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RESEARCH ARTICLE Open Access
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Abstract

Background: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture,
respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to
many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic
basis for their properties as pests.

Results: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up
to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra
gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain
very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several
detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring
insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly
diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic
analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among
many of the duplicated detoxification and digestion genes.

Conclusions: The extreme polyphagy of the two heliothines is associated with extensive amplification and
neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses
on different hosts. H. armigera’s invasion of the Americas in recent years means that hybridisation could generate
populations that are both locally adapted and insecticide resistant.
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Background
A major question in evolutionary biology that becomes
tractable with the advent of modern genomics is the
genetic basis for the transitions between broad ‘general-
ist’ and narrow ‘specialist’ ecological niches [1–3]. Emer-
ging empirical evidence suggests that the transition to
specialism often involves a loss of function due to a loss
of genetic material (deletions or pseudogenisation [4, 5]).
However, there is less evidence, and little consensus, on
how the gains of function presumptively underlying the
evolution of generalism have been achieved at the gen-
omic level. One of the two major mechanisms proposed
attributes the acquisition of new functions to gene dupli-
cation followed by subfunctionalisation and then neo-
functionalisation [6, 7], while the other invokes the
development of more versatile regulatory networks and
transcriptional responses to different environments [8–
10]. The host range of herbivorous insects is a useful
model to investigate this issue because many of the mo-
lecular systems associated with host finding and the di-
gestion and detoxification of host resources have been
identified [11]. Here we investigate this system in two
‘megapest’ species of caterpillars [12, 13] which have
considerably broader host ranges than any of the other
lepidopterans so far studied at the genomic level.
The closely related noctuid moths Helicoverpa armi-

gera and Helicoverpa zea (commonly known as the cot-
ton bollworm and corn earworm, respectively) have
been major pests of modern agriculture in the Old and
New World, respectively. In the last decade, however, H.
armigera has also invaded the New World, firstly in
South America [14, 15], probably as a result of international
trade [16], but then spreading rapidly into Central America
[17, 18] and, most recently, North America [18, 19]. In
Brazil, it appears that it has now largely displaced H. zea
[20, 21]. The costs of lost production and control for H.
armigera in the Old World alone are conservatively
estimated at more than $US 5 billion annually [22],
while damages to Brazil’s 2012–2013 cropping season
were estimated at between $US 0.8 to 2 billion [21].
Helicoverpa zea and H. armigera are morphologically

similar [23, 24] and are believed to have diverged around
1.5 Mya as the result of a founder event establishing the
former in the Americas [25, 26]. Nevertheless, two ob-
servations suggest important ecological differences be-
tween the two species which greatly affect their
properties as pests. Firstly, H. armigera has been found
on more than 300 host plants across 68 families (mono-
cots as well as dicots: http://www.cabi.org/isc/datasheet/
26757) around the world, including major crops such as
cotton, soy, maize and a wide range of horticultural
crops, whereas H. zea has been recorded from a more
limited number of hosts, 123 species in 29 families, al-
beit still including major crops such as corn and soybean

[27]. Secondly, H. armigera has demonstrated a great
propensity to evolve resistance to chemical insecticides
[28–30] and Bacillus thuringiensis (Bt)-transgenic crops
[31, 32], whereas H. zea has remained more susceptible
to major insecticides such as the pyrethroids [33, 34]
and Bt crops [35, 36].
This paper explores the genomic bases for both the ex-

treme polyphagy of the two heliothines and the differ-
ences in host range and insecticide resistance propensity
between them. We find that the two genomes share very
high levels of orthology, and that they both have larger
complements of gene families involved in detoxification,
digestion and chemosensory functions compared to
other lepidopterans with more specialist feeding habits.
This includes large clusters of carboxylesterases, trypsin-
and chymotrypsin-like gut proteases and clusters of gus-
tatory receptors, these clusters alone containing more
than 100 additional genes. These genes are rapidly diver-
ging from one another and show relatively high levels of
polymorphism among resequenced lines of each species.
Many of them prove to be differentially expressed when
larvae are reared on different host plants. Thus, we find
evidence that both gene duplication and neofunctionali-
sation as well as transcriptional versatility are associated
with the species’ generalist niches. Importantly, however,
we also find genomic differences between the two spe-
cies which could explain their differences in host range
and insecticide resistance; H. armigera has 50 extra gus-
tatory receptors and several more detoxification genes,
plus some genes and alleles specifically associated with
resistance to major chemical and biological insecticides,
that are missing in H. zea. Given this, plus the very high
level of synteny we find between the two species’ ge-
nomes and evidence from other studies (e.g. Anderson
et al. [37]) for hybridisation between them since H.
armigera arrived in America, there is considerable scope
for introgression to rapidly generate new heliothine eco-
types with novel combinations of traits relating to their
pest status.

Results and Discussion
Genome assembly and annotation
For H. armigera, the final assembly freeze (‘csiro4bp’)
has 997 scaffolds covering a total of 337 Mb and includ-
ing 37 Mb of gaps. The N50 is 1.00 Mb, and the mean
scaffold length is 338 kb (Table 1). This assembly was se-
lected from several that were generated based on contig
and scaffold length and integrity and gene assembly
quality for a set of test genes. For H. zea, the final as-
sembly freeze (‘csirohz5p5’) has 2975 scaffolds covering
a total of 341 Mb, including 34 Mb of gaps. The N50 is
201 kb, and the mean scaffold length is 115 kb (Table 1).
These overall genome sizes are very close to those previ-
ously determined by flow cytometry for these and closely
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related heliothine species [38]. However, they are smaller
than those estimated from genome data for the original
lepidopteran model genome, the silkworm Bombyx mori
(431.7 Mb) [39] and its relative, the tobacco hornworm
Manduca sexta (419 Mb) [40]. The N50 statistic for H.
armigera in particular compares well to other lepidop-
teran draft assemblies, although the B. mori assembly
has a significant proportion of the genome in larger scaf-
folds (Table 1).
Automated annotation of the H. armigera genome

followed by some manual correction by domain experts
(see below) yielded a final official gene set (OGS2) of
17,086 genes (Additional file 1: Table S1). This gene set
was then used to derive a final OGS (OGS2) containing

15,200 good-quality gene models for H. zea (Additional
file 1: Table S1). Orthologues of another 1192H. armi-
gera gene models were present as poor-quality models
(i.e. much shorter than expected from their H. armigera
orthologues) in the available H. zea assemblies and tran-
scriptome data, making a total of 16,392H. armigera
genes for which orthologues could be identified in the
H. zea genome. This left 694H. armigera genes for
which no H. zea orthologues were found. In the H. zea
assemblies, on the other hand, 410 gene models more
than 100 codons in length were identified that had no
apparent H. armigera orthologue but these were gener-
ally incomplete models that lacked start codons. Nor
could any of the very few Pfam domains that were

Table 1 Genome assembly and annotation statistics

Species H. armigera H. zea B. moria M. sextab

Genome assembly csiro4bp csirohz5p5

Assembly size (Mb) 337.07 341.15 431.7 419.42

Number of scaffolds 997 2975 43,622 20,870

Max. scaffold length (Mb) 6.15 1.85 16.12 3.25

N50 scaffold size (kb) 1000.4 201.5 3717.00 664.01

N90 scaffold size (kb) 175.3 52.3 43.1 46.4

Mean scaffold length (kb) 338.1 114.7 9.9 20.1

Median scaffold length (kb) 117.3 68.0 0.655 0.997

Number of contigs 24,228 34,676 88,842 38,380

N50 contig length (kb) 18.3 12.6 15.5 40.4

Mean contig length (kb) 12.4 8.6 4.86 10.4

Median contig length (kb) 7.4 5.4 NA NA

Gene annotation (NCBI)c

Protein-coding 17,086 15,200d 15,007 27,404

InterPro domain 12,212 11,061 14,113 NA

GO 11,324 10,221 9462 NA

Pfam 10,700 9,795 11,753 NA

KEGG 4217 4004 6242 8611

Genomic features

Repeat (%) 14.6 16.0 43.6 24.9

GC (%) 36.1 36.2 38.8 35.3

Coding (%) 6.7 5.9 4.1 10.4

Intron (%) 39.3 17.7 16.3 NA

Gene length (b) 9098 5306 6029 NA

Avg. protein length (aa) 442.8 444.7 458.5 531.1

microRNAs 251 232 487 98

Quality control: BUSCO % present (complete)

Genome 94.3 (83) 93.2 (80) 91.6 (73) 93.7 (81)

Proteins (OGS) 94.6 (86) 90.7 (82) 93.6 (87) 92.9 (84)

N50 and N90 are computed on each assembly size as given in the table. The statistics for published B. mori and M. sexta genome assemblies are included for
comparison, with references as follows:
aB. mori v2 [39], bM. sexta [40], cNational Center for Biotechnology Information (NCBI) Gnomon models, dIndicates plus 1192 partial gene models
GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, BUSCO Benchmarking Universal Single-Copy Orthologues, OGS official gene set
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found among the latter gene models be assigned to any
of the major manually annotated gene families. These
latter H. zea models were therefore not analysed
further.
Application of the Benchmarking Universal Single-

Copy Orthologues (BUSCO) pipeline [41] showed that
the two Helicoverpa OGS2s compare well for complete-
ness with the other lepidopteran genomes analysed. In
particular, the H. armigera genome scored more highly
on both the genome and protein analyses for genes
present than do either of the well-characterised B. mori
or M. sexta genomes (Table 1).
Nearly 83% (14,155) of the 17,086 genes identified in

the H. armigera genome could be functionally annotated
by searches against B. mori and Drosophila melanogaster
proteome databases as matching proteins with functions
described as other than “uncharacterised”. Most of these
also have InterProScan domains or Gene Ontology (GO)
annotations (Table 1; Additional file 2: Table S2).
Orthologue mapping of the 17,086H. armigera genes

with the 15,007 National Center for Biotechnology Infor-
mation (NCBI) Gnomon models for B. mori identified
10,612 direct orthologues. Of the genes in either of these
species without direct orthologues in the other, 3043 of
the H. armigera genes and 2479 of those from B. mori
have GO annotations. For the B. mori genes with no H.
armigera orthologue, the major over-represented anno-
tations are chromatin structure and organisation, and
DNA replication, with some genes also relating to chor-
ion production (Fig. 1). In contrast, the H. armigera
genes without known orthologues in B. mori are over-
represented with annotations of signal transduction and
sensory perception relating to taste and smell (corre-
sponding to those terms labelled G protein coupled re-
ceptor signaling pathway), proteolysis and detoxification.
GO annotations were found for 237 of the 694H.

armigera genes without an identifiable match in the H.
zea genome. The GO annotations most over-represented
among these genes involved sensory perception and
signal transduction of taste or smell (Additional file 3:
Figure S1). Analysis of the 1192 genes present in H.
armigera but with poor models in the H. zea genome
showed that only those associated with retrotransposon-
coding sequences were enriched; this is consistent with
these genes lying in poorly assembled genomic regions
rather than belonging to any biologically distinct func-
tional group.
Using RepeatModeler, we estimated that the H. armi-

gera and H. zea genomes contain 14.6% (49 Mb) and
16.0% (53 Mb) repeats, respectively, which was signifi-
cantly less than the ~35% repetitive sequence found in
the B. mori genome and the ~25% repetitive sequence
found in the postman butterfly Heliconius melpomene by
equivalent methods (Table 1; Additional file 4: Table S3).

