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The identification of biomarker signatures in omics molecular profiling is usually

performed to predict outcomes in a precision medicine context, such as patient

disease susceptibility, diagnosis, prognosis, and treatment response. To identify these

signatures, we have developed a biomarker discovery tool, called BioDiscML. From a

collection of samples and their associated characteristics, i.e., the biomarkers (e.g., gene

expression, protein levels, clinico-pathological data), BioDiscML exploits various feature

selection procedures to produce signatures associated to machine learning models that

will predict efficiently a specified outcome. To this purpose, BioDiscML uses a large

variety of machine learning algorithms to select the best combination of biomarkers

for predicting categorical or continuous outcomes from highly unbalanced datasets.

The software has been implemented to automate all machine learning steps, including

data pre-processing, feature selection, model selection, and performance evaluation.

BioDiscML is delivered as a stand-alone program and is available for download at https://

github.com/mickaelleclercq/BioDiscML.

Keywords: machine learning, omics, biomarkers signature, feature selection, precision medicine

INTRODUCTION

The identification of biomarkers that are indicative of a specific biological state is a major
research topic in biomedical applications of computational biology (Liu et al., 2014; Beerenwinkel
et al., 2016; Zhang et al., 2017). With the emergence of high-throughput molecular profiling
technologies and their decreasing costs, traditional medicine is moving to precision medicine
to improve disease diagnosis, and to propose tailored interventions to individuals. Research
studies involving cohorts of patients aim to discover patterns that establish risk stratification and
discriminate patient states, such as diseased vs. controls, disease type, etc. These last years, clinical
and biology research turned toward extensive usage of OMICs (i.e., proteomics, transcriptomics,
metabolomics, genomics, etc.) technologies, which include microarrays, mass spectrometry, and
whole exome/genome and RNA sequencing. Specific patterns associated with a clinical outcome of
interest (e.g., disease diagnostic, prognostic), called biomarker signatures, can be derived from these
high-dimensional technologies outputs (e.g., gene expression, polymorphisms) (Lin et al., 2017).
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These signatures, which are measurable indicators for predicting
a biological phenomenon, are usually identified using machine
learning (Pasolli et al., 2016) or statistical multivariate analysis
approaches (Rohart et al., 2017c).

Biomarker signature identification from disease-derived
omics datasets is a challenging task involving many pitfalls. First,
the datasets are generally highly unbalanced, where the features
(e.g., genes, peptides, metabolites. . . ), also called attributes or
variables, largely outnumber the samples. In addition, patients
are unequally distributed among measured outcomes. Second,
the molecular profiles are often heterogeneous (e.g., sub-
phenotypes in cancer data), of diverse types (e.g., categorical,
continuous), and scattered over multiple inputs (Libbrecht and
Noble, 2015). To identify sets of predictive biomarker signatures
from omics data, a few non-commercial methods have been
implemented in R packages (Lê Cao et al., 2009; Taverner
et al., 2012; Cun and Fröhlich, 2014; Rohart et al., 2017b).
These toolkits have adopted diverse multivariate projection-
based methods including principal component analysis (Wold,
1975), independent component analysis (Yao et al., 2012),
multi-group partial least squares regression (Eslami et al.,
2013), canonical correlation analysis (Hotelling, 1936), K-
means clustering (Hartigan and Wong, 1979), and associated
visualizations. Recently, other research teams have proposed
approaches in machine learning (ML) (Janevski et al., 2009;
Cun and Fröhlich, 2013; Lagani et al., 2013; Swan et al., 2013,
2015; Butti et al., 2014; Kong et al., 2014; Kourou et al., 2015),
a branch of artificial intelligence that holds a great potential
for pattern recognition in complex diseases datasets. ML has
already shown its ability to identify key features (markers)
and modeling predictive biomarker signature in a variety of
fields, including cancer research (Matsumura et al., 2010; Cima
et al., 2011; Cui et al., 2011; Roth et al., 2011; Fröhlich and
Cun, 2012; Kourou et al., 2015), neurology (Daoqiang and
Dinggang, 2012; Deshpande et al., 2013; Fekete et al., 2013),
immunology (Sutherland et al., 2011), skin diseases (Johansson
et al., 2011), etc. However, all these techniques are complex to
use and are out-of-reach for non-programmers and non-ML
experts. Furthermore, the software implemented specifically for
omics data are still rare and are strictly limited to specific ML
algorithms for feature selection (also called “attribute selection”)
or classification (Butti et al., 2014). Hence, there is an unmet need
to develop user-friendly computational approaches for using
machine learning in a biomedical context that are dedicated to
biologists and clinical researchers. These approaches must be able
to identify complex patterns and predict outcomes in various
biological or clinical fields (e.g., disease diagnosis, prognosis,
therapeutics), thus helping to understand the biology behind a
measured outcome.

