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Abstract: Temperate forests are under climatic and economic pressures. Public bodies, NGOs and
the wood industry are looking for accurate, current and affordable data driven solutions to intensify
wood production while maintaining or improving long term sustainability of the production,
biodiversity, and carbon sequestration. Free tools and open access data have already been exploited
to produce accurate quantitative forest parameters maps suitable for policy and operational purposes.
These efforts have relied on different data sources, tools, and methods that are tailored for specific
forest types and climatic conditions. We hypothesized we could build on these efforts in order to
produce a generic method suitable to perform as well or better in a larger range of settings. In this
study we focus on building a generic approach to create forest parameters maps and confirm its
performance on a test site: a maritime pine (Pinus pinaster) forest located in south west of France.
We investigated and assessed options related with the integration of multiple data sources (SAR L- and
C-band, optical indexes and spatial texture indexes from Sentinel-1, Sentinel-2 and ALOS-PALSAR-2),
feature extraction, feature selection and machine learning techniques. On our test case, we found that
the combination of multiple open access data sources has synergistic benefits on the forest parameters
estimates. The sensibility analysis shows that all the data participate to the improvements, that reach
up to 13.7% when compared to single source estimates. Accuracy of the estimates is as follows:
aboveground biomass (AGB) 28% relative RMSE, basal area (BA) 27%, diameter at breast height
(DBH) 20%, age 17%, tree density 24%, and height 13%. Forward feature selection and SVR provided
the best estimates. Future work will focus on validating this generic approach in different settings.
It may prove beneficial to package the method, the tools, and the integration of open access data in
order to make spatially accurate and regularly updated forest structure parameters maps effortlessly
available to national bodies and forest organizations.

Keywords: forest structure parameters; aboveground biomass; map; forest plantation; Sentinel;
ALOS-PALSAR; support vector regression; data combinations; management tools
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1. Introduction

Forests provide several ecosystem services such as carbon storage, climate regulation,
biodiversity and wood production. Over the past 30 years, the extent of the world’s forests has
declined as human population continues to grow and its demand for food and land increases [1].
Forest changes and trends are not the same worldwide. Losses of forest area are mostly located in
tropical zones, while the area of temperate forests is stable or sometimes even increasing in private and
unmanaged forests [1]. The primary regions featuring temperate forests are Europe, North America,
northeast Asia, Patagonia and New Zealand. With 25% of the total forest’s areas, temperate forests are
a net carbon sink that hold 16% of the global plant biomass [2].

While threats to tropical and boreal forests are widely acknowledged, temperate forests are
also under climatic and economical pressures. Although temperate forests do not suffer from
large-scale deforestation, they experience hotter droughts with higher frequency, longer heat waves,
severe wildfires and pathogen outbreaks. The frequency of these events may affect their resilience in
the long term. Beside these climatic pressures, European temperate and boreal forests have become a
target for renewable energy (2020–2030 European energy and environmental policies) and the primary
resource for new commercial endeavors. As a consequence, local, national and European bodies are
looking forward to intensify already managed forest areas and to bring unmanaged forest areas under
intensive management. The attention paid to sustainable forest management has never been higher for
maintaining biodiversity, increasing carbon uptake and forest resilience.

Temperate forests are managed both globally and locally. Private forest owners are required
to manage their forests according to legislation focused on sustainability and risks prevention.
Policy makers and foresters have a growing need for regular estimation and mapping of forest
resources indicators with high spatial resolution. Tree height, diameter at breast height (DBH) and
basal area (BA) are essential parameters for foresters to assess the current or prospective commercial
value of forest stands and to plan thinning and cutting. Tree density and age complement these forest
structure parameters and allow to build allometric relationships in order to estimate aboveground
biomass (AGB). AGB is indeed one of the essential climate variables (ECVs) identified by the Global
Climate Observing System (GCOS). At a national scale, most countries in temperate region conduct
forest inventories that produce normalized and actualized data on a yearly basis. The resulting
statistics are accurate over large administrative areas and provide useful information such as changes
in the national forest estate and the main tree species distributions. However, this approach is neither
designed for mapping spatially continuous large area, nor to carry out precise estimates at a local scale
that could be of interest to foresters. In order to satisfy their operational needs, foresters perform forest
stand measurements that usually lack normalization (due to estimation methods, spatial sampling and
surveyor bias) and are less often updated than the measurements performed by national bodies.

To overcome the limitations and related uncertainties of their surveys, national bodies have
researched two main areas of improvement: (1) additional airborne/spaceborne remote sensing
instruments (e.g., lidar, tomography or photogrammetry) with the view to generate better data [3–8],
and (2) smarter use of existing data through statistical or machine learning techniques that mutually
enrich unrelated data sources (multi-source approaches [9–12]). Our study fits into this second field,
considering the use of freely available satellite images as a promising way to build a cost-effective
method for mapping forest structure parameters [13–19].

The current availability of open access synthetic aperture radar (SAR) and optical data, as well as
open source image processing software, makes the use of spaceborne remote sensing data more easily
accessible and suitable for forest mapping and monitoring over large areas with high spatial resolution.
Effectively this state of affairs provides an opportunity to develop better products for both communities.
SAR sensors [20–33] can operate day and night and penetrate clouds. The transmitted microwaves
penetrate into the forest canopies in more or less degree depending on the wavelength. The reflected
energy is proportional to the volume of scatterers and the geometric and electromagnetic properties of
the landscape. Shorter wavelengths X- and C-band are sensitive to smaller canopy elements (leaves



Remote Sens. 2019, 11, 1275 3 of 25

and small branches), while longer wavelengths L- and P-band are sensitive to large branches and
trunks and have higher sensitivity with forest biomass [34]. C-band and L-band images are currently
available, free and worldwide thanks to the Sentinel-1 and ALOS-PALSAR-2 satellites. The launch
of the P-band radar of BIOMASS satellite in 2022 will further improve forests biomass estimations,
in particular for dense tropical forests [35].

In the optical domain, there are direct relationships between the reflectance (visible and near to
medium infrared) and the green leaf area of the whole canopy (tree and understory vegetation) and
its horizontal and vertical distribution. However, the signal often saturates at high leaf area values.
Optical data is also used to monitor the phenology and stress conditions of vegetation. Although optical
data are not directly linked to forest parameters such as height or DBH, some studies show possible
relationships between reflectance data and forest structure parameters [36–38]. In addition to the
intensity of the reflectance signal, it is possible to use the spatial indicators and the temporal information
of satellite image time series. Spatial indicators derived from very high spatial resolution (VHRS,
<1 m) optical images, using Fourier-based or Grey Level Spatial co-occurrence Matrix (GLSM)
textural metrics, have been used successfully to estimate forest structure parameters and AGB [39–42].
This approach allows to retrieve vertical and horizontal structure information of forests based on
the distribution of the reflectance along adjacent pixels. VHRS allows to observe more precise and
more specific patterns depending on tree crown sizes and tree spacing. Currently, Landsat and
Sentinel-2 time-series are freely available worldwide with 10–30 m spatial resolution. A few studies
successfully used images at this spatial resolution for retrieving forest structure parameters with
textural indexes [43–46]. Temporal dimension is useful for tree species classification [47], to observe
forest phenology and to monitor forest health status. Temporal dimension does also improve forest
parameters estimations [38,44,48].