Most (~84%) of the repeats in both Helicoverpa genomes
consisted of unclassified repeats, with less than 1% of
each genome consisting of simple repeats or low-
complexity regions. A total of 682 unique complex re-
peats were found in H. armigera, and 97 of these had
similarities to Dfam hidden Markov models (HMMs)
[42] from other species. In concordance with Coates et
al. [38], who identified 794 transposable elements (TEs)
among bacterial artificial chromosome (BAC) clones
from H. zea, a little over half of all TEs identified were
type I elements (retrotransposed) in H. armigera (53%)
and H. zea (also 53%), and about half of those were long
interspersed nuclear elements (LINEs) (Additional file 4:
Table S3). Gypsy elements were the most numerous long
terminal repeat (LTR) elements identified in both ge-
nomes, although LTR elements were less abundant in H.
zea than in H. armigera, possibly reflecting poorer gen-
ome assembly quality. For both genomes, the most
abundant of the type II elements (DNA transposon-like)
that could be classified belonged to the hAT family.
An extensive microRNA (miRNA) catalogue (http://

www.mirbase.org) has been developed for B. mori [43–45]
and (as of August 2016) contains 563 mature miRNA
sequences, the most for any insect. Two recent papers
have also identified miRNAs in H. armigera [46, 47].
We have identified 301 potential miRNAs in H. armi-
gera by combining the ones previously identified for
this species and those identified through our own se-
quencing of small RNAs (Additional file 5: Table S4).
Of these, 134 appear to be conserved (E value ≤ 0.001)
between H. armigera and B. mori, and 251 and 232 of
them, respectively, could be found in our H. armigera
and H. zea assemblies, although these numbers
dropped to 183 and 161, respectively, when only perfect
matches were allowed. Several of the H. armigera and
H. zea miRNAs occur within 1 kb of others, but there
is only one cluster of more than two (H. armigera scaf-
fold_103; H. zea scaffold_688).

Genome organisation
We next investigated the proportion of the H. armigera
genome showing syntenic relationships with B. mori
chromosomes. We found that 569H. armigera scaffolds
(93% of the assembled genome) carried at least two con-
tiguous H. armigera genes which had identifiable ortho-
logues on the same B. mori chromosome, and so could
be used in this analysis. Of these scaffolds, 536 only con-
tained genes with orthologues on the same B. mori
chromosome (Additional file 3: Figure S2). The
remaining scaffolds contained two or three discrete
blocks of synteny mapping to different chromosomes
and may therefore represent non-syntenous relationships
or misassemblies. The 536 scaffolds above represent
75.6% of the assembled genome and indicate a very high
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level of synteny across these two widely separated lepi-
dopterans. This bears out the conclusions of high con-
servation of macro and micro synteny in Lepidoptera
from other studies [48–50].

We then investigated the synteny between the two
heliothine assemblies. Of the 2975 scaffolds in the con-
siderably more fragmented H. zea assembly, 2367 had
good-quality gene models corresponding to H. armigera

Fig. 1 GO term analyses of gene gain/loss events in H. armigera vs B. mori. The left panel shows GO terms enriched in the H. armigera gene set
vs B. mori, and the right panel shows those enriched in the B. mori gene set vs H. armigera
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genes. A total of 1761 of these scaffolds (83% of the as-
sembled H. zea genome) each contained at least two
contiguous genes forming a synteny block with an H.
armigera scaffold (Additional file 3: Figure S2). As with
the H. armigera/B. mori comparison above, most of the
1761 scaffolds (1512, covering 62% of the assembled
genome) correspond to a single H. armigera scaffold,
with the remainder (249, covering 21% of the gen-
ome) comprising multiple distinct blocks of synteny
to different H. armigera scaffolds. As above, the latter
could indicate either non-syntenous relationships or
misassemblies. Notwithstanding the limitations due to
the more fragmented H. zea genome, these analyses
again indicate a high level of synteny between the
species.

Annotation of gene families related to detoxification,
digestion, chemosensation and defense
The gene families involved in detoxification, digestion
and chemoreception were manually checked and anno-
tated following application of an EXONERATE-based
dedicated pipeline using all available sequences and
complementary DNAs (cDNAs) to augment the auto-
matically generated models. This yielded a total of 908
H. armigera and 832H. zea genes. Other automatically
generated gene models were manually annotated as be-
longing to gene families concerned with stress response
and immunity, as well as to cuticular protein, ribosomal
protein and transcription factor families. Additional file
6: Table S5 gives the names and locations of the total of
2378H. armigera and 2269H. zea genes processed in
these ways.
The five major detoxification gene families (cyto-

chrome P450s (P450s), carboxyl/cholinesterases (CCEs),
glutathione S-transferases (GSTs), uridine diphosphate
(UDP)-glucuronosyltransferases (UGTs) and ATP-
binding cassette transporters (ABCs)) are very similar in
size in H. armigera and H. zea (Table 2; Additional file
4: Sections 1–5). The slightly greater numbers recovered
in the former species might be due in part to the higher
quality of the assembly for that species. We also com-
pared these numbers with those obtained with the same
curation pipeline for the monophagous B. mori and the
pest species M. sexta, which is oligophagous on Solana-
ceae (see Additional file 4: Sections 1–5) and, for the
P450s, CCEs and GSTs, also for another pest, the dia-
mondback moth Plutella xylostella, which is oligopha-
gous on Brassicaceae (see Additional file 4: Sections
1–3). Relatively little difference from these other spe-
cies was evident for the ABCs and UGTs, but quite
large differences were found for the other detoxifica-
tion families. The number of genes encoding P450s,
CCEs and GSTs in the two heliothines are similar to
or slightly larger than those of one of the other pest

species, M. sexta, but substantially larger than those in
B. mori and the other pest, P. xylostella — twice as large
in the case of the GSTs and 20–40% larger in the case of
the P450s and CCEs.
Notably, the differences in the H. armigera P450s,

CCEs and GSTs are largely reflected in those of their
subgroups that are generally associated with xenobiotic
detoxification — the P450 clans 3 and 4, the detoxifica-
tion and digestive CCE clades and the GST delta and
sigma classes [51–53] (Fig. 2). Of particular note is the
large cluster of CCEs in clade 1, with 21 genes for H.
armigera, all located in one cluster of duplicated genes
on scaffold_0. Twenty genes from this clade were also
recovered from H. zea, and 26 from M. sexta, but only
eight from B. mori (Additional file 4: Section 2). There
were also large P450 clusters: the CYP340K cluster (10
genes) on scaffold_107 and the CYP340H cluster (six
genes) on scaffold_371, both in clan 4, plus the clan 3
CYP6AE genes (11) on scaffold_33. Excepting the rela-
tively low numbers for P. xylostella, the differences in
P450s, CCEs and GSTs are consistent with the hypothe-
sised positive relationship of detoxification gene number
to host range [11], with the net difference of the
heliothines from B. mori and P. xylostella across the
three families being at least 50 genes (Additional file 4:
Sections 1–3).
Consistent with their role in host use, the digestive

proteases and neutral lipases are also similar in number
in H. armigera and H. zea, and more numerous in both
than in B. mori (Table 2) (comparable quality annota-
tions not being available for M. sexta or P. xylostella).
The differences are again substantial: ~200% in the case
of the trypsins and neutral lipases, and ~50% for the
chymotrypsins, giving well over a 50-gene difference in
total. As above, many of the differences can be attributed
to amplifications of particular gene clusters (Fig. 3;
Additional file 4: Section 6). In H. armigera, there are 29
clade 1 trypsin genes, with 28 in a single genomic
cluster, and 26 clade 1 chymotrypsin genes in a single
genomic cluster (Fig. 3; Additional file 4: Section 6).
While the largest cluster of acid lipases comprises just
five genes, there are several expanded clusters of neutral
lipases, the largest three containing 13, seven and five
genes, respectively (Fig. 3 (showing two of these clusters);
Additional file 4: Section 7).
Only one of the four families of chemosensory pro-

teins, the gustatory receptors (GRs), showed large differ-
ences in number between the four species (Table 2;
Additional file 4: Section 8, and see also [54]). In this
case, H. armigera had 28% more genes than H. zea (213
vs 166, respectively), far more than would be expected
simply from the difference between the two species in
assembly quality. This concurs with the finding above
that the GO terms most enriched among the H.
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armigera genes without H. zea equivalents included sen-
sory perception and signal transduction of taste or smell.
In fact, 47 (20%) of the 237 genes in this category for
which we found GO terms were GRs. H. armigera also
had about three times as many GRs as B. mori, and four
times as many as M. sexta (213 vs 69 and 45, respect-
ively). The difference from B. mori is again consistent
with the enrichment of GO terms concerned with

sensory perception and signal transduction related to
taste or smell found among the H. armigera genes with-
out equivalents in B. mori, as discussed above for Fig. 1.
Notably, the oligophagous M. sexta has even fewer GR
genes than B. mori; we do not know why this is so.
Few differences were evident among the two

heliothines and B. mori in the numbers of genes in-
volved in stress response and immunity (Additional file

Table 2 Detoxification, digestive and chemosensory receptor gene families

Gene family Clan/clade/group H. armigera H. zea Ha-Hz Ka/Ks
b B. moric M. sexta

P450s M 10 10 0.061 11 16

2 8 8 0.029 7 8

3 46 42 0.076 31 45

4 50 48 0.083 30 34

Total 114 108 79 103

CCEs Dietary/detoxa 71 (8) 67 (9) 0.117 52 (8) 67 (9)

Hormone/semiochemical processing 13 (5) 13 (5) 0.071 13 (5) 16 (6)

Neuro-developmental 13 (10) 13 (10) 0.022 13 (10) 13 (10)

Total 97 (23) 93 (24) 78 (23) 96 (25)

GSTs Delta/epsilon 25 24 0.124 14 16

Sigma 11 10 0.106 2 8

Theta 1 1 0.063 1 1

Zeta 2 2 0 2 2

Omega 3 3 0.047 4 4

Total 42 40 23 31

UGTs UGT33 22 19 0.102 13 16

UGT40 8 7 0.116 12 9

Other 16 16 0.114 19 19

Total 46 42 44 44

ABCs A 7 7 0.036 7 7

B 11 11 0.033 9 9

C 11 11 0.019 11 11

G 17 17 0.009 16 16

Other 8 8 0.007 8 11

Total 54 54 51 54

Serine proteases: major digestive clades Trypsinsa 51 (15) 46 (15) 0.159 17 (6) d