Considering the complexity of the ML approach, we present
in this paper a software called BioDiscML (Biomarker Discovery
by Machine Learning), which aims to greatly facilitate the
work required for biomarker signature identification from high-
dimensional data, such as gene expression, by automating the
ML approach. Some non-commercial automatic software already
exists to facilitate the choice of learning algorithms and perform
hyper-parameter optimization, such as Auto-weka (Thornton

et al., 2013), auto-Sklearn (Feurer et al., 2015), autoML (Feurer
et al., 2015), and preconfigured pipelines in Orange canvas
(Demšar et al., 2013). But they are not explicitly designed to
answer biological problems, lack of user-friendly experience
for non-ML experts, some focusing only on hyperparameter
optimization, and may be complex to parallelize to decrease
calculation time. We aim here to fill the gap, providing
BioDiscML the capacity to test large number of feature subsets
and models in order to obtain the most performant signature
to predict a measured outcome. BioDiscML uses an exhaustive
search approach, which systematically enumerates a pre-defined
set of possible candidates for a solution and test whether each
candidate satisfies the problem statement. BioDiscML can also
merge files from different sources, search for the most predictive
combination of feature subsets and machine learning classifiers,
train a model, evaluate predictive performances, parallelize the
computation, and search for correlated features.

MATERIALS AND METHODS

BioDiscML is a tool that automates main ML steps by
implementing methods for feature and model selection. In
this section, we describe the program procedures separated in
three main components: preprocessing, feature selection and
model selection. We also present all supported models (see
Supplementary Materials), evaluation metrics, feature search
methods, best model selection and correlated features search
approaches. Finally, we have summarized the real-life datasets we
used to compare BioDiscML against various existing tools.

BioDiscML Software
BioDiscML is a biomarker discovery software that supports
classification (categorical class) and regression (numerical class)
problems. It is written in JAVA 8 language (Fischer, 2015) and
use Weka 3.8 machine learning library (Holmes et al., 1994; Hall
et al., 2009; Witten et al., 2016). It automates several machine
learning steps aiming to identify predictive models. To this
purpose, BioDiscML can routinely perform data preprocessing,
features dimension reduction, a combined feature and model
selection strategy, identify best models, and search correlated
features. All machine learning generated models are evaluated
by various cross validation procedures. All steps are configured
with editable default parameters. Advanced parameters can also
bemodified by the user. Some basic information is needed to start
the program such as: input dataset(s), class label name, problem
type (regression or classification).

BioDiscML pipeline presented in Figure 1 works as follows:
It starts with the preprocessing section. After merging the input
datasets whenmany are submitted, a first sampling step separates
the data in a train and a test set (2/3 and 1/3, respectively, by
default), this latter will be used after model creation to assess non-
overfitting. Then, a feature ranking algorithm sorts the features
based on their predictive power with respect to the class. Only the
first best 1,000 s features are kept by default. Then, in the feature
selection section, for each machine learning algorithm defined
in BioDiscML (i.e., the classifiers), and for each optimization
evaluation criterion (i.e., a chosen evaluation metric), two types
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FIGURE 1 | BioDiscML pipeline. Preprocessing and feature selection procedures are fully parallelizable, When all features-optimized models are computed, the model

selection starts. The program can be also started from the checkpoint at any moment during the execution. *The Set of ML classifiers is the set of pre-configured

commands in classifiers.conf file. All classifiers are listed in the Supplementary Table S1. **Criterions are optimized metrics, evaluated by 10-folds cross validation