The value of remote sensing data to estimate forest parameters such as DBH, AGB, tree height
and density has been demonstrated. Recent studies suggest that different combinations of
satellite data, i.e., multi-frequency SAR data, optical and textural data improve forest parameters
estimation [30–32,49–52]. Methodology and data vary greatly across these studies. Parametric
semi-empirical and physically-based models provide accurate estimations and are easy to interpret.
Non-parametric approaches are more flexible in combining different types of data and applying the
method to other types of forests, making them potentially more suitable for building a generic method.
In order to be useful and relevant, forest parameters maps should have the following characteristics:
high spatial resolution (~10 to 50 m), coverage of large territories, ideally worldwide so it can be
produced on any territory, regular updates (1~2 years maximum delay), and be cost effective.

In this context, our study aims at building an automatic and generic method using freely
available SAR and optical data at high resolution, with open source software, to produce quantitative
maps of forest structure parameters and AGB with regular updates. We use Sentinel-1, Sentinel-2
and ALOS-PALSAR mosaics acquired worldwide with high spatial resolution (10–25 m). We extract
commonly accepted features for forest parameters estimation, then we analyze dimensionality reduction
methods and algorithm performance for the estimation of forest parameters. The objective is to develop
a flexible method applicable to a wide range of forests and regions, that can integrate several types
of remote sensing features. This paper presents the method we developed and its validation on
maritime pine plantations within the largest European plantation forest known as the Landes of Gascogne.
In Section 2, we introduce the study site, the satellite sensors and image processing steps, and the
selection of a set of remote sensing features used in our study. Section 3 describes the estimation
methods and the machine learning algorithms we assessed. Section 4 presents the results obtained
using all feature types (SAR L- and C-band, optical and texture metrics from both SAR and optical
images) and the contribution of each one of them for the estimation of AGB, BA, DBH, age, density
and height.
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2. Materials

2.1. Study Site

The site is part of the largest European plantation forest (nearly 1 million hectares of maritime pine,
Pinus pinaster) known as Landes de Gascogne forest, here referred as Landes forest (Figure 1). The site’s
climate is oceanic, the land is rather flat, the soil consists mainly of sandy podzols. The stands are
even-aged and intensively managed. Thinning generally occurs every 5 years when the plantation is
10 to 15 years old. Stands are clear cut when they are approximately 50 years old, and replanted within
2 to 3 years. These management practices give homogeneity in the within-stand structure.
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2.2. In Situ Data

We use the forest database produced in the framework of the GLORI project [53,54], from an in situ
measurement campaign that was carried out in 2016 before the beginning of the tree growth. 83 stands
of maritime pine were selected in an effort to cover all the range of forest structure parameters specific
to maritime pine in the Landes forest. As in [41], one sample plot is selected in a rather homogeneous
area within each stand. The plot size varies from 0.05 to 0.2 hectares. The center of each sample plot
is geolocated using global positioning system (GPS). All trees are counted and the tree density is
calculated. DBH and height are measured for the trees closest to the center (10 and 5 trees respectively).
BA is estimated from the individual trunk cross-section derived from DBH and the tree density. AGB is
estimated from the individual biomass calculated with a tree level allometric equation using DBH as
input parameter [55] and the tree density:

AGBi = a∗DBHib (1)

where a = 5.013 tons/m and b = 2.48. AGBi is the individual aboveground biomass in ton, and DBHi is
the individual DBH in meter. Stand age is provided by forest managers or estimated by counting the
apparent number of annual growth cycles in height, by locating branch whorls.

The minimum, maximum, and mean values of the measured forest structure parameters in these
83 plots are presented in Table 1.
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Table 1. Range of the forest structure parameters for the 83 sample plots selected in our study.

Minimum Maximum Mean

AGB (tons/ha) 1 136 70

BA (m2/ha) 0.8 44.1 21.2

Mean tree height (m) 2 24.7 14.4

Mean DBH (m) 0.03 0.57 0.22

Density (tree/ha) 87 2622 835

Age (year) 3 72 22.6

The 83 stands have an average size of 20.9 ha. Visual analysis of aerial photographs revealed local
heterogeneities within the stands. We digitalized smaller sub-stands centered on the measured samples
in order to have homogeneous sub-stands. The new 83 sub-stands digitalized have an average size of
2.7 ha, the minimum is 1 ha. They are used to extract values from remote sensing images. Figure 2
and Table 2 illustrate the plot-level relationships of forest parameters. They depend on allometry
properties specific to maritime pine, soil fertility and history of forest management specific to each
stand. The correlation between AGB and mean DBH is strong (r2 > 0.8) for diameters under 0.15 m.
There is no AGB - DBH correlation for wider diameters (r2 < 0.1). The DBH is correlated with tree
height (Figure 2a) until a diameter of ~0.4 m (r2 = 0.94), above 0.4m DBH the height is stable but
the DBH continues to grow. Finally, the DBH and density (Figure 2b) show a linear relationship for
diameter in the range 0.2 to 0.4 m (r2 > 0.7). As the DBH falls below 0.2 m the density can vary from
750 to 1750 trees/ha. Thus, the variety of silvicultural practices (such as density of plantation, age at
first thinning, intensity and frequency of thinning) affects the allometry relationships between different
forest parameters and must be taken into account to interpret the results.
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Table 2. Coefficient of determination between the forest structure parameters (plot-level).

r2

AGB BA Height DBH Density Age

AGB 1 - - - - -

BA 0.90 1 - - - -

Mean tree height 0.71 0.46 1 - - -

Mean DBH 0.49 0.24 0.83 1 - -

Density 0.19 0.04 0.55 0.64 1 -

Age 0.40 0.17 0.74 0.90 0.53 1
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2.3. Remote Sensing Data

This study uses four different satellite sensors: Sentinel-1, Sentinel-2, ALOS-PALSAR-2 mosaics
(all three open access), and SPOT (freely available over France for French public bodies).