Chymotrypsinsa 49 (4) 44 (4) 0.067 28 (3) d

Lipases Acida 28 (1) 28 (1) 0.117 32 (1) d

Neutrala 61 (10) 60 (9) 0.061 25 (2) d

Chemosensory receptor proteins GRs 213 166 0.292 69 45

ORs 84 82 0.090 72 73

OBPs 40 40 0.074 40 45

CSPs 29 29 0.056 22 21

See Additional file 6: Table S5 and Additional file 4: Sections 1–8 for details of genes, functions and names in each family
aCatalytically inactive sequences (although not necessarily without function) in parentheses
bAveraged Ka/Ks for orthologous members of the subfamily
cFigures based on the official gene sets, with further analysis as described in Additional file 4: Section 13
dThese figures are not available in the official gene sets at the level of detail required
GR gustatory receptor, OR olfactory receptor, OBP odorant-binding protein, CSP chemosensory protein
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Fig. 2 Phylogenetic, physical and transcriptional relationships within the major detoxification gene clusters. Selected clades of P450s, GSTs and
CCEs, containing genes associated with detoxification functions, are shown. Clades discussed more extensively in the text are highlighted in red.
Further details about the gene names and their associated OGS numbers are given in Additional file 4: Sections 1–3. Bars below the gene names
indicate genes within a distinctive genomic cluster on a specific scaffold with the number shown; see Additional file 4: Sections 1–3 for further
details. The clade 1 CCEs are specifically indicated. The phylogenetic order shown does not reflect the physical order of genes within a cluster.
Expression is given as fragments per kilobase of transcript per million mapped reads (FPKM) for the tissue/developmental stage transcriptomes
and log2(fold change) (logFC) for the host-response transcriptomes
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Fig. 3 Phylogenetic, physical and transcriptional relationships within the major digestion gene clusters. Selected clades of serine proteases and
lipases containing genes associated with digestive functions are shown. For the serine proteases, chymotrypsins (on the left) and trypsins (right)
are shown as a single tree; the neutral and acid lipases are shown separately. Clades discussed more extensively in the text are highlighted in red.
Further details about the gene names and their associated OGS numbers are given in Additional file 4: Sections 6, 7. Bars below the gene names
indicate genes within a distinctive genomic cluster on a specific scaffold with the number shown; see Additional file 4: Sections 6, 7 for further
details. The clade 1 chymotrypsins and trypsins are specifically indicated; for the latter, no single scaffold is shown because the cluster spans
scaffolds 306, 5027, 842 and 194. The phylogenetic order shown does not reflect the physical order of genes within a cluster. Expression is given
as FPKM for the tissue/developmental stage transcriptomes and logFC for the host-response transcriptomes
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4: Section 9) or in groups of genes important for larval
growth, such as the cuticular proteins and transcription
factors (Additional file 4: Section 10). The largest single
cluster of duplicated genes we found anywhere in the H.
armigera genome involved 60 cuticular protein RR-2
genes, the corresponding clusters in H. zea and B. mori
comprising 58 and 54 genes, respectively (Additional file
4: Section 10). Full details of the genes in these families
and functional classifications are provided in Additional
file 6: Table S5.

Evolutionary analyses of major gene family expansions in
H. armigera and H. zea
Phylogenetic analysis revealed several major duplication
events of detoxification and digestion-associated genes
within the heliothine lineage which pre-dated the diver-
gence of the two species but nevertheless occurred
relatively recently within this lineage. For example, radi-
ations of 11 CYP6AEs in clan 3, 25 CYP340s and 15
CYP4s in clan 4 (Additional file 4: Section 1), 15 of the
clade 1 CCEs (Additional file 4: Section 2) and 23 each
of the clade 1 trypsins and chymotrypsins (Additional
file 4: Section 6) were found in the heliothine lineage.
Many of these duplicated genes have been associated
with rapid amino acid sequence divergence; for example,
divergences within the three large clusters (i.e. clade 1 in
each case) of CCEs, trypsins and chymotrypsins in H.
armigera have resulted in identity ranges of 45–91%,
47–95% and 48–98%, respectively. Dating analyses using
the Bayesian Markov chain Monte Carlo (MCMC)
method in Bayesian evolutionary analysis by sampling
trees (BEAST) v2.4.3 [55] showed that most of the
duplications occurred from more than 1.5 to about 7
Mya (Additional file 4: Table S6; Additional file 7). This
range pre-dates the estimate by Mallet et al. [25] and
Behere et al. [26] of around 1.5 Mya for the divergence
of H. armigera and H. zea, a date supported by our
analysis below.
Phylogenetic analyses of the GRs (Additional file 4:

Section 8) showed that the very large numbers of those
genes in the heliothines compared to B. mori were also
largely due to recent amplifications within the heliothine
lineage. On the other hand, the larger number of GRs in
H. armigera than H. zea could be attributed to the loss
of genes in the H. zea lineage, since our divergence dat-
ing puts those amplifications earlier than the H. zea/H.
armigera split. Furthermore, the fact that 12 of the 20
genes among the 2269 manually curated H. zea gene
models which had internal stop codons were GRs (cf. none
in H. armigera; Additional file 4: Section 8) suggests that
the process of GR gene loss in H. zeamay be ongoing.
We next carried out several analyses on the evolution-

ary changes in the above major gene families. As noted,
a large body of empirical evidence from a wide range of

insect species enables us to partition the clades within
the P450, CCE and GST families into those that have
been recurrently associated with detoxification functions
and those for which there is little or no empirical evi-
dence of such functions. Nine of the H. armigera genes
in the detoxification lineages, but none of the genes in
the other lineages, were found to be missing in the H.
zea assembly. We then compared the rates of amino acid
sequence divergence between the two heliothines for
P450, CCE and GST genes in these two sorts of lineages.
We found that the Ka/Ks statistics in the lineages directly
associated with detoxification functions generally di-
verged in amino acid sequence more rapidly between
the two heliothines than did other lineages in these fam-
ilies (Table 2). Finally, we used Tajima’s relative rate test
to screen for heterogeneity in rates of amino acid se-
quence divergence among closely related paralogues in
these lineages (Table 3; Additional file 4: Table S7), find-
ing that 42% (19/45) of the pairs in the detoxification
lineages yielded significantly different rates, whereas only
14% (2/14) of pairs in other lineages in these families did
so. Significant differences in rates were also observed for
several major digestive clades, particularly among the
chymotrypsins, and for several GR lineages (Additional
file 4: Table S7).
Overall, the picture emerging from the evolutionary

analyses is of extensive recent amplification and rapid
sequence divergence among several clades of the detoxi-
fication, dietary and GR gene families in the heliothine
lineage prior to the H. armigera/H. zea split, with the
subsequent loss of some detoxification and more GR
genes in H. zea. We propose that the gene amplification
and diversification prior to the split reflect the emer-
gence of this highly polyphagous branch of the
heliothine megapest lineage, while the subsequent loss
of genes in H. zea reflects its contraction to a somewhat
narrower host range than that of H. armigera. We do
not know how their host species differed in pre-
agricultural times, but, notwithstanding considerable
overlap, there are now some differences between them.
Cunningham and Zalucki [27] list hosts from 68 plant
families for H. armigera but only from 29 families for H.
zea. Many papers on the ecology of H. zea cite its heavy
dependence on maize, soy and, in some cases, their wild
relatives [56–61], while some major papers on H. armi-
gera [57, 62, 63] stress that large populations of the spe-
cies live on diverse wild hosts outside agricultural areas.

Transcriptomic profiles of the detoxification and digestive
genes across tissues and developmental stages
A profile of tissue/stage-specific gene expression was
built up from 31 RNA-seq-based transcriptomes from
either whole animals or specific tissues/body parts, with
15 of the latter being from fifth instar larvae and 12
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from adults (Additional file 4: Table S8). These included
tissues important in sensing, detoxification or digestion
in adults (antennae and tarsi of each sex) and larvae
(mouthparts, salivary gland, gut, tubules, fat body and
epidermis). Transcripts from a total of 13,099 genes
were detected at levels sufficient to analyse, including
303 of the 353 genes from the detoxification families
and 145 of the 193 from the digestion families above
(see Additional file 4: Sections 1–7 for full details); the
chemosensory genes generally showed too little expres-
sion for meaningful analyses.
The results for the P450 clans, CCE clades and GST

classes most often associated with detoxification and/or
where we found the largest differences in gene number
between the species above are summarised in Fig. 2.
Relatively high expression (fragments per kilobase of
transcript per million mapped reads (FPKM) >30) was
found for many of the CYP6s and CYP9s in various de-
toxification and digestion-related tissues and for some of
the CYP4s in various detoxification-related tissues; for
one particular clade of delta GSTs and most of the sigma
GSTs in most detoxification and digestive tissues; and
for about half of the CCEs in clades 1, 6 and 16, mostly
in digestive tissues, principally fifth instar midguts.
The ABC transporters were expressed in most tissues
screened, with one particular lineage (the ABCG
subfamily) expressed at higher levels in several
detoxification-related tissues and also salivary glands,
while relatively high UGT expression was found for
the UGT-40 lineage in various detoxification and di-
gestive tissues (Additional file 4: Sections 4, 5).
For the digestion-related families, Fig. 3 shows that ex-

pression of most midgut proteases was high in fifth instar
midguts and to a lesser extent foreguts, with little expres-
sion elsewhere. Interestingly, as was the case with the
clade 1 CCEs, particular subclades of the clade 1 trypsins
and chymotrypsins were only expressed at low levels in
any of the digestive (or detoxification) tissues. The lipases
showed a more complex pattern of expression, with the

galactolipases among the neutral lipases (the clusters con-
taining HarmLipases 33–37 and 66–71) and a recently di-
verged cluster of acid lipases (HarmLipases 24–28) among
the minority heavily expressed in mid- or foregut. On the
other hand, the medium- (8–16 residues) and large- (21–
26 residues) lidded neutral lipases (HarmLipases 09, 40,
54–56, 04 and 77, and 02, 03, 38 and 93; i.e. groups 5, 7
and 8b respectively in Additional file 4: Section 7), as well
as several triacylglycerol and miscellaneous other lipases,
were expressed in a range of other tissues (mainly fat
body, salivary gland, silk gland and cuticle).