(10 CV), used to assess if a model is improved, such as accuracy, balanced error rate, Matthew’s correlation coefficient, area under the curve, sensitivity, specificity,

Root Mean Squared Error, etc. (see Evaluation Criterion). ***Feature selection methods include forward stepwise selection (FSS), backward stepwise selection (BSS),

forward stepwise selection and backward stepwise elimination (FSSBSE), backward stepwise selection, and Forward stepwise elimination (BSSFSE), and “top k”

features (see Optimal Feature Subset Search Methods).

of feature search selection are performed: top k features and
stepwise (see Optimal Feature Subset Search Methods). Top k
simply select the best k elements from the ordered feature set
to create a model. In the stepwise approaches, for each element
in the ordered set, features are added and/or removed one by
one depending on the feature search method. At each iteration,
the created model is evaluated by 10-fold cross validation (10
CV) and the combination of selected features is retained if the
predictive performance is improved. When all features are tested
and the signature is identified, the model is evaluated on other
cross-validation/sampling procedures (see Model Evaluation).
Once all classifiers are tested, we end with a set of feature-
optimized models with their associated performances metrics
(see Model Evaluation) and associated features, for each model.
In total, about 8,500 models for classification and about 1,800
for regression are tested, but a large part will not be computed
because of non-supported data (see Supplementary Table S1).
Once all models are generated, the program executes the best
model(s) selection section. The average performance among
some computed metrics (see Model Evaluation) are used to
estimate the most efficient model (see Best Model Selection), and
correlated features are retrieved from the original dataset (see

Correlated Features Search) and compiled in a tabular-separated
text file report. Depending computing performances and dataset
size, a few hours may be needed for BioDiscML pipeline to finish.
Before the end of BioDiscML execution, a user can execute at any
time BioDiscML from the checkpoint in parallel to perform the
best model selection process, which will retrieve models from the
feature-optimized model list generated and updated in real-time.

Data Preprocessing
BioDiscML supports multiple input files (e.g., clinico-
pathological information with omics data), as the condition
that sample identifiers exist in all files to perform joining. The
input datasets are assumed to be clean and consistent, in a
flat file format, table-like structure with samples in rows and
features in columns (Figure 2). Field separator symbols (e.g.,
tabulation, comma, semicolon) are automatically detected based
on the first lines of the file. Feature and instance duplicate names
are not allowed. Where multiple datasets are submitted, only
one must contain the class label. File contents are composed
of instance identifiers (e.g., samples, patients) associated to
numerical and/or nominal features (e.g., high/medium/low,
effect_A/effect_B, Drug_1/Drug_2). Let be a set of q datasets
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FIGURE 2 | BioDiscML accepts as input one ({d1} only) or many ({d1, ..,dq}) symbol-separated table-like structured datasets containing samples in row and features

in columns.

{d1, d2, ..., dq}with q ≥ 1containing mqfeatures. In each dataset
the first column is used to create the joining of all datasets and
consists of instances unique identifiers. If an identifier does not
exist in all datasets, it will be ignored. The class label column
Y is required and must be specified by the user. In addition
to the class label, the dataset d1contains a set of m1 features
noted A1 = {A1,1,A1,2,...,A1,m1 }where A1,m1 ,the m1-th feature
of d1, is a vector denoted {a1,m1 ,1,a1,m1 ,2,..., a1,m1 ,n}. Hence the
feature vector of the n-th instance of the dataset d1 is noted
x1,n = {yn, a1,1,n,a1,2,n,..., a1,m1 ,n}.In case of multiple datasets
(q ≥ 2), the feature vector of the n-th instance of the dataset dr is
noted then xr,n = {ar,1,n,ar,2,n,..., ar,mr ,n}, wheremr is its number
of features. The resulting set of merged datasets is called D.

Due to experimental errors or partially answered forms by
patients, missing data may be present in the dataset. If one wants
to conserve the features with missing data, the ML library used
by BioDiscML will replace all missing values for nominal and
numeric features with the modes (i.e., value that occurs most
often) and means from the training data, respectively.

Also, manipulating large files is painful and one would
exclude specific features without editing the input files. Thus, we
implemented in BioDiscML features exclusion capabilities, where
it simply ignores columns entered by the user.