2.3.1. Optical Data

Sentinel-2 images: Sentinel-2 data consist in optical time series acquired in the visible (blue,
green, red), near infrared (nir) and short waves infrared (swir) with a spatial resolution from 10 to
20 m. The raw images are provided by the European Space Agency (ESA). The Theia Land Data
Center (website: theia.cnes.fr) produces the level 2A images (top of canopy reflectance: TOC) with
ortho-rectification, atmospheric corrections and cloud mask (MAJA processing, [56,57]). Eighteen dates
are available in 2016, and seven dates have all the reference plots cloud free in May, August, September,
November and December.

Spot-6 images: Spot-6 data consists of annual mosaics with a spatial resolution from
1.5 m (panchromatic image) to 6 m (multi-spectral image in the visible and near infrared).
Annual cloud free mosaics are provided by Airbus and available from the Geosud platform (website:
ids.equipex-geosud.fr) with ortho-rectification and top of atmosphere (TOA) reflectance. The acquisition
date for our test site is 2016-03-22. Panchromatic (PAN) and multi-spectral bands are available.

2.3.2. SAR Data

ALOS-PALSAR: L-band SAR annual mosaics at 25 m spatial resolution are produced by
the Japan Aerospace Exploration Agency (JAXA) through large scale mosaicking [58] that
includes ortho-rectification, slope correction and radiometric calibration between neighboring strips.
Seven annual mosaics are sourced from JAXA for years 2007 through 2010, 2015 and 2016. We converted
digital numbers (DN) to gamma naught values (calibration following [58]). Then we applied a
multi-image filtering [59,60] using 12 channels (six dates at HV and HH polarizations) with a 7 × 7
window size, leading to an equivalent number of looks (ENL) of 156. In the following, we use processed
HV and HH channels from 2016.

Sentinel-1: C-band SAR time series at 10 m spatial resolution are provided by ESA and downloaded
from the Sentinel Product Exploitation Platform (CNES, website: peps.cnes.fr). We used the Level-1
Ground Range Detected (GRD) products. Three orbits cover our test site, one ascendant (ASC) with
~37◦ incidence angle (IA) at the center of the test site, and two descendant (DES) with ~33◦ and ~43◦

IA. As acquisition occurs every 12 days, there are approximately 30 dates available in 2016 for each
orbit. Sentinel-1 time series are calibrated, ortho-rectified and filtered using the same multi-image filter
as for ALOS-PALSAR data. Each orbit is filtered separately using 60 channels (30 dates in 2016 at VH
and VV polarization) and a 5 × 5 window size, leading to an ENL of 87.

2.3.3. Textural Metrics

Textural metrics have been generated from both optical and radar using a Grey Level Spatial
co-occurence Matrix (GLSM) [61] with the Orfeo Toolbox library (OTB, open source [62]). Eight features
were extracted: energy, entropy, correlation, homogeneity, inertia, cluster shade, cluster prominence,
and Haralick correlation. We performed a sensitivity analysis of Haralick texture extraction. The offset,
orientation, window size, and grey levels parameters were tested. With offset set to 1 pixel,
textural indexes values were not significantly different for orientations 0◦, 45◦, 90◦ and 135◦ even for
Spot’s 1.5 m spatial resolution. Consequently we set the offset to 1 pixel orientation to 45◦. We tested
various window sizes and number of grey levels. We found that too small values of window size
and number of grey levels produce binary outputs while a large window size is detrimental to the
accuracy of dendrometry and land cover outputs. The best compromise was found with a window
size of 7 pixels and 30 grey levels for the 10 m resolution images (Sentinel-1 and Sentinel-2 indexes),



Remote Sens. 2019, 11, 1275 7 of 25

9 pixels and 40 grey levels for the 6 m resolution images (Spot-6 multi-spectral indexes), 35 pixels and
100 grey levels for the 1.5 m resolution image (Spot-6 PAN indexes).

2.3.4. Selection of Remote Sensing Features

Almost 300 remote sensing features were extracted from the four satellite sensors (not including
textural index parameters). When using statistical methods, the number of features must be less than
the number of samples. In this case study, we use 83 samples, therefore it is necessary to reduce the
number of features. This process is called feature selection. In addition to this requirement we wish
features to be both generic and adaptable to different types of forest. Table 3 presents the 36 selected
features based on regression tests and correlation analysis. We categorize them into seven feature types
(Features types column) according to sensors and the type of processing (raw data, spectral or textural
indexes).

Table 3. List of the 36 selected features as input for the regression models.

Sensors Feature Types Features Abbreviation

ALOS-PALSAR-2
L-band backscatter

(L-band)

L-band HV L-HV

L-band HH L-HH

L-band HV/HH L-Ratio

Sentinel-1

C-band backscatter (C-band)
DES-33◦IA orbit, annual mean values

C-band VH C-VH

C-band VV C-VV

C-band VH/VV C-Ratio

C-band textural indexes (C-TI)
DES-33◦IA orbit, annual mean values

VH-homogeneity C-VH-hom

VH-cluster shade C-VH-clu

VV-homogeneity C-VV-hom

VV-cluster shade C-VV-clu

VH-correlation C-VH-cor

VV-correlation C-VV-cor

VH-Haralick correlation C-VH-Hcor

VV-Haralick correlation C-VV-Hcor

Sentinel-2

Spectral indexes
(S2-SI)

NDVI July S2-NDVI-sum

NDVI December S2-NDVI-win

BI July S2-BI-sum

BI December S2-BI-win

NDWI July S2-NDWI-sum

NDWI December S2-NDWI-win

S2 textural indexes
(S2-BI-TI)

Summer image

BI-homogeneity S2-BI-sum-hom

BI-cluster shade S2-BI-sum-clu

BI-correlation S2-BI-sum-cor

BI-Haralick correlation S2-BI-sum-Hcor

Winter image

BI-homogeneity S2-BI-win-hom

BI-cluster shade S2-BI-win-clu

BI-correlation S2-BI-win-cor

BI-Haralick correlation S2-BI-win-Hcor

Spot-6

Spot-XS textural indexes
(Spot-BI-TI)

BI-homogeneity Spot-BI-hom

BI-cluster shade Spot-BI-clu

BI-correlation Spot-BI-cor

BI-Haralick correlation Spot-BI-Hcor

Spot-PAN textural indexes
(Spot-PAN-TI)

PAN-homogeneity Spot-PAN-hom

PAN-cluster shade Spot-PAN-clu

PAN-correlation Spot-PAN-cor

PAN-Haralick correlation Spot-PAN-Hcor
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ALOS-PALSAR-2: L-band backscatter data (~23 cm wavelength) are considered to be more
sensitive to the woody components of the canopy, and thus to forest height and AGB. We use HV,
HH and the HV/HH ratio from 2016. No texture metrics are extracted from ALOS-PALSAR because
the spatial resolution is too coarse (~25 m): the window size would be too large compared to the size of
some stands in these forests. Sentinel-1 and 2 provide a resolution more suitable for texture extraction.