Larval growth and transcriptomic responses of the
detoxification and digestion genes on different hosts
H. armigera larvae were raised on seven different species
of host plant known to differ in their quality as hosts
[64] plus the soy-based standard laboratory diet used in
the first transcriptomics experiment above. The labora-
tory colony is normally maintained on the standard diet,
but remains capable of completing its life cycle on host
plants such as cotton [65]. Use of this colony allows
ready comparison of the responses to different host
plants at the whole genome level.
The experiment was designed to measure developmental

time to, and weight and gene expression profiles at, a spe-
cific developmental stage, i.e. instar 4 plus 1 day. All hosts
allowed larvae to develop to this point. There were large
differences in the performance of the larvae on the eight di-
ets, with mean development time to harvest varying be-
tween 7 and 15 days and mean weight at harvest varying
between 13 and 150 mg (Fig. 4). The laboratory diet was
clearly the most favourable, with the larvae developing rela-
tively rapidly and growing to the largest size, while Arabi-
dopsis was clearly the poorest, giving the longest
development time for a very low larval weight. Maize and
green bean yielded midrange values for both measures.
Cotton and Capsicum produced relatively small but rapidly
developing larvae, whereas tomato and tobacco produced
relatively large but slowly developing larvae. It is of interest

Table 3 Detoxification gene clades showing enhanced sequence divergence in H. armigera and gene loss in H. zea

Family Clan/group Gene number in H. armigera Gene pairs tested Significant rate difference (p < 0.05) H. armigera genes not in H. zea

P450 Detox, clan 3 43 9 3 3

Detox, clan 4 47 11 5 2

Other 6 4 2 0

CCE Detox 55 19 7 4

Other 16 9 0 0

GST Detox 36 8 4 2

Other 3 1 0 0

Tajima’s relative rate tests were performed on the numbers listed of H. armigera paralogue gene pairs in the major detoxification groups; for each group
examined, the number of pairs showing a significant rate difference is given. Also listed are the numbers of genes in the relevant clades missing in the H. zea
assembly. The P450, CCE and GST families are partitioned in these analyses into lineages for which there is empirical evidence for detoxification functions and
those for which there is little or no such evidence. More details of the specific genes involved and comparable data for the proteases, lipases and GRs are given in
Additional file 4: Table S7
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that the diet allowing most rapid completion of develop-
ment was in fact cotton; this was also found to be the case
by Liu et al. [64].
Gene expression was then profiled at the defined devel-

opmental point. Read mapping of RNA-seq data for the
whole fourth instar larvae to the OGS2 yielded data for
11,213 genes at analysable levels (a minimum level of 5
reads per million across three libraries). Differential ex-
pression (DE) on plant hosts compared to the control
diet was then calculated for each of these genes, with
1882 found to be differentially expressed on at least one
host (Additional file 8: Table S9). These 1882 genes in-
cluded 185 of the 546 genes in the detoxification and
digestion-related families above (analysable data having
been obtained for 452 of the 546). This was a highly sig-
nificant, greater than threefold enrichment (hypergeo-
metric test p = 1.5 × 10–48) of these families compared to
their representation in the genome overall. The 185 DE
genes included approximately one-third of each of the
detoxification and digestion sets. The chemosensory pro-
teins were only poorly represented among the 11,213
genes with analysable data; only 10 GRs were analysable
and none of them were differentially expressed.
Initial analysis of DE genes in the major detoxification

and digestion-related gene families (Figs. 2 and 3) found
wide variation in transcriptional responses among both

the hosts and the genes. Nevertheless, some clear pat-
terns emerged. Most of the genes in the five detoxifica-
tion families were upregulated on the least favoured diet,
Arabidopsis, and for four of these families most of the
genes screened were downregulated on cotton. For the
P450s and CCEs, tobacco also elicited a broadly similar
upregulation response to Arabidopsis. For the GSTs,
most genes were downregulated on every host other
than Arabidopsis, with maize eliciting the most frequent
downregulated response. The UGTs also produced
downregulated responses on several hosts other than
Arabidopsis, but in this case maize elicited some upregu-
lated responses. Most ABC transporters were upregu-
lated on every host other than cotton and to a lesser
extent Capsicum.
Many of the genes in the five detoxification-related

families which were most prone to differential regulation
across the various hosts occurred in physical clusters.
These genes included the CYP340K cluster on scaf-
fold_107, the CYP340H cluster on scaffold_371, the
CYP341 genes on scaffold_21, the clade 1 esterases men-
tioned above and a large cluster of 13 UGT33 genes on
scaffold_562. Many others, although not always physic-
ally clustered, were nevertheless closely related in a
phylogenetic sense, for example, the GSTD1n, GSTS2,
ABCB and ABCC lineages. In a few of these cases, such
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Fig. 4 Effects of rearing diet on development time and weight gain. The mean weights and development times with their standard errors are
plotted for larvae from each diet
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as the CYP340 and 341 clusters and the GSTD1n
lineage, some of the genes within each cluster/lineage
showed similar patterns of DE. However, in most cases,
different genes within each cluster or lineage reacted dif-
ferently to the different hosts. Thus, considerable regula-
tory evolution has accompanied the diversification of
coding sequences within these clusters and lineages.
Importantly, many of the genes in the detoxification

families most prone to DE on the various host plants
were not necessarily ones that had been heavily
expressed in the tissues related to detoxification or di-
gestion on the laboratory diet. Genes prone to host
plant-related DE that had been highly expressed in the
tissues on the laboratory diet included some CYP6s,
CYP337s and delta GSTs. However, genes prone to DE on
the different hosts that had shown little expression in the
tissues on the laboratory diet included several CYP340s,
clade 1 CCEs, ABCs and UGTs (Fig. 2). This accords with
empirical evidence that many detoxification genes are
inducible in response to xenobiotic exposure [51–53].
Many of the midgut proteases also showed DE on dif-

ferent host plants (Fig. 3). Overall, the proteases were
more likely to be downregulated on the host plants com-
pared to the protein-rich soy-based laboratory diet, this
effect being most pronounced on green bean, cotton and
Arabidopsis. These downregulatory responses were most
evident in certain regions of the clade 1 trypsin and
chymotrypsin clusters. On the other hand, Capsicum
and to a lesser extent tobacco elicited several upregula-
tory responses in other regions of these two clusters,
with some specific genes, e.g. Try116 and Try118, show-
ing divergent responses on green bean and Capsicum.
For Capsicum and to a lesser extent tomato, upregula-
tory responses were also evident in the cluster of seven
trypsin genes on scaffold_9. Coordinated changes across
several hosts were evident for Tryp114–120 within the
clade 1 trypsin cluster but, as with the detoxification
genes above, even closely linked genes within genomic
clusters generally diverged in their transcriptional re-
sponses across the panel of diets.
Many of the acid lipases, but only a phylogenetically

restricted minority of the neutral lipases (clades 1 and 2,
each with nine genes), also showed significant DE across
the various diets (Fig. 3). In contrast to the proteases,
the diet-responsive lipases were most often upregulated
on the host plants as opposed to the laboratory diet,
which is consistent with the fact that laboratory diets
generally have higher levels of free fatty acids than the
host plants [66]. Interestingly, tobacco, Arabidopsis and
to a lesser extent green bean elicited similar responses
from many of the genes in both sets of lipases. Other-
wise, however, the lipases showed a diversity of host re-
sponses more akin to the diversity seen in the other
gene families above. Thus, there were relatively few cases

of closely related lipase genes within clusters showing
the same expression profiles across the various diets
and, as with the other systems above, those that did gen-
erally involved the most recently diverged clusters (e.g.
the neutral lipases HarmLipases 82–84; 67, 69 and 70;
and 66, 71 and 72; Additional file 4: Section 7).
Fewer genes implicated in growth and morphogenesis

and stress responses showed DE across the hosts
(Additional file 4: Sections 9, 10) than did the families
above, although some involved in growth and morphogen-
esis showed DE on cotton and Arabidopsis, and some
stress response genes showed DE on Capsicum. The
cotton-specific expression changes may be due to the fas-
ter rate of developmental stage progression on this host,
meaning that more gene families, pathways and networks
show variable expression at any particular time point.
Overall, most (1199) of the total set of 1882 DE genes

across the genome were only identified as DE on a single
diet, suggesting a specific response to the particular
characteristics of the host plant (Fig. 5). Each host plant
elicited DE in at least 200 genes, with cotton, Arabidop-
sis and Capsicum each affecting more than 600. The
most common shared responses involved genes that
were differentially expressed on cotton and Capsicum
(124 genes) and to a lesser extent on Arabidopsis and to-
bacco (58 genes). Notably, Arabidopsis and tobacco were
the poorest hosts (long developmental time and low lar-
val weight), and cotton and Capsicum were also rela-
tively inefficiently used (shorter developmental time, but
still relatively low weight gain) (Fig. 4).

Integrating the tissue/developmental stage and host-
response transcriptomics
Two weighted gene co-expression networks were con-
structed, one for each of the tissue/developmental stage
and host-response data sets, using sets of 13,099 and 7977
rigorously filtered genes, respectively (see Methods). Each
network assigned each gene in the data set to a co-
expression module containing genes with the most similar
expression profiles to it.
Five of the 47 co-expression modules recovered from

the tissue/developmental stage network were highly
enriched for genes among the 1882 identified above as
differentially expressed in response to diet; 529 of the
1456 genes in these five modules were among the 1882
DE genes (Fig. 6). These five modules highlight the im-
portant tissues involved in that response, with, as ex-
pected, tissues implicated in detoxification and digestion
being strongly represented: four of these modules con-
tained genes expressed specifically in the larval fore/
midgut (T1), the Malpighian tubules (T2), the fat body
(T3) or in all detoxification/digestion tissues (T4). The
fifth module (T5) corresponds to genes expressed in the
sensory apparatus (larval antenna/mouthparts and adult
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antennae/tarsus), highlighting that sensory/behavioural
responses play a key role in host plant adaptation in H.
armigera [27].
The host-response co-expression network yielded 37

modules, of which nine were enriched for genes in the
1882 DE gene set above (675 of the 1485 genes in these
nine modules being DE genes) and are therefore most
likely to contain networks of genes involved in host re-
sponse (Fig. 7). Four (D8, D10, D21 and D25) of these
nine modules were also significantly enriched for the
546 genes in the families identified a priori as containing
general detoxification (D10) and digestion (D8 — specif-
ically protease) related functions (Fig. 7), as was one fur-
ther module, D37 (Additional file 4: Table S10a;
Additional file 9: Table S10b). Five of the nine modules
(D8, D10 and D25 again, as well as D23 and D24) were
also significantly enriched for the 1456 genes in the five
stage/tissue co-expression modules involving tissues
with detoxification- and digestion-related functions
(Additional file 4: Table S10a), consistent with these
modules’ enrichment for DE genes. Three further diet
modules were identified as also enriched for genes in
these developmental modules, one of which (D37, the
other two being D3 and D32), as noted, had also been
enriched for the 546 a priori identified genes in

detoxification/digestion gene families (Additional file 4:
Table S10a). D37 is of particular note, being specifically
enriched (27 of its 32 members) for midgut trypsin and
chymotrypsin sequences in the two large clusters shown
in Fig. 3; while expressed at relatively low levels on the
control laboratory diet, these genes were all upregulated
on several of the plant hosts.
Unsurprisingly, the three diet modules D8, D10 and

D25, which were significantly enriched for all three sets of
genes above (i.e. the 1882 DE genes, the 546 in the key
gene families and 1456 in the five key tissue/developmen-
tal stage modules), were all over-represented with GO
terms covering functional annotations such as catabolism,
amylase, endopeptidase, carboxylester hydrolase and
monooxygenase (Additional file 3: Figure S4). D25 alone
contains 11 P450s from clans 3 and 4, 10 CCEs, including
six from clade 1, nine UGTs, two delta class GSTs, a tryp-
sin and a lipase. Notably also the transcription factors in
these modules — three each in D8 and D10 and one more
in D25 (Additional file 4: Section 11) — are candidates for
the crucial upstream regulatory roles controlling host re-
sponses (see also Additional file 4: Section 10; Additional
file 10). The plants on which these modules with signifi-
cant numbers of the transcription factors (e.g. D8 and
D10) were most upregulated — cotton, Capsicum and

Fig. 5 Numbers of genes differentially expressed on each of the different diets. The seven diets are listed at the bottom of the figure, with the
total numbers of DE genes on each diet shown by the horizontal histogram at the lower left. The main histogram shows the number of DE genes
summed for each diet individually and for various diet combinations. The diets for which each number is calculated are denoted by black dots,
representing either a single diet plant or a combination of multiple different diets. See also Additional file 3: Figure S3 for a principal component
analysis showing the relationships among the transcriptional responses to the different diets
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Arabidopsis — were among the most problematic or
inefficiently used of the hosts tested.
Taken together, the expression data illustrate the consid-

erable extent to which the H. armigera larval host response
involves coordinated expression, on a tissue-specific basis,
of specific genes, including a significant number of those in
the major detoxification- and digestion-related families.
Further, the diversity of co-expression patterns across the
different host plants emphasises the transcriptomic plasti-
city of H. armigera larvae. It will be of great interest now
to test whether H. zea shows comparable levels of tran-
scriptomic plasticity on similar hosts.