Finally, a stratified sampling, which preserve the initial classes
balancing, is applied to generate a test set for further evaluation
to assess non-overfitting. It is set by default to create a train set
of 2/3 of the input data, from which models will be computed,
and 1/3 as a test set. These proportions can be modified by the
user, and in case of very low number of instances, sampling can
be disabled. A separate test set of the same structure than the train
set can also be provided to BioDiscML.

Feature Ranking and Dimension Reduction
Feature ranking (as for feature selection) is essential to identify
irrelevant or redundant features, which, once discarded, help
to reduce computation time, improve prediction performance,
and extract the most informative features (Sasikala et al.,

2016). BioDiscML uses Information Gain (Krishnaiah and
Kanal, 1982), which evaluates the worth of a feature by
measuring the information gain with respect to a class. However,
Information Gain is not compatible for regression problems
using continuous class. In this case, BioDiscML instead uses
ReliefF (Robnik-Sikonja and Kononenko, 1997), an adaptation
to the original Relief algorithm (Kira and Rendell, 1992), which
is as fast as Information Gain computation. ReliefF evaluates
the worth of a feature by repeatedly sampling an instance
and considering the value of the given feature for the nearest
instance of the same and different class. Both Information
Gain and ReliefF are used in conjunction with a ranker search
algorithm, which ranks features by their individual evaluations.
By default, and to reduce the dimension of the dataset,
BioDiscML will only keep informative features (Information
Gain >0.01 or |ReliefF| >0.01) or the first 1,000 best features,
ordered by their absolute value of their score (ReliefF provides
positive and negative correlation scoring with continuous class)
(see Algorithm 1).

Feature Subset Selection and Model Search
Selecting a subset of features from a large number of potential
variables is a common problem in pattern classification. Some
feature subset selection methods involve a criterion to evaluate
the capacity of feature subsets to distinguish one class from
another, and a search algorithm to explore the potential solution
space. At the end of the process, the feature subset generally
contains the most important and non-redundant variables. In
this context, BioDiscML automates an exhaustive procedure
that generates thousands of combinations of ML algorithms
and feature subsets defined by various search methods. This
technique, which mixes both feature and model search, produces
thousands of models associated to an optimal subset of non-
redundant features. Many evaluation procedures (e.g., cross
validations, resampling, bootstrapping) using train and test sets
assess if models do not overfit the train set. All steps are described
in Algorithm 2.
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Algorithm 1: Dimension reduction by Information Gain and
ReliefF
Input: train instances of D (merged datasets), classifierType
(classification or regression)
Output: Dataset with ranked best features S

for each feature array A do

if classifierType= classification
thenmeritScorea = Compute information gain
value of A with respect to classes Y
elsemeritScorea = Compute ReliefF value of a
with respect to classes Y

end if

ifmeritScorea 6= 0
then add |meritScorea |tomeritScores

end if

end for

SortedFeatures= SortmeritScores from largest to smallest values
if

∣

∣SortedFeatures
∣

∣ ≤ 1000
then S = SortedFeatures
else S = SortedFeatures{A1,A2, ...,A1000}

end if

return S

Available machine learning algorithms
ML classifier algorithms and their hyperparameters (i.e., the
options of the learning algorithm) are predefined in BioDiscML
with random sets of options, including those provided by
default in Weka library. In the current version, about 80
classifiers are available in BioDiscML (Supplementary Table S1).
Some classifiers exist in various adaptations to support more
features or class types. Depending available computing resources,
the list of classifiers and hyperparameters can be modified
by the user, as well as the spectrum of tested algorithms.
In case of non-compatibility between a classifier and the
input data or erroneous options, the classifier will be ignored
by BioDiscML.

Evaluation criterion
For each classifier, several feature search methods are conducted.
Each search method iterates over the features (except “top k”
features approach) and trains a model at each iteration. To
evaluate if a model is improved by adding or removing a
feature, an evaluation criterion is measured by 10-fold cross-
validation to assess if the prediction performance increases.
All metrics are averaged over the folds and by class size,
since a classifier usually performs differently over each class.
This optimization procedure performed on feature selection
either maximize or minimize the criterion, depending if it
measures a performance or an error, respectively. Criterions
supported by BioDiscML includes accuracy (ACC), balanced
error rate (BER), Matthew’s correlation coefficient (MCC), area
under the curve (AUC), sensitivity, specificity, Root Mean
Squared Error (RMSE), Correlation Coefficient (CC), etc. The
full criterions list, including their equations, is provided in
Supplementary Table S2.