Sentinel-1: although more limited than L-band, the penetration of C-band microwaves can be
significant for temperate forests. C-band backscatter is sensitive to thorns, leaves and small branches.
It provides information about vegetation structure and can be related to forest volume. SAR backscatter
is sensitive to humidity, rain events can cause occasional increases in the signal regardless of vegetation
evolution. For the purpose of ensuring that the results are reproducible, the selected dates meet
two criteria: (1) one date every two months (six dates/year) and (2) no precipitation within the three
previous days. This reduce the uncertainties caused by the rain, and increase the independence of the
dates with climatic conditions and yearly variations. We assessed the suitability of Sentinel-1 temporal
information for the estimation of forest structure parameters through correlation and regression
analysis. The annual mean of the six dates provides results equivalent to the six dates together. As a
consequence we keep the annual mean of VH, VV and VH/VV ratio. Details can be found in Appendix B.
The three orbits (33◦IA-DES, 43◦IA-DES, 37◦IA-ASC) are equally pertinent for the estimation of forest
parameters, we retain the smallest incidence angle (33◦). Consequently, textural indexes are calculated
from the 33◦ IA orbit for the six dates, then averaged into annual values.

Sentinel-2: spectral reflectance is sensitive to green leaf area, vegetation cover fraction (trees
and understory) and soil properties. Sentinel-2’s observations provide information about vegetation
development and photosynthetic activity. With view to build a generic method suitable for other sites
and years (different species and climates), it is better to use winter and summer dates because the
phenology of the vegetation is more stable during these periods (Appendix C). As a results we use
2016-08-12 for the summer and 2016-12-10 for winter period. We computed three spectral indexes
from summer and winter dates: Normalized Difference Vegetation Index (NDVI), an indicator of
vegetation activity; Normalized Difference Water Index (NDWI, using nir and swir bands), an indicator
of leaves water content; and Brightness Index (BI, using visible bands), an indicator of global reflectance.
Textural indexes were extracted from the 10 m resolution indexes (NDVI and BI) of summer and
winter dates. Our tests show the textural indexes from BI are more efficient than the textural indexes
from NDVI for the estimation of forest parameters (−10 to −20% relative RMSE depending on forest
parameter studied). As a result, we keep summer and winter BI textural indexes for the following study.

Spot-6: Spot-6 mosaic images are used to test if a better spatial resolution for optical textural
indexes can improve the results. As for Sentinel-2 images, we use the BI index to extract textural
indexes on the multi-spectral bands at 6 m resolution. Additionally, the panchromatic band (sensible
to the visible spectrum) is used to extract textural indexes at 1.5 m resolution.

Textural indexes in general: we computed eight features: energy, entropy, correlation, homogeneity,
inertia, cluster shade, cluster prominence, and Haralick correlation. Energy and entropy indexes
measure the level of “order” in the image (repetitive patterns). Homogeneity and inertia indexes give
an indication of the local changes in intensity. Cluster shade and cluster prominence indexes indicate
the tendency of clustering of the pixels in the window. Correlation indexes measure the dependency of
grey levels on those of neighboring pixels (it means there is a predictable relationship between two
neighboring pixels within the window). Energy, entropy, homogeneity and inertia are often strongly
correlated. We chose to keep only the homogeneity index. Correlation and Haralick correlation indexes
have no collinearity and shows significant correlations with forest parameters. The final textural
indexes we consider for the following study are therefore homogeneity, correlation, cluster shade and
Haralick correlation.
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3. Methods and Analysis

3.1. Relationships Between Remote Sensing Features and Forest Structure Parameters

The linear correlations between the 36 remote sensing features (Table 3) and the six forest structure
parameters can be divided in two groups of similar patterns: (1) AGB and BA, and (2) height, tree density,
DBH and age. Figure 3 shows AGB and height absolute correlations with remote sensing features.

L-band wavelength penetrates tree crowns and is sensitive to trunk and large branches volume,
and allows to retrieve AGB. L-HV polarization is more sensitive to wood volume, and L-HH to
humidity. The results showed in Figure 3 confirm that our maritime pine plantations case study
verifies these principles: r > 0.7 for both (L-HV, AGB) and (HV/HH-ratio, AGB) correlations. C-band
wavelength is more sensible to crown elements (thorns and small branches). These elements are
related to other forest structure parameters because allometric relationships are strong in these forests;
this explains the high correlation of C-band VH polarization and textural indexes (-cor, -hom and
-Hcor) with AGB. Moreover, C-band VH, VV and extracted textural indexes (VH and VV -cor, -hom
and -Hcor) are highly correlated with height (0.75 < r < 0.85). Optical indexes from Sentinel-2 are
poorly correlated with AGB and height. In contrast, some textural indexes extracted from BI show
significant correlations with height (r > 0.6 for summer-hom, winter-hom, and winter-cor) and AGB
(r > 5 for winter-hom). Springtime optical texture indexes from Spot-6 at 1.5 m spatial resolution show
significant correlation with height (r > 0.6 for -cor and -hom) whereas the correlation is poor for both
AGB and height at 6m spatial resolution.

This conclusion based on the correlations between remote sensing features and forest structure
parameters highlights the capability of C-band and various textural indexes to describe linearly forest
parameters on these plantations. Several studies showed high correlations between L-band SAR and
AGB on different forest [25,26,34]; these correlations apply to our study site. The comparison between
Sentinel-2 and Spot-6 shows that spring time 6 m spatial resolution image is less adequate than winter
and summer 10 m spatial resolution images, whereas Spot’s spring time 1.5 m spatial resolution image
adds useful information.
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3.2. Choice of Regression Algorithms and Parametrization

Statistical regressions have been used to establish the connections between the remote sensing
features and AGB, BA, DBH, age, density and height variables. The choice of the regression algorithm
is very important for the quality of the results. We investigated non parametric and multiple
regression methods that could perform with several input predictors and a small number of samples.
Deep learning approaches like neural network for regression are not relevant for a small dataset.
Multi-linear regressions (MLRs) are very simple and frequently used in papers related to forest variables
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estimation using remote sensing. MLRs assume that predictive variables have linear relationships with
predicted variables, although it has been shown it is not always an acceptable approximation when
applied to remote sensing features and forest structure parameters. Machine learning approaches
like support vector machines and random forest algorithms are increasingly and successfully used
in remote sensing domain [63–65]. In this study we tested MLR, random forest regression (RF) and
support vector regression (SVR) with a Gaussian kernel (radial basis function, RBF), as implemented in
the Python scikit-learn library [66].