Resequencing data
Whole genome sequence data from a total of four H. armi-
gera lines and five H. zea lines/individuals were analysed to
further investigate the genetic relationships between the
two species. In addition to the reference lines for the two
species, from Australia and North America, respectively,
the sample included two Chinese and one African-derived
H. armigera lines and four H. zea individuals from North

America. Single-nucleotide polymorphisms (SNPs) in the
nine resequenced genomes were called in two ways, one
from each of the two species’ reference sequences.
When the SNPs were called from the H. armigera ref-

erence sequence, a multi-dimensional scaling (MDS)
analysis placed the resequenced genomes for each spe-
cies very close to each other and well separated from the
other species, but the H. armigera reference line was
well separated from both these groups, albeit closer to
the other H. armigera than the H. zea samples (Fig. 8a).
When the SNPs were called from the H. zea reference
line, the MDS placed all five H. zea sequences close to
one another and well separated from all the H. armigera
samples, but the latter could then be separated in the
second MDS dimension, with one Chinese sequence
(SW) slightly removed from both the other Chinese se-
quence (AY) and the African-collected laboratory strain
(SCD) (Fig. 8b). The separation of the H. armigera refer-
ence from the other H. armigera lines (Fig. 8a) probably
reflects the fact that the H. armigera reference line rep-
resents a distinct subspecies, H. armigera conferta,

(See figure on previous page.)
Fig. 7 Expression profiles for selected co-expression modules from the host-response transcriptomic experiment. The eight modules for which ex-
pression profiles are shown are those most enriched for DE genes. Four of these modules (see text) are also significantly enriched in genes from
the detoxification- and digestion-related families. Expression (log2FC) profiles for each module are shown on the left. The composition of each
module is described in the central panels, showing the total number (N) of genes per module, the number that are DE, the number in the five tis-
sue/developmental stage modules T1–T5 (TM) and the number in the major gene family (GF) classes defined by the key below. Major functions
enriched in each module are noted on the right of the figure. See Additional file 4: Section 11 for more detailed analyses of the host-response
network including aspects illustrated by the co-expression modules D20 and D3
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which is present only in Australia, New Zealand and
some south-west Pacific islands [23, 37]. Notwithstand-
ing their differing geographic ranges, both subspecies
are found in a very wide range of ecological habitats,
and there is no evidence as yet that they differ in their
ability to inhabit any specific ecology [27, 57, 63, 67].
Whole genome sequences of comparable quality of the
two H. armigera subspecies will be needed to identify
particular genome sequences distinguishing the two.
With both MDS analyses supporting the view that H.

armigera and H. zea are indeed separate species, we next
estimated the date of the divergence between H. armigera
and H. zea by conducting a coalescence analysis using se-
quence data for 16 recently diverged loci (Additional file 3:
Figure S5; Additional files 11 and 12). The resulting tree,
with H. punctigera as the outgroup, confirmed H. armigera
and H. zea as two distinct species. The divergence dates
between the three species were then estimated by applying
the coalescence to the 12 most rapidly evolving of the 16
genes [68]. We calculated that H. armigera and H. zea di-
verged 1.4+/–0.1 Mya, their lineage and that leading to H.
punctigera diverged 2.8+/– 0.2 Mya and the Australian H.
armigera lineage diverged from the other analysed H.
armigera lineages 0.9+/–0.1 Mya. Our coalescent analyses
are therefore consistent with the general assumption in in-
dicating that all our H. zea lines diverged from H. armigera
prior to the divergence among the sequenced H. armigera
lines (although Leite et al. [20] had suggested H. zea was
the basal lineage). The estimate for the H. armigera/H. zea
split agrees well with previous estimates of around 1.5
Mya for this date, based on biochemical genetics [25] and
mitochondrial DNA (mtDNA) phylogenies [26] using a
mutation rate estimate of 2% per million years in Drosoph-
ila mitochondrial DNA [69]. We find no evidence for
introgression between the species since. Our estimates also
concur with those of Cho et al. [12] in placing H. puncti-
gera basal to the H. armigera/H. zea lineage, although the
date of this divergence has not previously been estimated.
Estimates of genome-wide diversity (pi) were consistently

about twice as high within the resequenced H. armigera ge-
nomes as they were within the resequenced H. zea ge-
nomes (Additional file 3: Figure S6), regardless of which
species was used as the reference. Interestingly, however,
the H. armigera sequences showed lower diversity values
for non-synonymous sites compared with synonymous sites
than did H. zea (Additional file 3: Figures S6, S7). Thus, al-
though there was greater heterozygosity overall in the H.
armigera samples, their non-synonymous sites showed
more evidence of selective constraint than did the H. zea
samples. Note that the absolute values for diversity shown
in Additional file 3: Figure S6 (~0.015 for H. armigera and
0.004 for H. zea) are lower than those reported by others
(e.g. see [37, 70]), probably due to the more stringent filter-
ing used to allow us to compare individuals from the two

species (see Methods). Nevertheless, the relative levels of
polymorphism are consistent across all these studies.
Consistent with the estimates of heterozygosity, Bayes-

ian skyline plot analysis using the resequencing data
consistently estimated a much (~10×) greater contem-
porary effective population size for H. armigera than for
H. zea (Ne ~ 2.5 × 108 and 2.5 × 107 respectively). In
addition, our estimates of effective population size
change through time indicated an expansion in H. armi-
gera around 6–8 Mya. By contrast, the effective popula-
tion size of H. zea increased only slowly from about 1.5
Mya. All these values were obtained using the corre-
sponding reference genomes to call the SNPs, but essen-
tially the same results were obtained whichever
reference genome was used (data not shown).
We found small but significant positive correlations

between H. armigera and H. zea in the pattern of vari-
ation in pi across their genomes. This was true for both
their synonymous and non-synonymous sites, although
the correlation was slightly stronger for the synonymous
sites (rho = 0.421 cf. 0.387, p < 0.001 for both; Additional
file 3: Figure S7). This difference is to be expected, as
lineage-specific selective pressures will result in greater
diversity between the species at non-synonymous sites.
The size of the correlations seen for both the synonym-
ous and non-synonymous sites implies that, while a large
proportion of variance in diversity across genomic bins
is shared across the two species, the majority (~0.6) of
this variance is in fact not shared between them.

Candidate insecticide resistance genes
Paralleling its greater host range, H. armigera is also
considerably more prone to develop insecticide resist-
ance than H. zea, even though many populations of both
are heavily exposed to insecticides [30, 71]. H. armigera
has developed resistance to many chemical insecticides,
including organochlorines, organophosphates, carba-
mates and pyrethroids (see [30, 72–74] for reviews), and,
more recently, to the Cry1Ab, Cry1Ac and Cry2Ab Bt
toxins delivered through transgenic crops [75]. By con-
trast, in H. zea significant levels of resistance have only
been found for organochlorines and pyrethroids and,
even then, relatively infrequently [30].
In most of the H. armigera cases at least one of the

underlying mechanisms is known, but specific mutations
explaining some of the resistance have only been identi-
fied for three of them, specifically the metabolic resist-
ance to pyrethroids and the Cry1Ab and Cry2Ab
resistances [31, 32, 76, 77]. However, in several of the
other cases bioassay and biochemical information on the
resistance in H. armigera or H. zea, together with prece-
dent molecular studies from other species, indicate the
genes likely to be involved. We therefore screened our
sequence data for the presence of intact copies of those
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genes, their expression profiles and mutations recur-
rently found to confer resistance in other species. The
reference Australian H. armigera colony and the rese-
quenced African strain are known to be susceptible to
most if not all the insecticides above, but the two Chin-
ese lines could be resistant to pyrethroids and possibly
other chemical insecticides [71, 78]. The Chinese AY
line had also been shown to be resistant to the Cry1Ac
Bt toxin [79]. The reference H. zea line is susceptible to
all the insecticides above, and the resequenced lines
were also derived from populations known not to have
any significant resistances. The results of our screens are
detailed in Additional file 4: Section 12 and summarised
below.
Resistance due to insensitive target sites has been dem-

onstrated for organochlorines, organophosphates and py-
rethroids in H. armigera. These resistances would be
expected to involve gamma-aminobutyric acid (GABA)-
gated chloride ion channels, acetylcholinesterase-1 or
possibly acetylcholinesterase-2 and voltage-gated so-
dium channels, respectively. We found good models of
the key genes, with wild-type sequences lacking known
resistance mutations, in both species. The transcrip-
tome data show them to be well expressed in neural
tissue. Both H. armigera and H. zea were found to
have orthologues of certain additional GABA-gated
chloride ion channel genes found in other Lepidop-
tera; although these genes have sequence variations at
locations associated with resistance mutations in
other insects, none of these changes in Lepidoptera
have been associated with resistance (Additional file 4:
Section 12).
Resistance due to enhanced metabolism of the insecti-

cide has been demonstrated for organophosphates and
pyrethroids in H. armigera. The organophosphate resist-
ance is correlated with the upregulation of several clade
1 carboxylesterases [80], particularly CCE001g, but
which of the overexpressed CCEs actually causes the re-
sistance remains unknown. The pyrethroid resistance is
mainly caused by enhanced P450-mediated metabolism,
and much of this is due to novel CYP337B3 genes
resulting from fusions of parts of the adjacent
CYP337B1 and CYP337B2 genes through unequal cross-
ing over [76, 81]. Although CYP337B3 alleles have been
identified at various frequencies in populations around
the world, there was no evidence, either from screening
for reads that cross the fusion junction or from read
densities for the constituent sequences, for their exist-
ence in any of the sequenced lines for either species.
Another P450 gene that is interesting in relation to in-
secticide resistance is the CYP6AE14 gene. This P450
was originally implicated in the metabolism of a par-
ticular insecticidal compound produced by cotton
(gossypol) but is now thought to have a more general