Optimal feature subset search methods
For each ML algorithm listed in Supplementary Table S1, and
for each selected criteria selected in Supplementary Table S2,
from the ranked features S obtained in Algorithm 1, models
are trained using several feature search approaches, including:
Forward stepwise selection (FSS), Backward stepwise selection
(BSS), Forward stepwise selection and Backward stepwise
elimination (FSSBSE), Backward stepwise selection and Forward
stepwise elimination (BSSFSE), and “top k” features. In the
stepwise procedures, features having an equal predictive power
to the outcome (i.e., distributions similar among classes) and
retained in the model may be selected randomly or by order of
appearance in the dataset.

Forward stepwise selection (FSS). Also called sequential forward
selection (Reunanen, 2003), where features are added one by one
to the model. At each added feature, the model is evaluated by
10 CV. If the model is improved, based on a given evaluation
criterion, the feature is definitely kept in the model, otherwise it
is rejected (Maugis et al., 2011).

Backward stepwise selection (BSS). This approach is similar to the
FSS, but instead of starting from the best feature, this algorithm
starts the selection from the worst feature. Features are added one
by one, if the model is improved (evaluated by 10 CV) the feature
is definitely kept in the model, else, it is rejected.

Forward stepwise selection and backward stepwise
elimination (FSSBSE). The drawback of FSS and BSS is that
once a feature is selected, it cannot be deleted at a later stage.
Consequently, redundant features might be selected. To alleviate
this problem, we have implemented a FFSBSE algorithm, inspired
by previous work (Caruana and Freitag, 1994; Mao, 2004; Zhang,
2011). After each addition of an increasing criterion score
feature using FSS, a BSE step removes all previously selected
features one by one in reverse order with replacement and test
the performance by 10 CV every time. If removing a feature
improves the model (evaluated by 10 CV), then the feature is
discarded, otherwise it is kept.

Backward stepwise selection and forward stepwise
elimination (BSSFSE). Similar to FSSBSE, but instead the
algorithm starts from the selection of the worst feature.

“Top k” features This fast method simply trains a
model with a subset of k best features, with k =

{1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100}.

Model evaluation
Prediction performance of a model is measured using
various evaluation procedures including 10 CV, leave-one-
out cross validation (LOOCV), holdout, repeated Holdout,
bootstrapping, and 0.632+ bootstrap estimator. For each
generated model described in previous sections, and for each
evaluation procedure, the following metrics are measured (see
Supplementary Table S2): ACC, AUC, AUPRC, Sensitivity,
Specificity, MCC, BER. In 10 CV evaluation, the original training
set is randomly partitioned into 10 equal sized subsamples. The
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model is trained on nine subsamples and tested on the remaining
one. The CV is repeated 10 times, where each subsample is
used exactly once for evaluation. The reported metric scores are
their average over all folds. In LOOCV each model is trained
on all the data except for one instance and a prediction is made
for that instance. Average of metric scores are computed over
all tested instances. The holdout method is the simplest kind
of cross validation where the dataset is randomly separated
into two sets generated at sampling procedure (see Figure 1),
called the training set and the testing set. The model is trained
using the training set only, then is used to predict the class for
the data in the testing set as evaluation. However, this type of
evaluation can have a high variance since it depends heavily
on which instances end up in the training and test sets. Thus,
a repeated holdout is also performed 100 times (by default)
with random sampling without replacement. Repeated Holdout
consists of randomly select and hold out a 1/3 of the training
sample for testing, build model with only the remaining samples,
retrieve its performances, and repeat the process many times.
At the end, we report the average all performance metrics. The
bootstrapping is equivalent, except the random sampling is
performed with replacement. Finally, we also provide a 0.632+
bootstrap estimator (Efron, 1983), representing an estimation of
the bias of the predictive model, which should tend to 0, hence
assessing that the model does not overfit.