SVR requires three key parameters: (1) the cost parameter (C) trades off misclassification of
training samples against simplicity of the decision surface. Tested values are {0.1, 1, 5, 10, 50, 500,
1000, 1500}. (2) The gamma coefficient (G) defines how much influence a single training sample
has. Tested values are {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20} and (3) epsilon (E) specifies the
epsilon-tube within which no penalty is associated in the training loss function. Tested values are
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20}.

RF regression parameters are (1) number of trees {50, 100, 250}, (2) depth of trees {10, 25, None},
and (3) minimum impurity decrease {0, 0.1, 0.2}. The number of features considered at each split was
set to 30%.

MLR has no parameter to be set.

3.3. Feature Selection Process (Dimensionality Reduction)

Although we selected 28 out of 215 features, there are still features inter-correlated and thus not
necessarily useful. Moreover, too many features could lead to a degradation of results or over-fitting.
To avoid that, we tested three approaches:

Principal Component Analysis (PCA): the first solution is to reduce the dimension of the data using
PCA method. We test the PCA on all the 28 features together or on the seven feature types separately.
We keep the number of principal components (PC) which correspond to 95% of the explained variance.

Forward selection: we start with the best efficient feature using the regression algorithm, and then
for each iteration we choose which feature could be added providing the lower RMSE, until all features
are selected. Finally, within these feature combinations, we select the one that provides the best result.

Backward selection: it is the reverse process, we start with all the features as inputs for the
regression algorithm, and then we choose which feature could be removed while keeping the RMSE
minimal, until only one feature remains. Again, within these feature combinations, we select the one
that provides the best result.

3.4. Validation

The statistical significance of the tests stems from a large enough validation subset while the
pertinence of the solutions is built on a learning subset that is large enough with regard to the
features. In our case study, the validation procedure was sensitive to the small number of samples.
In order to maximize the number of learning samples and to minimize statistical variance, we used
the leave-one-out cross validation method (LOO) where each sample is estimated using all the other
samples. We assessed the quality of the results through the following statistics: (a) the coefficient of
determination (r2) reflects the variance explained by the regression. (b) The root mean squared error
(RMSE) provides an indicator of the estimation errors, giving significant weight to large errors. (c) The
relative RMSE is the division by the mean of reference samples. (d) The mean absolute error (MAE) is
also an indicator of estimation errors but gives the same weight to all errors, the relative MAE is the
division by the mean of reference samples.
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4. Results

4.1. Method Selection

4.1.1. Machine Learning Algorithm

MLR assumes that remote sensing features and forest variables have linear relationships, it is very
fast and simple to use. Random forest (RF) regression is a non-linear and non-parametric algorithm,
easy to interpret. However, the small number of learning samples is challenging for the construction of
independent trees in the random forest. SVR (RBF kernel) is also a non-linear and non-parametric
algorithm. This algorithm can deal with small numbers of samples. Figure 4a shows the relative
LOO RMSE (smaller values are better) obtained for MLR, RF and SVR using as input the 28 features
from open access images with a forward feature selection. These three algorithms produce equivalent
results for AGB and BA estimations. Differences are more pronounced for the estimation of DBH, age,
density and height. The best estimates are obtained using SVR, RF and MLR in this order. The results
confirm the benefits of using non-linear and non-parametric algorithms, and SVR is better at handling
small datasets.
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4.1.2. Feature Selection Approaches

We study the effectiveness of dimensionality reduction for improving the estimation of forest
parameters from the perspective of four approaches: PCA, forward selection, backward selection,
and no selection. The evaluation is performed with SVR on 28 features from Sentinel-1, Sentinel-2 and
ALOS-PALSAR. Results are presented in Figure 4b. Backward selection was expected to perform best
for it maintains groups of features and draws on their synergies. Expectations toward forward selection
were lower since the approach adds one feature at a time and is known to dismiss prematurely features
that have a beneficial contribution. Yet forward selection performed better and is our recommendation
when dealing with small reference dataset.

Figure 5 shows how the relative LOO RMSE evolves given the number of features selected by a
forward algorithm in order to estimate forest parameters.

Figure 5 shows that seven features are the “sweet spot” to minimize the RMSE. Additional features
marginally reduce the RMSE or decrease it. We note that both estimates of AGB and BA are less
dependent on the number of features than the other variables.
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4.2. Forest Parameters Estimation

This section presents the estimates of AGB, BA, DBH, age, tree density and height computed
using 28 features belonging to the five feature types (L-band, C-band, C-TI, S2-SI, S2-BI-TI) and both
SVR regression and forward selection methods. Table 4 indicates which features are chosen by the
algorithm to obtain the results for the six forest parameters. Validation scatterplots are presented in the
following subsections.

Table 4. Summary of features selected for the estimation of forest parameters. The processing chain
uses 5 feature types as input (L-band, C-band, C-TI, S2-SI, S2-BI-TI) and forward selection method with
SVR regression. Numbers in parenthesis indicate the position order in the forward selection.

L C C-TI S2-SI S2-BI-TI r2 and RMSE

AGB
L-HV (1)
L-HH (5)

L-Ratio (9)
C-VH-clu (8)

S2-NDVI-sum (2)
S2-BI-sum (3)

S2-NDWI-sum (4)
S2-BI-win (7)

S2-BI-win-hom (6)
r2 = 0.76

19.5 tons/ha
(28.0%)

BA L-HV (1)
L-HH (2)

C-VH-cor (5)
C-VH-Hcor (6) S2-BI-sum (3) S2-BI-sum-hom (4)

S2-BI-sum-Hcor (7)

r2 = 0.73
5.7 m2/ha
(26.9%)

DBH L-HV (2) C-Ratio (6)
C-VV-cor (1)
C-VH-clu (4)
C-VH-cor (5)

S2-BI-sum-cor (3)
r2 = 0.88
0.04 m
(19.8%)

Age L-HV (2)
L-HH (5)

C-VV-hom (1)
C-VH-Hcor (3)

C-VV-cor (4)
C-VH-clu (8)

S2-BI-win (9)
S2-BI-sum (10)

S2-BI-sum-hom (6)
S2-BI-sum-Hcor (7)
S2-BI-win-cor (11)

r2 = 0.93
3.95 years

(17.4%)

Density L-HV (2) C-Ratio (5)
C-VV-Hcor (1)
C-VH-hom (4)
C-VH-Hcor (6)

S2-BI-sum (7) S2-BI-sum-hom (3)
r2 = 0.86

204 trees/ha
(24.4%)

Height L-HV (4)
L-HH (10) C-VH (9)

C-VH-Hcor (1)
C-VV-clu (8)