role in detoxifying various plant defense chemistries
[82–84]. Notably, we find no evidence of the CYP6AE14
gene in any of our H. zea genome or transcriptome
data.
Several molecular mechanisms have been reported for

resistances to Bt toxins in H. armigera. They involve dis-
ruptions to the cadherin [31] or ABCC2 transporter [77]
proteins in the larval midgut for the Cry1Ab/c toxins,
and to ABCA2 proteins for the Cry2Ab toxin [32]. All
these resistance mutations are recessive. We find intact
gene models for these genes in both reference genomes
and the resequenced lines. Although the AY strain is
known to be resistant to Cry1Ac, that resistance is dom-
inant [79] and therefore likely to be due to mutation in
an unknown gene different from those mentioned above.
The genomes of both species therefore contain good

models of the genes encoding the target sites for several
classes of chemical insecticides and Bt toxins for which
target site resistance has been reported in H. armigera
or other species. This would be expected given the
known essential neurological functions of the chemical
insecticide targets and the indications of important func-
tions for the Bt targets provided by the fitness costs in
the absence of Bt commonly associated with Bt resist-
ance mutants [85]. Notably, however, we found two
presence/absence differences in genes implicated in
metabolic resistance to chemical insecticides or plant
toxins in H. armigera. In both cases, as described above,
the gene has been found in H. armigera populations but
not in our H. zea data. One is the chimeric CYP337B3
gene, and the other is CYP6AE14. These cases may rep-
resent benefits to H. armigera from specific neofunctio-
nalisations enabled by the extensive duplication of its
detoxification genes. Also relevant here is our evidence
for this species’ diverse upregulatory responses of vari-
ous detoxification genes to different hosts. Given emer-
ging evidence for similar sorts of upregulatory responses
to various insecticides [72], and the abilities of some of
the detoxification enzymes to bind/transform a wide
range of insecticides [86–88], its unusually large reper-
toire of detoxification enzymes may provide H. armigera
with a high level of metabolic tolerance to many insecti-
cidal chemistries.

Conclusions
A major characteristic of the two heliothine genomes
which could explain those species’ polyphagy and pest
status concerns their complements of genes involved in
host finding and host use. The ~3000 annotated genes
we found in H. armigera but not in B. mori were
enriched for GO terms relating to taste and smell, prote-
olysis and detoxification. H. armigera had over 70 more
genes in families associated with detoxification (mainly
P450s, CCEs and GSTs), over 90 more in families
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associated with digestion (midgut proteases and neutral
lipases) and over 150 more chemosensory proteins (al-
most all GRs), for a total of over 300 additional genes
across these families. Comparisons of H. zea to B. mori
showed the same pattern, albeit H. zea has fewer GRs, in
particular, than does H. armigera.
These numbers provide stronger support within Lepi-

doptera for a positive correlation, previously proposed
on the basis of automated annotations, between the sizes
of three major detoxification gene families studied here
(P450s, CCEs and GSTs) and host range [11]. The two
heliothines, with a host range extending across many
families and at least 14 orders, average 247 genes in
these families (Additional file 3: Figure S8). In contrast,
three species (M. sexta, Chilo suppressalis and P. xylos-
tella) which are less polyphagous, with host plants lim-
ited to a single family in each case, have an average of
180 genes, and four others (B. mori, Danaus plexippus,
Melitaea cinxia and H. melpomene), whose host range is
limited to a single species or genus of plants, have an
average of 159 genes.
Several lines of evidence also emerge from both our

genomic and transcriptomic analyses which suggest that
the additional detoxification, digestive and GR genes in
the two Helicoverpa species contribute directly to
greater functional versatility. Firstly, many of the dupli-
cated genes have been associated with rapid amino acid
sequence divergence, for example within the respective
largest clusters in H. armigera of CCEs, trypsins and
chymotrypsins, and relative rate tests among paralogues
in these clusters show evidence for functional diver-
gence. Secondly, transcriptomic analysis shows that
many of the duplicated genes in the detoxification- or
digestion-related families are expressed in relevant tis-
sues and are enriched several fold among the 1882 genes
that were found to be significantly differentially
expressed on different hosts.
Thus, the extreme polyphagy that has evolved in the

two ‘megapest’ heliothines appears to have been associ-
ated with the duplication and neofunctionalisation of
many genes involved in host finding or host use, prior to
their divergence, and, at least for the detoxification- and
digestion-related genes, with a diversification of their ex-
pression patterns in response to different hosts.
We estimate that the two heliothine species diverged

about 1.4 Mya, in good agreement with earlier sugges-
tions. We found no evidence for introgression between
the species since their divergence, and our phylogenetic
and comparative analyses show a possible genomic basis
for the functional divergence between them, consistent
with H. zea having a somewhat narrower host range
than H. armigera. We find that H. zea has lost some
genes in specific P450, CCE and GST lineages directly
associated with detoxification functions and as many as

28% of its GRs since its divergence from H. armigera.
We also find evidence that GR gene loss in H. zea may
be ongoing. Evolutionary rate tests among the GRs and
in the P450, CCE and GST lineages directly associated
with detoxification also showed rapid divergence be-
tween orthologues in the two species. These findings
suggest that their respective host plants have selected for
some different detoxification capabilities and gustatory
responses in the two species.
The ability of H. armigera in particular to develop re-

sistance to all known classes of insecticides is the other
fundamental reason for its megapest status. H. zea has
not shown this ability to the same extent. The genomes
of both species contain good models of the genes encod-
ing the target sites for several classes of chemical insecti-
cides and Bt toxins for which target site resistance has
been reported in H. armigera or other species, as well as
several genes implicated in metabolic resistance. There
are, however, two P450 genes implicated in metabolic re-
sistance to chemical insecticides or plant toxins that are
present in H. armigera populations but not in our H. zea
data. One is the chimeric CYP337B3 gene associated
with pyrethroid resistance, numerous alleles of which
are found worldwide, and the other is CYP6AE14,
thought to be associated with plant allelochemical de-
toxification. These cases may represent benefits to H.
armigera from specific neofunctionalisations enabled by
the extensive duplication of its detoxification genes.
That both reference genomes contain good models for

most of the genes implicated in metabolic or target site
resistance to insecticides through mutation suggests that
the higher resistance propensity of H. armigera may be
largely due to another factor. This is its greater genetic
polymorphism, which is about twice that of H. zea.
Many insecticide resistances have been shown to arise
from pre-existing rather than new mutations in candi-
date genes [65, 89, 90], and so H. armigera may be better
pre-adapted for resistance than is H. zea. The greater
population size we estimate for H. armigera (~10 times
greater than that of H. zea) would also assist in this by
allowing for the retention of a greater pool of potentially
useful rare variants.
The demographics of both Helicoverpa species have

been changing rapidly over the last decade in the Ameri-
cas, with the incursion and proliferation of H. armigera
into South America and its progressive spread into cen-
tral and North America. It is unclear whether, and
where, it might replace H. zea, but recent data [37] sug-
gest that some level of hybridisation and introgression of
H. armigera genes into H. zea could already be occur-
ring in South America. Our data do not speak directly to
the issue of replacement vs co-existence of the species in
the absence of introgression, but they do provide two
important insights in respect of introgression. Firstly, the
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high levels of orthology and synteny between the ge-
nomes provide no reason to anticipate genome incom-
patibilities or hybrid/backcross breakdown to occur over
time. Secondly, some key differences found between the
genomes, the additional GRs, the CYP6AE14 implicated
in tolerance to plant defense chemistry, the CYP337B3
gene conferring synthetic pyrethroid resistance and the
various Bt resistance genes in H. armigera being obvious
examples, could provide the basis for generating novel
hybrid ecotypes that are both locally adapted and in-
secticide resistant.

Methods
Reference H. armigera genome data and assemblies
DNA was extracted from the offspring of a single pair of
the GR laboratory colony of H. armigera maintained in
Canberra. The colony derives from collections in the
1980s from cotton fields in the Namoi Valley in New
South Wales, Australia, and has been maintained on a
suitable laboratory diet since then. DNA extraction was
performed from whole, late stage pupae using a standard
phenol chloroform protocol.
Library construction and sequencing was performed at

the Baylor College of Medicine, Human Genome
Sequencing Center (BCM HGSC), Houston, TX, USA.
Several different types of sequencing libraries were gen-
erated — a few for the 454 sequencing platform but
most for the Illumina platform. Raw data were pre-
processed to remove low-quality reads and bases.
An AllpathsLG [91] assembly of the Illumina data

(from a 180-bp paired-end (PE) and 3-kb, 6-kb and 8-kb
mate pair (MP) libraries) and a 20-kb MP 454 library
produced a scaffold N50 of 1 Mb. This assembly, termed
csiro4b, formed the basis for the final genome freeze, as
described in Additional file 4: Section 13. Further All-
pathsLG assemblies used different combinations and
subsets of the available data as input (Additional file 4:
Table S26). A Celera Assembler with the Best Overlap
Graph (CABOG) [92] assembly of contigs was also made
using selected 454 and Illumina data. These other as-
semblies were used in confirmation or repair of gene
models during the annotation process described below.
The csiro4b assembly was then corrected at 100 loca-
tions with sequences identified as giving correct gene
models from the other assemblies or transcriptome data,
to generate the patched genome freeze csiro4bp. Further
details of the GR colony, sequencing data and assembly
methods are provided in Additional file 4: Section 13.

H. armigera transcriptomics
Material from the GR colony was also used in the two
major transcriptomics experiments, either whole organ-
isms or dissected tissues for the tissue/developmental
transcriptome atlas (see Additional file 4: Table S8) and

whole fourth instar larvae for the experiment investigat-
ing the effects of diet (see below). Total RNA from all
samples was extracted by grinding the material in ‘RLT’
solution, and RNA from the equivalent of 30 mg of tis-
sue from each sample was then purified using an RNeasy
mini kit (Qiagen, Victoria, Australia). RNA was eluted in
water, with a minimum yield of 40 μg. RNA quality and
quantity in an aliquot of each sample were determined
by electrophoresis on an Agilent 2100 Bioanalyser (Agi-
lent Technologies, Santa Clara, CA, USA) chip system
and by UV absorption on a NanoDrop spectrophotom-
eter ND-1000 (ThermoFisher Scientific, Waltham, MA,
USA). The remaining RNA from each sample was pre-
cipitated with ethanol and sodium acetate and stored at
–80 °C. Library construction and RNA sequencing were
done at BCM HGSC.
An initial comprehensive transcriptome assembly

using all the RNA-seq reads from both these transcripto-
mics experiments was generated using TopHat and Cuf-
flinks [93, 94]. A second assembly, following trimming
of PE reads (100 b) to 80 b using the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit), was then gen-
erated using Trinity [95], as described in detail in Kanost
et al. [40].
MicroRNAs were sequenced from total RNA har-

vested from first instar larvae, the midguts of fourth in-
star larvae and from pupae, again all from the GR
colony. After phenol/chloroform extraction and ethanol
precipitation, the total RNA was resuspended in diethyl
pyrocarbonate (DEPC)-treated MQ water, quantified
with a NanoDrop Spectrophotometer ND-1000 and
quality checked in an Agilent 2100 Bioanalyser. About
100 ng of total RNA was denatured at 70 °C for 1 min,
followed by chilling on ice and Illumina sequencing
(Geneworks, Adelaide, Australia).