In addition to all these metrics, for each feature-optimized
generated models, we calculate the average MCC and BER with
their associated standard deviation across all evaluations (10 CV,
LOOCV, Repeated Holdout, Bootstrap, holdout). For regression,
we calculate the average and standard deviation of CC and RMSE.

Best Model Selection
Selecting the best model is not trivial since several good solutions
are produced. Moreover, the definition of a “good” model also
depends of user needs; for example, one would favor a model
with a very low number of features over a model having dozens
of feature, even if the latter provides a better overall performance.
While BioDiscML proposes an automatic selection of the best
model, a manual approach would be appropriate at that step.
For this reason, all models are stored in real time in a Microsoft
Excel-compatible Comma Separated Value (CSV) file and can
be easily ordered by a criterion metric according to the user
needs. Identifiers of user-selected models can be then submitted
to BioDiscML to generate data files for easy re-use in other
programs and full reports (containing the biomarker signature,
the model and its hyperparameters, overall performances, and
correlated features). Otherwise, by default, BioDiscML best
model selection procedure aims to identify the model having a
high agreement between the various evaluation methods, hence
assessing stability and low overfitting of the model. To this
purpose, select the model having the best average MCC with a
standard deviation lower than 0.1 (or another adjusted threshold
set by the user). The user can change the best model selection
strategy at ease in the program configuration file. For example,
one would select a trained model on train set having the best

Algorithm 2: Identification of features subsets and feature-
optimized models

Input: Dataset with ranked best features S, set of ML classifiers
with various hyperparameters, set of criteria, datasets D
Output: Feature-optimized models list L with their identified
features subset

function EVALUATE(model, selectedFeatures, dataset D, list of
models L)

trainSetEvaluation= Evaluatemodel using 10CV, LOOCV,
Bootstrap, Repeated Holdout, 0.632+ estimator on train set
testSetEvaluation= Extract selectedFeatures from test
instances of dataset D and perform holdout evaluation
withmodel
performances= trainSetEvaluation, testSetEvaluation
addmodel with performances and selectedFeatures to L
return L

end function

for each classifier in classifiers do
for each criterion in criteria do
for each featureSearchMethod in featureSearchMethods{FSS,
BSS, FSSBSE, BSSFSE)
do

if criterionmust be maximized
(see Supplementary Table S2) then

criterionScore= 0
rule= “lesser than”

else

criterionScore= 1000
rule= “greater than”

end if

if featureSearchMethod= FSS or BSS then
if featureSearchMethod= BSS then
S= invert feature rank order of S

end if

for each feature A in S do
Add A to selectedFeatures
model = Train using classifier with selectedFeatures
newCriterionScore= perform 10CV evaluation
if newCriterionScore rule CriterionScore

then discard a from selectedFeatures
else keep a in selectedFeatures
criterionScore= newCriterionScore

end if

end for

else

if featureSearchMethod= BSSFSE
then S= invert feature rank order of S

end if

for each feature A in S do
Add A to selectedFeatures
model = Train using classifier with selectedFeatures
newCriterionScore= perform 10CV evaluation
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if newCriterionScore rule CriterionScore
then discard A from selectedFeatures
else

keep A in selectedFeatures
criterionScore= newCriterionScore
for each selectedFeature from before last kept
feature to the first selected feature in
selectedFeatures do

remove selectedFeature from selectedFeatures
subModel = Train using classifier with
selectedFeatures
subNewCriterionScore= perform 10CV
evaluation
if subNewCriterionScore rule
NewCriterionScore then
discard selectedFeature from selectedFeatures
NewCriterionScore= subNewCriterionScore

else

keep selectedFeature in selectedFeatures
end if

end for

end if

end for

end if

L= EVALUATE(model, selectedFeatures, A, L)
end for

end for

# create models without stepwise feature subset selection
approaches
selectedFeatures= k first features
model = Train using classifier with selectedFeatures
from dataset S
L= EVALUATE(model, selectedFeatures, A, L)

end for

return L

MCC on the test set (TEST_MCC, see readme program file),
or on the best bootstrapping using merged training and testing
sets (TRAIN_TEST_BS_MCC).Since all generated models have a
unique identifier, one would use these identifiers to select the best
model based its own criteria.