C-VH-clu (11)
C-VV-cor (12)
C-VH-cor (13)

C-VV-hom (14)

S2-NDWI-win (2)

S2-BI-sum-cor (3)
S2-BI-sum-hom (5)
S2-BI-win-hom (6)

S2-BI-sum-Hcor (7)

r2 = 0.93
1.75 m
(13.2%)

The features presented in Table 4 are generated by the SVR algorithm with the features obtained by
applying the forward method. The forward selection singles six to 14 features out of 28 (five types) for
the estimation of AGB, BA, DBH, age, density and height. The evolution of relative RMSE with forward
selection presented in Figure 5 reveals that results marginally improve for any feature added to a core of
seven, and eventually degrade the performance. At least four of the five feature types are represented
for each forest parameter estimate. Comparison with Table 4 and Figure 3 shows that the features
presenting higher linear correlation with a given forest parameter are not necessarily leveraged by the
algorithm. For AGB estimates, the algorithm exploits four spectral indexes (S2-SI, low correlations
with AGB) while only L-HV and L-Ratio within the group of features whose r > 0.5. The same can be
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observed among the features selected for height estimation. We see on second and third position in the
selection order in Table 4 two features weakly correlated with height (S2-NDWI-win and S2-BI-sum-cor,
respectively 0.1 and 0.3).

As it is well known, multiple independent data sources relevant for the problem at hand are
a key factor to obtain a good model; this is what we observe here. In general, for the whole forest
variables, L-band and textural metrics from C-band (C-TI) are very important, often present in the
first selected features. C-band backscatter is less useful, maybe because VH and VV backscatters are
highly correlated with their textural indexes (-Hcor, r > 0.95). Sentinel-2 spectral indexes and textural
indexes are also often selected by the forward method although they have fewer correlations with
forest parameters (particularly S2-SI). This further illustrates the importance of taking into account
the synergy between features and not just individual performance to build the best models for forest
parameters estimation.

4.2.1. Estimation of Aboveground Biomass (AGB)

Figure 6a shows the AGB predictions versus AGB references. The RMSE is 19.5 tons/ha (28%) and
the absolute error is 22.7%. Figure 6c shows that the variance of the errors is approximately constant
with the increase of the AGB, but the positive or negative orientation of these errors is not random.
Indeed, Figure 6c shows the errors are negative from 100 tons/ha. This is due to signal saturation
for AGB estimation. The analysis of the SVR model and the high Cost parameter (C = 500) selected
suggest that the model gives high weights to each sample, and has trouble generalizing. This could
be improved either by a larger reference dataset or in the future by adding new features that have
stronger relationships with the AGB (P-band radar for example).
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4.2.2. Estimation of Basal Area (BA)

The estimation of basal area shows very similar results to AGB estimation. The RMSE is 5.7 m2/ha
(26.9%) and the absolute error is 20.3%. Figure A1 in Appendix A shows that medium values
(15–20 m2/ha) are overestimated and capped under 30–35 m2/ha.

4.2.3. Estimation of Diameter at Breast Height (DBH)

Figure 7 shows very good results for DBH predictions with a RMSE of 4 cm (19.8%) and a r2 of
0.88. Most of the reference samples are below 40 cm DBH (Figure 7b). The errors are well distributed
along the DBH values, there is no saturation. Forest volume information (L-band features and C-Ratio),
combined to forest structure information (S1 and S2 textural metrics) are able to provide very good
mean DBH prediction at high spatial resolution in the coniferous plantations of our test study.
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4.2.4. Stand Age Estimation

Age estimation results (Figure A2 in Appendix A) are very similar to the DBH estimation results.
This was expected since both variables are usually highly correlated in plantation forests. We obtained
a RMSE of ~4 years (MAE = 2.7 years). There is no saturation. The oldest plantations (three samples
> 65 years old) are underestimated, but most of the maritime pine plantation are usually clear cut
when they get 45–55 years old. The samples above this age could have different management practices,
and the age estimation method in reference data (counting the apparent number of annual growth
cycles with branch whorls) could introduce some approximation for very high ages. Table 4 and
Figure 5 show more features are needed to obtain the best predictions compared to DBH.

4.2.5. Tree Density Estimation

Results related to tree density estimates are presented in Figure 8. The RMSE is 204 trees/ha
(24.4%), the relative MAE is 17.1%. The errors distribution shows no saturation. Results are therefore
very good while this is an example of forest parameter for which there is no obvious correlation with
other forest parameters (r2 from 0.04 to 0.64).
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Figure 8. Estimation of tree density using SVR (C = 10, G = 0.1, E = 0.01) and forward selection method
from L-band, C-band, C-TI, S2-SI, S2-BI-TI (selected features presented in Table 4). (a) Validation
scatterplot; (b) Density reference samples distribution; (c) Estimation errors depending on density
reference values.
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4.2.6. Dominant Height Estimation

Results related to forest height estimates are presented in Figure 9. The RMSE is 1.75 m (13.2%),
and the MAE is 1.4 m. Figure 9c shows that the errors are well distributed and there is no outliers.
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Figure 9. Estimation of mean tree height using SVR (C = 10, G = 0.01, E = 0.1) and forward
selection method from L-band, C-band, C-TI, S2-SI, S2-BI-TI (selected features presented in Table 5).
(a) Validation scatterplot; (b) Height reference samples distribution; (c) Estimation errors depending on
height reference values.

4.3. Mapping

Remote sensing images allow to spatialize forest parameters estimates. Figure 10 shows the AGB
map of the studied area. We stack the features used for AGB prediction (Table 4) and we make a
pixel-level application of the model learned (validation scatterplot presented in Figure 6). In order to
have proper predictions, we mask non coniferous forested areas with the land cover map produced
in 2016 with Sentinel-2 time series [67]. Within the forest classes, the nomenclature differentiates
coniferous and broadleaved forests. With the help of ancillary land cover data, our method is able
to produce high spatial resolution maps of forest parameters. We note that textural indexes that are
sensitive to boundary conditions create unwanted effects. For example, AGB should decrease where
there are pathways between the stands, but does rise instead.
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Figure 10. Aboveground biomass (AGB) map covering the study site area. Pixel level application of
the model using 5 feature types (L-band, C-band, C-TI, S2-SI, S2-BI-TI). Selected features are presented
in Table 4 and validation scatterplot in Figure 6. Non coniferous pixels are masked using the 2016 land
cover map [67].
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4.4. Other Feature Types and Combination Analysis

The goal of this section is to assess the robustness of our method with different sets of feature types.
We test four types conditions: (1) single feature type, (2) combination of 2 feature types, (3) combination
of open access data types only (whose results are presented Section 4.2), and (4) the addition of Spot-6
multi-spectral and panchromatic textural indexes (respectively 6m and 1.5m spatial resolution) to
the open access feature types. Figure 11 and Table 5 present the relative RMSE (%) obtained for the
estimation of the different forest parameters according to the four types conditions.
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Table 5. Best Relative RMSE (%) obtained for the estimations of the six forest parameters. Feature types
individually (first line) and combined: 2 feature types (second line, best pair indicated), the 5 feature
types from open access data (third line), and addition of Spot-6 textural indexes (last line).

