 2011.

D. Becher, J. Kricke, G. Stein, and T. Lisowsky, A mutant for the yeast scERV1 gene displays a new defect in mitochondrial morphology and distribution, Yeast, vol.15, issue.12, pp.1171-81, 1999.

D. V. Dabir, S. A. Hasson, K. Setoguchi, M. E. Johnson, P. Wongkongkathep et al., A small molecule inhibitor of redox-regulated protein translocation into mitochondria, Dev Cell, vol.25, issue.1, pp.81-92, 2013.

M. Bourens and A. Barrientos, A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis, EMBO Rep, vol.18, issue.3, pp.477-94, 2017.

M. Bourens, D. V. Dabir, H. L. Tienson, I. Sorokina, C. M. Koehler et al., Role of twin Cys-Xaa 9 -Cys motif cysteines in mitochondrial import of the cytochrome c oxidase biogenesis factor Cmc1, J Biol Chem, vol.287, issue.37, pp.31258-69, 2012.

K. Kojer, M. Bien, H. Gangel, B. Morgan, T. P. Dick et al., Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state, EMBO J, vol.31, issue.14, pp.3169-82, 2012.

K. Bihlmaier, N. Mesecke, N. Terzyiska, M. Bien, K. Hell et al., The disulfide relay system of mitochondria is connected to the respiratory chain, J Cell Biol, vol.179, pp.389-95, 2007.

S. Allen, V. Balabanidou, D. P. Sideris, T. Lisowsky, and K. Tokatlidis, Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c, J Mol Biol, vol.353, issue.5, pp.937-981, 2005.

D. V. Dabir, E. P. Leverich, S. K. Kim, F. D. Tsai, M. Hirasawa et al., A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1, EMBO J, vol.26, issue.23, pp.4801-4812, 2007.

M. J. Baker, V. P. Mooga, B. Guiard, T. Langer, M. T. Ryan et al., Impaired folding of the mitochondrial small TIM chaperones induces clearance by the i-AAA protease, J Mol Biol, vol.424, issue.5, pp.227-266, 2012.

B. Schreiner, H. Westerburg, I. Forne, A. Imhof, W. Neupert et al., Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria, Mol Biol Cell, vol.23, issue.22, pp.4335-4381, 2012.

S. Huang, N. L. Taylor, R. Narsai, H. Eubel, J. Whelan et al., Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity, Plant Physiol, vol.149, issue.2, pp.719-753, 2009.

J. L. Heazlewood, J. S. Tonti-filippini, A. M. Gout, D. A. Day, J. Whelan et al., Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins, Plant Cell, vol.16, issue.1, pp.241-56, 2004.

R. Kranz, R. Lill, B. Goldman, G. Bonnard, and S. Merchant, Molecular mechanisms of cytochrome c biogenesis: three distinct systems, Mol Microbiol, vol.29, issue.2, pp.383-96, 1998.

E. H. Meyer, P. Giege, E. Gelhaye, N. Rayapuram, U. Ahuja et al., AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c, Proc Natl Acad Sci, vol.102, issue.44, pp.16113-16121, 2005.

A. Ramesh, V. Peleh, S. Martinez-caballero, F. Wollweber, F. Sommer et al., A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import, J Cell Biol, vol.214, issue.4, pp.417-448, 2016.

T. Lisowsky, Dual function of a new nuclear gene for oxidative phosphorylation and vegetative growth in yeast, Mol Gen Genet, vol.232, issue.1, pp.58-64, 1992.

R. G. Uhrig, A. M. Labandera, L. Y. Tang, N. A. Sieben, M. Goudreault et al., Activation of mitochondrial protein phosphatase SLP2 by MIA40 regulates seed germination, Plant Physiol, vol.173, issue.2, pp.956-69, 2017.

A. C. Haindrich, M. Boudova, M. Vancova, P. P. Diaz, E. Horakova et al., The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe-S cluster assembly and operates alone, Mol Biochem Parasitol, vol.214, pp.47-51, 2017.

A. Alon, I. Grossman, Y. Gat, V. K. Kodali, F. Dimaio et al., The dynamic disulphide relay of quiescin sulphydryl oxidase, Nature, vol.488, issue.7411, pp.414-422, 2012.

R. G. Kranz, C. Richard-fogal, J. S. Taylor, and E. R. Frawley, Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control, Microbiol Mol Biol Rev, vol.73, issue.3, pp.510-538, 2009.

M. W. Gray, G. Burger, and B. F. Lang, Mitochondrial evolution, Science, vol.283, issue.5407, pp.1476-81, 1999.

V. Peleh, A. Ramesh, and J. M. Herrmann, Import of proteins into isolated yeast mitochondria, Methods Mol Biol, vol.1270, pp.37-50, 2015.

J. Couturier, H. C. Wu, T. Dhalleine, H. Pegeot, D. Sudre et al., Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1, Mol Plant, vol.7, issue.1, pp.187-205, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00936792