Annotation of the H. armigera genome
This step involved automated annotation with MAKER
and Program to Assemble Spliced Alignments (PASA2).
The first step in our automated annotation of csiro4b in-
volved the MAKER pipeline [96]. The Augustus [97],
Semi-HMM-based Nucleic Acid Parser (SNAP) [98] and
GeneMark [99] ab initio gene prediction tools incorpo-
rated in MAKER were trained using a set of manually
curated genes (see below). As detailed in Additional file
4: Section 13, the process was then repeated several
times with inclusion of the RNA-seq assemblies and
additional evidence databases consisting of gene sets
predicted from other insect genomes. A customised
method using the OrthoMCL [100] and CD-HIT [101]
pipelines was then used to assess the quality of the pre-
dicted genes from each of the nine MAKER runs and to
consolidate the genes from the various MAKER runs
into a consensus set (Additional file 4: Section 13). The
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nine MAKER runs and OrthoMCL + CD-HIT approach
together produced 18,636 distinct proteins.
Many protein models produced by MAKER resulted

from fusions of adjacent duplicated genes. However,
these problems were resolved in a comprehensive re-
annotation using JAMg (http://jamg.sourceforge.net) as
per Papanicolaou et al. [102]. Briefly, the MAKER, pro-
tein domain evidence, Kassiopeia [103], GeneMark,
RNA-seq coverage, intron-spanning cDNA reads and
previously manually curated genes were provided as evi-
dence with respectively increasing weight to the Augus-
tus de novo gene predictor. This multi-layered output
was then reconciled using EVidenceModeler [104] and
annotated for untranslated regions (UTRs) and alterna-
tive transcription using the RNA-seq data and PASA2
[104, 105], yielding 22,818 transcript models. A refer-
ence unigene set (i.e. containing a single protein model
for each locus), termed the official gene set 1 (OGS1;
Additional file 4: Section 13), was derived from this. Fi-
nally, 1088 manually annotated gene models for specific
gene families (see below) replaced the corresponding au-
tomated gene models, giving OGS2. Scipio [106] was
used to derive genome location coordinates for the
manually annotated gene models.

Functional annotation of gene models in key families
The automatically generated gene models for the key de-
toxification, digestion and chemosensory gene families
were cross-checked and manually curated using all avail-
able sequences, cDNAs and gene models. For the detoxi-
fication and digestion families this included the use of a
specially developed gene finding and alignment pipeline
(Additional file 4: Section 13); where the models gener-
ated differed from those in the final assemblies, the lat-
ter were then patched appropriately. Other families
listed in the comprehensive family annotation table
(Additional file 2: Table S2) were annotated based on ei-
ther the use of custom perl scripts to identify proteins
with specific motifs (e.g. the cuticular proteins) or by the
semi-automated screening of Basic Local Alignment
Search Tool (BLAST)-derived annotations.

Whole genome functional annotations
The OGS2 protein sequences were analysed using a cus-
tom version of the InterProScan pipeline [107], includ-
ing the GO [108], Pfam [109], PROSITE [110] and
Simple Modular Architecture Research Tool (SMART)
[111] annotations. Proteins carrying relevant domains
identified by these analyses were flagged for confirm-
ation as members of specific gene families. GO term as-
signments were extensively used in custom pipelines
built on the GO database and in the Biological Networks
Gene Ontology tool (BiNGO) plugin [112] for Cytoscape
[113]. To analyse functional enrichment in specific gene

sets, GO terms were summarised through semantic
similarity filtering and visualised using REVIGO [114].

Repeats and microRNAs
Repeat sequences in the genome were identified using
RepeatModeler [115]. All previously identified lepidop-
teran repeats were first obtained from RepBase and used
to query the H. armigera genome. These repeats were
then used as known repeat libraries for 10 iterations of
RepeatModeler runs using RepeatScout and rmblast.
The repeats recovered were then masked in the H. armi-
gera genome using RepeatMasker. RNA sequence data
for miRNA analysis were first processed using custom
perl scripts, and then miRNAs were predicted using
miRDeep2 [116]. Further analysis against known miR-
NAs from other insects was undertaken using miR-
Base19 [117].

Reference H. zea genome and transcriptome assemblies
and annotation
Genome sequencing for H. zea used DNA extracted
from pupae of a laboratory colony established prior to
introduction of transgenic Bt crops and maintained
without infusing feral insects for at least 25 years [118].
This laboratory colony was highly susceptible to all Bt
toxins compared to feral H. zea [118–120]. Virgin males
and females were used to inbreed the insects through
three generations of single-pair matings. Male pupae of
the final generation were used to obtain high molecular
weight genomic DNA for preparing Illumina sequencing
libraries. Libraries were constructed and sequenced as
for H. armigera above.
An AllpathsLG assembly of the Illumina data pro-

duced an N50 of 196 kb (Hz-csiro5 in Additional file 4:
Table S27). Again, a series of further AllpathsLG assem-
blies used different combinations and subsets of the in-
put data as listed in Additional file 4: Table S27.
Correction and patching of Hz-csiro5 to produce the
final H. zea genome freeze (hz5p5) is described in
Additional file 4: Section 13, together with further details
of the H. zea colony and the sequencing data and assem-
bly methods used.
Transcriptome data used in annotation of the H. zea

genome included a preliminary assembly of 454 and Illu-
mina RNA-seq data. All 454 data were obtained from a
pool of RNA starting with 24–48 h embryos, all larval
stages, pupae and adult males and females. The Illumina
RNA-seq data were from 24–48 h embryos and third in-
star larvae. The larvae were treated with sublethal doses
of Cry1Ac, novaluron, cypermethrin and Orthene to in-
duce genes involved in xenobiotic degradation that may
not normally be expressed. The 454 libraries were nor-
malised. RNA sequence data were assembled with Trin-
ity (version trinityrnaseq_r20140413p1) using genome-

Pearce et al. BMC Biology  (2017) 15:63 Page 22 of 30

http://jamg.sourceforge.net/


guided and de novo assembly methods as above for H.
armigera.
The H. zea genomes were screened using the H. armi-

gera OGS2 gene model protein sequences and Scipio
[106] to identify the best possible gene models for H.
zea. See Additional file 4: Section 13 for details.

Orthology and evolutionary analyses of target gene
families
Gene models for the detoxification- and digestion-
related gene families in H. armigera and H. zea were
obtained as described above. For other species ana-
lysed in Table 2, the automatically generated gene
models and official gene sets were cross-checked and
manually curated by domain specialists using available
sequences, cDNAs and gene models generated by the
EXONERATE-based dedicated pipeline. Current anno-
tations of B. mori and M. sexta members of these fam-
ilies were cross-checked and in some cases revised by
a similar procedure, albeit in this case the few models
that differed from those in the genome assembly were
not patched into that assembly. All our final gene
models for these families for the three species are sum-
marised in Additional file 6: Table S5. Other families
of interest whose gene models are listed in this table
were identified and annotated either using custom perl
scripts to screen for proteins with specific motifs (e.g.
the cuticular proteins) or by semi-automated screening
of BLAST-derived annotations.
The phylogenetic methods used to analyse the evolu-

tionary processes operating in most gene families were
as described in the Methods for Supplementary Figures
19–21 of Kanost et al. [40]. Briefly, we used multiple se-
quence alignment software (MAFFT) [121] with the linsi
option to make a multiple sequence alignment, which
we then masked for sites with more than 50% gaps or
ambiguous characters. Phylogenetic analyses were then
carried out using IQ-TREE [122], which implements an
ultrafast bootstrap method [123] and ModelFinder, a
new model-selection method that greatly improves the
accuracy of phylogenetic estimates [124]. Having found
the optimal model for each family, we then inferred
the most likely tree for it using IQ-TREE, with boot-
strap scores inferred using the ultrafast bootstrap
method. Two other phylogenetic methods were used
for a few data sets. PhyML [125] was used for some
smaller data sets, and for the lower quality GR data set
Randomised Axelerated Maximum Likelihood (RAxML)
[126] was used. Trees were illustrated using the R package
ggtree [127].
Divergence dating analyses among subsets of gene

families within or across different species or lines used
the Bayesian MCMC method in BEAST v2.4.3 [55]. Pro-
tein sequences aligned using MAFFT as described above

for the phylogenetic analyses were used to inform coa-
lignment of nucleotide sequences using a custom perl
script. Where necessary, the site models were unlinked
to enable different evolutionary rates at each locus (as
determined in IQ-TREE above), but clock and tree
models were linked so that they would not vary among
locus partitions. An XML input file was then generated
for BEAST v2.4.3 using BEAUti v2.4.3. The prior for
tMRCA (time to the Most Recent Common Ancestor)
and root height were set at a lognormal distribution,
with a mean of ln (1.5) and a standard deviation of 0.01.
A strict molecular clock with a uniform distribution was
applied using the mutation rate determined for H. mel-
pomene of 2.9 × 10–9 (95% confidence interval, 1.3 × 10−9

through 5.5 × 10−9) substitutions per site per generation
[128]. A generation time of 0.25 year corresponding to
the midrange defined by Fitt [67] for subtropical and
temperate regions was used for some analyses. Trees
were annotated in TreeAnnotator v2.4.3 [129] and visua-
lised in FigTree v1.4.2 [130].
Relative rate tests of H. armigera genes used the near-

est paralogues shown in the phylogenetic trees for each
family in Additional file 4: Sections 1–8. Protein se-
quences aligned using MAFFT as described above for
the phylogenetic analyses were used to inform coalign-
ment of nucleotide sequences using a custom perl script.
Tajima’s relative rate tests [131] were done in Molecular
Evolutionary Genetics Analysis (MEGA) software [132].

Tissue/developmental transcriptomic atlas
Thirty-one GR samples reared on standard diet were
collected for this analysis, four from whole organisms of
specific life stages and 27 from tissues or body parts of
feeding fifth instar larvae or adults. Details of the sam-
ples are given in Additional file 4: Table S8. RNA and li-
brary preparation and sequencing were as described
above.