AGB BA DBH Age Density Height

Best feature type L-band 32% L-band 29% C-TI 26% C-TI 27% C-band 37% C-TI 18%

Best two types combination L + S2-BI-TI L + C C-TI + S2-BI-TI L + C-TI L + S2-BI-TI C-TI + S2-BI-TI
28.0% 27.1% 21.2% 18.6% 30.7% 14.3%

Five types open access images 28.0% 26.9% 19.8% 17.4% 24.4% 13.2%

Seven types (Spot-6 included) 27.9% 27.0% 19.3% 18.6% 23.3% 13.7%

4.4.1. Best Single Feature Type

For AGB and BA, L-band backscatter is the best feature to use, but only slightly more efficient
than the Sentinel-1 C-band backscatter or textural indexes. Indeed, L-band wavelength (~27 cm) is able
to penetrate tree crowns so it is sensible to trunks and large branches, allowing to estimate forest basal
area and biomass. The performances of the L-band decrease strongly on DBH, age, density and height.
For these forest parameters, Sentinel-1 C-band textural indexes are the best indicators, followed by
C-band backscatter, Sentinel-2 and Spot panchromatic textural indexes. Sentinel-1 SAR C-band data is
therefore the best pick when using only one data type. C-band (~5 cm wavelength) penetrates the
canopy and is sensible to the volume of crown and small branches. As a consequence, it is generally
well studied to estimate biomass on young forests below 50 tons/ha, but the signal quickly saturates
in older forests. On these coniferous plantations of our study site however, allometric relationships
between crown biomass and total tree biomass are strong and Sentinel-1 C-band data is pertinent to
estimate forest biomass through the crown structure. We note that spatial information provided by
textural indexes is a good proxy for the estimation of DBH, height, and for AGB as well. We also note
that Sentinel-2 spectral indexes and Spot-6 multi-spectral textural indexes show poorer performances
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if used alone. According to the results of these feature types, Sentinel-1 VH and VV textural indexes
(10 m) are the most efficient data for the description of forest spatial structure.

4.4.2. Best Combination of Two Feature Types (Results of the Best Pairs)

The combination of two feature types improves clearly the quality of the estimations for all forest
parameters over a single type scenario. The results are close to the best obtained when all the feature
types are combined, but for tree density estimates. The best feature type (first line of Table 5) is
generally present in the best pair selected. The second type is not necessarily within the best individual
feature types; there are examples where the worst efficient type (the one at the end of the ranking list)
is used: when used alone, L-band backscatter gives the worst results for age, DBH, height and density
estimations, however the SVR algorithm combines it with the C-TI features and yields noticeably
improved estimates. L-band and C-band are complementary when we are concerned with building
biomass estimates: L-band wavelength saturates at high biomass values (~100–150 tons/ha) and C-band
wavelength saturates from 50 tons/ha, but their combined use improves the quality of the estimates for
the whole range 50-150 tons/ha.

4.4.3. Addition of Spot-6 Textural Metrics

The use of optical textural metrics with a better spatial resolution is not relevant in the context
of our study site. Either this better resolution does not bring additional information on these forests,
or the date of the Spot-6 image (early spring) is not suited. However, further studies on other forest
types would be needed to conclude on these intermediate spatial resolutions between HR (~10–20 m)
and VHR (~0.5–1 m).

5. Discussion

Previous studies demonstrated the usefulness of open access spaceborne data such as Sentinel-1,
Sentinel-2 and ALOS-PALSAR mosaics when applied to different forest types and data combinations.
In this paper, we build on these previous efforts in order to harmonize the methods and build a
generic approach to produce forest parameters maps. We gather all open access data shown to be
useful across different forest types and parameter estimations (SAR L- and C-band, optical indexes,
and textural indexes) and develop an automated processing chain that allows to retrieve and spatialize
forest key parameters accurately. The method is modular and can be easily tailored to different
contexts. The processing chain has been developed with Python (especially scikit-learn library [66])
and Orfeo Toolbox (OTB) [62] open source software for image processing and machine learning
algorithms. Performance has been evaluated on maritime pine forests within the Landes de Gascogne
in Southwest France.

We estimate six forest parameters: AGB (28% relative RMSE), BA (27%), DBH (20%), age (17%),
density (24%) and height (13%). Height and DBH and age are key variables for forest monitoring,
highly related with thinning and harvesting operations. They are predicted with the best accuracy.
BA and AGB are important for resources and carbon budget assessment. Their accuracy is lower.
One reason can be that the remote sensing data we use are known to saturate for high biomass.
Moreover, considering the high spatial resolution of the images, the biomass is more variable than
DBH or height from one pixel to another because of tree cover gaps, especially for sowing afforestation.
Image segmentation may assist with dealing with such heterogeneous areas.

As mentioned in the literature specialized remote sensing of forest parameters, the best accurate
estimations are provided by airborne laser scanning (ALS) and SAR radargrammetry [5,68,69] with
about 15–20% RMSE for AGB estimation, and 5–10% RMSE for height estimation on tropical, boreal
and temperate forests. Estimations based on photogrammetry and textural metrics from very high
resolution optical images (0.5–1 m) also provide very accurate results [40–42,68] with 20–25% and
10–15% relative RMSE for AGB and height. The estimates we produce on the basis of global coverage
and freely available images, with open source software, are close to the best results published so far.
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Out of the feature selection and machine learning algorithms we tested, SVR algorithm and
forward feature selection are recommended when reference samples are scarce (<100). RF algorithm
can be a good option for larger datasets. On these maritime pine forests, the analysis of feature types
contributions reveal that the Sentinel-1 textural metrics are the most useful feature type when used alone
for the estimation of the ensemble of forest variables. However, L-band is still the better to estimate
specifically AGB and BA. With respect to the synergy, the best feature types combination is L-band
SAR backscatter with textural indexes from Sentinel-1 or Sentinel-2. Nevertheless, other features can
be useful for generalization and it is better to keep a wide range of feature types in order to apply the
method efficiently to other forests. In addition, other predictive features can be used when available in
the study area. We tested Spot-6 annual mosaics that are freely available on France territory. It would
be possible to feed the processing chain with more precise data (airborne, drones) or information on
soils and slopes, according to what is available and relevant on the targeted forests.