Ensemble Learning
Since several good models with different features can exist in the
results generated by BioDiscML, we also propose a vote classifier
able to combine many models together. Different combinations
of probability estimates for classification are available, including
Average of probabilities, Product of probabilities, Majority voting
and Median. As for best model selection, many metrics and
correlated features are provided for this ensemble model. We
also count the number of occurrences of each features in the
combined models. The models to add in the ensemble classifier
are dependent of the user choice. They can be selected manually
using their unique identifiers, or by setting a metric dependent

rule (by default average MCC lower than 0.6) and a maximum
number of models to include.

Correlated Features Search
The identified signatures by stepwise search methods will tend
to ignore all redundant/correlated features. To use the models
as “black box” for pure prediction, this may be optimal, but not
for biological interpretation because one would understand why
the selected features have a link with the predicted class. To this
purpose, from the features in the signature, BioDiscML retrieves
all other correlated features from the original dataset using
Pearson and Spearman correlations. BioDiscML also identifies all
neighbor features discovered during feature ranking procedure
by Information Gain and ReliefF methods. Both provide feature
ranking scores that are used to detect the features having the
same predictive power, i.e., similar behavior among instances.
With these techniques, redundant information lost during the
feature selection process are recovered, hence helping for further
interpretation of the signature.

Gene Set Enrichment Analysis
We performed several Gene Set Enrichment Analysis (GSEA) to
characterize the signatures identified by BioDiscML on the test
datasets. To this purpose, we used ToppFun tool, fromToppGene
suite (Chen et al., 2009), with Bonferroni correction at 0.05 to the
probability density function (p-value Method).

Datasets for Benchmarking
Datasets described in Table 1 have been evaluated to compare
the performance of BioDiscML and recent tools. All models and
signature information for all tested datasets are presented in
Supplementary Datasets_results.xlsx.

RESULTS

We compared BioDiscML to various recent approaches
dedicated to biomarker discovery and modeling, including
MINT (Rohart et al., 2017a), AucPR (Yu and Park, 2014), and
RGIFE (Swan et al., 2015) to demonstrate the better predictive
performances that BioDiscML offers on various omics datasets.
In all cases, BioDiscML outperform these state-of-the-art tools.

BioDiscML vs. Mint
MINT implements a multivariate integrative method able to
integrate independent datasets, reduce batch effect, classify
instances and identify key discriminant variables. In their study,
they performed a feature selection and classification evaluation
of a stem cell dataset. According to their published results, they
identified a signature of 17 genes which predicted the test and
train sets with a BER of 9.4 and 7.1% resp. Using the exact
same train set, BioDiscML identified a signature of 19 genes
by optimizing the AUC of a Random Forest model with 100
iterations and using the FSSBSE feature search method. The
measured BER on the test set was 7%, and on the train set
3.5, 3.6, 6.8, and 7.2% using 10 CV, LOOCV, and repeated
holdout and bootstraping resp. To select this model among the
4,710 successfully generated models, we simply retrieved the one
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TABLE 1 | Description of the real-world datasets used to evaluate the performance of BioDiscML vs. recent tools.

Name Description Features Instances References

Stem cells Fifteen merged transcriptomics microarray sets from

multiple platforms. They contain three types of

human cells as classes: human Fibroblasts (Fib),

embryonic stem cells (ESC), and induced

pluripotent stem cells (IPSC)

13,315 Train set: 62 ESC, 105 IPSC, 43 Fib

Test set: 33 ESC, 77 IPSC, 22 Fib

Total: 210 (train) + 132 (test) = 342 patients

Rohart et al., 2017a

Colon cancer Transcriptomics microarray available from ColonCA

R package in Bioconductor (Gentleman et al.,

2006), separated between cancerous from

non-cancerous colon tissue

2,000 Sixty-two patients, including 40 tumors and 22

normal cases

Alon et al., 1999

Central nervous system Microarray gene expression data derived from

central nervous system of patients brain tumors to

predict embryonal tumor outcome

7,129 Sixty patients, including 39 medulloblastoma

survivors, and 21 treatment failures cases

Pomeroy et al., 2002

Diffuse large B-cell

lymphoma (DLBCL)