Diet transcriptomics experiment
Patterns of gene expression were compared between lar-
vae raised on different host plants. The plants were se-
lected to maximise the diversity of responses that might
be observed [64]. The set comprised one monocot,
maize, Zea mays (larval RNA libraries M-3, GenBank
BioSamples 6608687-9), and plants from four dicotyle-
donous plant families: Malvaceae, cotton, Gossypium hir-
sutum (larval RNA libraries Ct1-3, GenBank BioSamples
6608702-4); Brassicaceae, thale cress, Arabidopsis thali-
ana (larval RNA libraries AR1-3, GenBank BioSamples
6608666-8); Fabaceae, green bean, Phaseolus vulgaris
(larval RNA libraries GB1-3, GenBank BioSamples
6608675-7) and Solanaceae, tobacco, Nicotiana tabacum
(larval RNA libraries Tb1-3, GenBank BioSamples
6608696-8), tomato, Lycopersicon esculentum (larval
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RNA libraries TM1-3, GenBank BioSamples 6608699-
701) and hot pepper, Capsicum frutescens (larval RNA li-
braries Hp1-3, GenBank BioSamples 6608678-80). For
reference, larvae were also raised on a standard labora-
tory diet [133, 134] (larval RNA libraries Sd1-3, Gen-
Bank BioSamples 6608693-5).
About 10 larvae from the GR colony were transferred

to plants or the laboratory diet in triplicate within 24 h
of hatching and without exposure to any previous diet.
Each replicate consisted of one pot containing either a
single plant for the larger species or several plants for
the smaller species. Larvae were transferred to plants
when flowers had started to form but before any fruit
was present. The plants were grown under the same
glasshouse conditions, and each of the three replicates
used larvae from a different cohort of the laboratory cul-
ture. As pointed out by others [64, 135], larvae raised on
an artificial diet prior to such a host-response experi-
ment are seen as offering the advantage of not being
primed for any particular plant host.
In order to harvest all larvae at a comparable develop-

mental stage irrespective of the host plant, six larvae
from each replicate were collected from the plants when
they had returned to feeding one day after moulting to
the fourth instar. The time taken to reach this stage was
noted, and the larvae were weighed; they were then im-
mediately cut with dissecting scissors into three or four
pieces. Their RNA was preserved by immediately drop-
ping the pieces into RNAlater solution (Ambion, Austin,
TX, USA), which was held initially on ice to allow the
solution to diffuse into the tissue and then frozen at –
80 °C.
Total RNA was prepared from the six larvae compris-

ing each replicate as per the methods described above,
except that the libraries for sequencing were made at the
United States Department of Agriculture-Agricultural
Research Service (USDA-ARS, Stoneville, MS, USA).
RNA sequencing was done at BCM HGSC as above.
It was not possible to undertake parallel diet transcrip-

tomic experiments on H. zea in this study, since it is not
found in Australia and therefore subject to stringent bio-
security quarantine prohibitions. Such a follow-up study
would therefore need to be undertaken in a country
known to harbour both species.

Transcriptome analyses
Sequencing reads were cleaned using Trimmomatic
[136] to remove adapter sequence and low-quality reads.
Passing reads were aligned to the H. armigera csiro4bp
assembly with the subread aligner implemented in the
Rsubread package [137]. A maximum of three mis-
matches were allowed in the alignment, and the best
scoring alignment for each read was reported. The num-
bers of reads per library that overlapped with the

predicted transcripts described above were summarised
at the gene level with featureCounts [138]. To be consid-
ered for further analysis, a minimum level of five reads
per million across three libraries was required. In the
case of the developmental/tissue atlas, an alternative in-
clusion criterion of at least 20 reads per million in at
least one library was allowed to capture genes that may
have been expressed in only a single life stage or tissue
sampled. These criteria resulted in 13,099 and 11,213
genes being considered expressed in the developmental/
tissue atlas and host use analysis, respectively, with a
total of 13,689 unique genes across the two data sets.
Read counts were normalised between samples using

the trimmed mean of M-values method [139] and con-
verted to log2 counts per million values (log2cpm) with
associated quality weights using the voom-limma pipe-
line [140]. For the host use experiment, gene expression
was modelled simply as a factor of the diet the larvae
were raised on. To remove the effects of unwanted vari-
ation due to latent variables not correlated with larval
diet, three surrogate variables [141, 142] were estimated
from the data and included in the expression model.
Genes with a significant difference in expression relative
to the control diet (false discovery rate adjusted p value
less than 0.05) and a log2 fold change in expression
greater than 1.5 were considered to be diet-responsive.
For a broader analysis of gene expression, we con-

structed gene co-expression networks from our expres-
sion data to identify sets of genes that show correlated
expression profiles. Additional filtering criteria were
used to ensure that only genes that displayed some level
of expression variation were considered in the network
construction. The criteria for inclusion were that the
mean log2cpm expression value had to be greater than 1
and the standard deviation of the value had to be greater
than 0.5. Similar to the previous filtering step, an add-
itional acceptance criterion was included for the tissue
data set to allow for genes expressed in only a small
number of libraries to be included. The extra criterion
for this data set was that any gene with a standard devi-
ation greater than 2 was included. Unsigned, weighted
correlation networks were produced from both the diet
and tissue/developmental data sets with the R package
weighted correlation network analysis (WGCNA) [143].
The power parameter used for each network was 11 and
8, respectively, chosen as the lowest value with a scale-
free topology fit R squared greater than 0.85. Gene ex-
pression modules were determined from a topological
overlap matrix, and modules with highly correlated
eigengene expression patterns (>0.85) were merged.

Resequencing experiments and analyses
Three additional H. armigera lines, one from Africa and
two from China, and four additional H. zea individuals,
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all from the USA, were sequenced as a database for vari-
ous population genomic analyses. The African H. armi-
gera strain, SCD, originated from the Ivory Coast in the
1970s and was maintained in the laboratory without ex-
posure to insecticides or Bt toxins for more than 130
generations of mass mating before DNA preparation.
One Chinese line, SW, was founded in 2012 from 150
moths collected in cotton fields from Shawan in the
Xinjiang Uygur Autonomous Region. SW was reared for
17 mass-mating generations in the laboratory without
exposure to insecticides or Bt toxins before DNA prep-
aration. The other Chinese line, AY, was started from a
single pair of moths collected in 2011 from Anyang in
Henan Province [79]. AY, which survived the diagnostic
Cry1Ac concentration of 1 μg/cm2, was reared for more
than 30 generations before DNA preparation. For these
SCD, SW and AY lines of H. armigera, DNA was pre-
pared from individual male pupae. The DNA was then
used in construction of 500b PE libraries which were
quantified and sequenced on an Illumina HiSeq2000
platform at the Beijing Genomics Institute (BGI, Shen-
zhen, China) using standard in-house protocols.
The four H. zea individuals had been collected as larvae

from wild host plants in Bolivar County, Mississippi. DNA
was prepared from their thoraces when they emerged as
adults and used for constructing sequencing libraries
using an Illumina Nextera library construction kit. Gen-
omic DNA libraries were size fractionated on a Pippin
Prep instrument (Sage Science Inc., Beverly, MA, USA) to
obtain 550 ± 20 b fragments (inset size 400–450 b) and
quantified using a KAPA library quantification kit (KAPA
Biosystems, Wilmington, MA, USA). An equimolar pool
of the four libraries was sequenced on an Illumina
HiSeq2500 instrument at the USDA-ARS Genomics and
Bioinformatics Research Unit, Stoneville, MS, USA.
Sequence reads from each line or individual were error

corrected using Blue [144] and aligned to the H. armi-
gera reference genome with the Genomic Short-read
Nucleotide Alignment Program (GSNAP) [145]. To en-
sure that the choice of reference genome did not influ-
ence our results, reciprocal alignments of all lines or
individuals against the H. zea reference genome were
also performed. Using the Genome Analysis Toolkit
(GATK) [146] we applied duplicate removal and local re-
alignment around indels followed by SNP genotyping
using standard hard filtering parameters as per the
GATK Best Practices recommendations [147, 148]. As
an extra step to allow us to better compare sequences
from the two species, we imposed the additional fil-
tering criterion that a variant must be genotyped
across all sequenced lines or individuals to be in-
cluded in our analysis.
Genetic relationships between H. armigera and H. zea

were examined using MDS on SNP data files generated

for all sequences in our data set, including both the H.
armigera and H. zea reference sequences.
Coalescence analysis was performed on 16 loci (see

Additional file 3: Figure S5; Additional files 11 and 12),
representing genes present across all of the H. armigera
and H. zea samples, including both reference sequences,
as well as in the outgroup H. punctigera (i.e. n = 10 for
each locus). The set of loci selected for this analysis were
one-to-one orthologues across all samples, with only up
to 1% of sites in a given locus being soft-masked (i.e. for
sequencing coverage <10×) or heterozygous. These cri-
teria resulted in a set of well-conserved loci across these
10 samples being used subsequently in the coalescence
analysis in BEAST v2.4.3 [149]. All loci were first aligned
independently using the linsi option in MAFFT v7.182
[121]. IQ-TREE v1.4.1 [122] was then used with the -m
TESTNEWONLY option to determine the best-fit evolu-
tionary rate model for each locus. BEAUti v2.4.3 (Star-
Beast template) was used to generate a BEAST XML
input file, setting individual rate models for each locus
as identified in IQ-TREE, and unlinking tree models. A
Yule process for the multi-species coalescent, and a ‘lin-
ear with constant root’ population size prior were the
parameters selected to generate the BEAST input file.
The analysis was run for >100 × 106 MCMC chains to
reach convergence of tree likelihoods and to get effective
sample size (ESS) values >200 (assessed in Tracer v1.6.0
[150]). The BEAST analysis produced an overall species
tree for H. armigera, H. zea and H. punctigera, as well as
individual gene trees for each locus. The latter were fed
to DensiTree v2.2.2 [55] to check whether the topology
is consistent with the overall species tree. In instances of
conflict between the gene and species trees, we investi-
gated the loci in question to assess whether we could
find evidence for incomplete lineage sorting between H.
armigera and H. zea.
The historical effective population sizes and their

changes over time were estimated for H. armigera and
H. zea using the Bayesian skyline plot method as imple-
mented in BEAST v1.8.2 [151]. The data sets used were
genome-wide SNPs called separately for each of the fol-
lowing samples: for H. armigera, sequences from the AY,
SW and SCD lines against the H. armigera reference
genome; and for H. zea, the four individuals described
above against the H. zea reference genome. The two sets
of samples were also called against the other species’
genome as a control. MCMC samples were based on 108

generations, logging every 1000 steps, with the first 107

generations discarded as burn-in. We used a piecewise
linear skyline model, an HKY substitution model and a
strict clock with the mean substitution rate as deter-
mined for H. melpomene of 2.9 × 10–9 (95% confidence
interval, 1.3 × 10–9 through 5.5 × 10–9) substitutions per
site per generation [128].
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To examine synonymous and non-synonymous diversity
between the two species, we analysed nucleotide diversity
(pi) in our resequenced H. armigera and H. zea samples
(i.e. excluding the reference strains). We explored mean
genomic diversity further by examining all polymorphic
sites (i.e. ~8.2 M SNPs called across the genome). Diver-
sity measurements only counted windows where there
were a minimum of 10 SNPs per 10-kb genome window.
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