The method is designed to be generic, taking advantage of a large variety of remote sensing data
that have been used in several studies on different types of forests. Although this first validation was
made on a single type of forest, the method can be applied to other forests types and perform as well as
the studies that have used the same data on other forests. We are currently testing the application on
more complex forests (uneven-aged, mixed broadleaved and coniferous). Preliminary results confirm
the approach is robust. Nevertheless, difficulties could appear in dense forests (due to the signal
saturation of current satellite sensors) and in mountainous areas with slopes above 20◦ (due to inherent
radar geometry distortions). Furthermore, the relationships between remote sensing data and forest
parameters are expected to change from one forest to another according to the management, species,
environmental conditions or even the fertility of the soil. Temperate forests can be very different from
one stand to another in a neighboring area. Information on the forest types can therefore be important
for learning and applying models. In order to produce accurate maps of forest parameters over large
areas in temperate regions, the differentiation between models should be related to current work on
land cover and forest species classification. The versatility of the processing chain is ground to continue
validation effort on other forests, and to analyze its strengths and limitations.

6. Conclusions

The results of this study confirm that open access spaceborne data, such as Sentinel-1, Sentinel-2
and ALOS-PALSAR mosaics (all three acquired worldwide at high spatial resolution), are able to
provide accurate estimations of forest structure parameters and AGB. Based on open source software,
we built a processing chain that uses SAR L- and C-band, optical spectral indexes, and textural indexes,
all together, in a synergistic way to produce quantitative maps of forest parameters. The method is
intended to be generic. A quality assessment was done on maritime pine stands within the largest
European plantation forest. We are currently applying and validating the method on other temperate
forests (uneven-aged, broadleaved and mixed forests). Once we have thoroughly analyzed the strengths
and limitations of this method on different forest types, the key tools of the processing chain could be
packaged and made available for forest organizations, national bodies or other researchers to test the
method anywhere. In recent decades many forest organizations (e.g., in France the Office Nationale des
Forêts, ONF) have established networks of permanent plots in order to improve forest knowledge and
evaluate silvicultural practices. In addition, regular field measurements are performed to assess the
financial value of forest stands. These measurements could provide a solid learning database for the
method presented in this paper. In return, the possibility of mapping forest structure parameters such
as DBH, height and BA with remote sensing data would be useful to obtain quantitative information on
stands without measurements, and to improve the distribution and representativeness of permanent
plots. The methodology we presented could also be used directly on the geolocated measurements
performed by the national forest inventories in order to improve the sampling design and the spatial
resolution of their maps. Quantitative mapping could then be used at both the stand level and over
large areas to monitor and better assess forest management strategies. In addition, other information
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could be extracted from these maps such as ecological indicators on the landscapes, a better estimate
of the consequences of fires, storms and other sanitary disasters, and a finer spatialization of carbon
budget assessment.
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Figure A2. Estimation of stand age using SVR (C = 100, G = 0.01, E = 0.001) and forward
selection method from L-band, C-band, C-TI, S2-SI, S2-BI-TI (selected features presented in Table 5).
(a) Validation scatterplot; (b) Age reference samples distribution; (c) Estimation errors depending on
age reference values.



Remote Sens. 2019, 11, 1275 20 of 25

Appendix B Analysis on the Sentinel-1 Temporal Information

SAR backscatter is affected by the variations of environmental effects such as soil and vegetation
moisture. We have analyzed the impact of rainfalls (using Global Satellite Mapping of Precipitation,
GSMaP, provided by JAXA) and wetness (using Soil Water Index, SWI, provided by Copernicus Global
Land Service) on the backscatter temporal evolution. We have found that the signal variations are
mostly concomitant with rain events observed on GSMaP. Furthermore, significant positive correlations
are found between Sentinel-1 time series and the SWI on forest stands with different conditions of tree
density and biomass range. As we want to study the evolution of the signal with regard to vegetation,
the impact of rain and soil moisture might be a nuisance. This is the rationale for being selective about
the dates used in this context.

Thirty Sentinel-1 dates are available in 2016 for each orbit; we choose one date every 2 months,
and with no precipitation within the three previous days (as observed on GSMaP for each descendant
orbit). We study whereas the temporal information of the time series is useful in the context of
coniferous study site. Figure A3 shows the correlations of AGB and DBH with Sentinel-1 SAR
backscatter (VH, VV polarizations and VH/VV ratio; orbit with 33◦ of the mean incidence angle) for
the six dates and the annual mean. VH backscatter sensitivity to AGB and particularly to DBH is
rather stable in time. VV backscatter is more sensitive to soil conditions and more correlated to AGB
and DBH in the summer (July–August), in sharp contrast with the VH/VV ratio. We average the
6 dates in an annual mean (showed on the right of Figure A3a,b). When averaging, VV correlation
with AGB (Figure A3a) is decreased by 0.1, and the correlation of the annual mean of VH/VV with
DBH (Figure A3b) is also decreased by 0.1. Overall the annual mean shows quite similar correlations
to the dates within the year with the best scores. Moreover, we test the estimation of forest variables
with Sentinel-1 dates or annual mean using SVR and forward selection method. The use of six dates
(18 features for one orbit, instead of three with the annual mean) improves the results by ~1% for the
AGB and density, but not for the other variables. Given these very slight improvements, we choose to
keep only the annual mean values of the S1 radar backscatter for this study.Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 25 
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Appendix C Analysis on the Sentinel-2 Temporal Information

Optical images are affected by cloud cover; the signal does not pass through clouds. Sentinel-2A
acquires one image every 10 days, but when there is more than 90% of cloud cover, image processing
can’t be applied and the image is not delivered (ortho-rectification for level 1A cannot be applied).
Images may still show clouds that cover part or all of the study area. For the Landes forest test site,
18 images are available in 2016 and only seven are cloud free on the reference samples. The dates and
the number of usable images may change between years (see Figure A4) and between regions. We want
to select dates that are representative of different vegetation stages, while being the most stable (based
on the phenology) between years, regions or forest species. Figure A4 shows the temporal evolution of
NDVI, BI and NDWI. Broadleaved and maritime pine forests are selected in order to compare different
phenology of the vegetation. The analysis of time series reveals that vegetation cycles are repeated
over the years. However, non-cloudy image dates may be very different between years. Rapid changes
occur in the spring and autumn, while spectral indexes are more stable in the summer and winter.
The period when coniferous and broadleaved forests differ the most is in winter. Therefore we choose
to keep two cloud free images, one close to January (winter season) and another close to July 2016
(summer season).Remote Sens. 2019, 11, x FOR PEER REVIEW 22 of 25 
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