Transcriptomic microarray of pre-treatment biopsies

tumor specimens separated in DLBCL and

follicular lymphoma

2,647 Seventy-seven patients, including 58 DLBCL

and 19 follicular lymphoma

Shipp et al., 2002

Prostate cancer Microarray expression analysis was used to

determine gene expression levels differences

between tumor and non-tumor prostate samples

2,135 One hundred two patients, including 52 tumor

and 50 normal cases

Singh et al., 2002
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FIGURE 3 | BER comparison of MINT vs. BioDiscML. Train BER value was

obtained by LOGOCV performance evaluation and test BER value using

holdout validation. Values are in percentage.

having the lowest BER on the holdout method. Thus, on the
same test set, the Random Forest model identified by BioDiscML
improved the BER from 9.4 to 7%, corresponding to about 25%
relative error decrease (see Figure 3).

In their paper, MINT authors have provided the signature
identified by their method. Although both signatures found by
MINT and BioDiscML have no genes in common, most of
level 2 biological processes ontologies (see Supplementary Data)
obtained by these signatures were identical (cellular process,
multicellular organismal process, metabolic process, biological
regulation, cellular component organization or biogenesis,
localization). Specific biological processes were reproduction and
immune system inMINT signature, and response to stimulus and
developmental process in BioDiscML signature. A long signature
of 71 genes can also be obtained using correlated feature search
in BioDiscML. Using this long signature, only immune system
process was added compared to the short signature, which also

exists in the MINT signature. Moreover, this long signature
provided perfect predictions on all instances of the test set.
We also compared both signatures GSEA (see Methods). MINT
signature did not show any significantly enriched ontologies,
literature co-citation, co-expression etc. At the opposite, the
short signature of BioDiscML found about 20 hits related to
stem cells in co-expression databases (GeneSigDB and MSigDB)
and co-expression Atlas. Also, about 20 other hits were found
in literature co-citation about cognitive diseases (Alzheimer,
Parkinson, Schizophrenia). The long signature provided even
more hits, in many other categories.

BioDiscML vs. AucPR
In their study, authors of AucPR, an AUC-based approach using
penalized regression, have evaluated the performance of their
tool against four datasets. While AucPR showed a very good
prediction performance on three of four tested datasets, the
average AUC on ColonCA dataset was about 90% using both best
penalization regression approach modes of the tool (Lasso and
ElasticNet). Considering AucPR had the lowest performance on
this dataset, we tried the performance of BioDiscML on it. In
their paper, authors report the boxplots of 100 AUCs obtained
by repeated holdout (random separation of 2/3 of the data
for training and the remaining for testing) without sampling
step. Using the same data and same evaluation method without
sampling before training, two models identified by BioDiscML,
on the 3,967 successfully generated models, shared the same
best average AUC score. We chose the one having the best
MCC on repeated holdout, a model based on a Hoeffding Tree
(parameters: infogain split, Naive Bayes adaptive leaf prediction
strategy, grace period of 200, tie threshold of 0.05) optimized by
AUC. This model provided an average AUC of 99.3% (0.632+
rule at 0.047) using 10 genes discovered by FSSBSE. This is an
improvement of AUC of about 11%. Both AucPR modes AucL
and AucEN selected in comparison 30 and 22 genes resp. The
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FIGURE 4 | Boxplot of AUCs bootstrapping over 100 iterations of most

performant AucPR methods called AucL (AucPR with Lasso) and AucEN

(AucPR with ElasticNet), vs. BioDiscML most performant model

(Hoeffding Tree).

benchmark comparison of AUCs is reported in Figure 4. The
model identified by BioDiscML has a much better performance
in terms of average AUC and variance over bootstrapping.
GSEA was not performed since this dataset didn’t provided
gene identifiers.

BioDiscML vs. RGIFE
RGIFE is an heuristic method intending to identify reduced
panels of biomarkers with highly predictive performance. It first
ranks features by their contribution to the generated models,
and dynamically removes blocks of features. It also introduces
a concept called soft-fail, which considers an iteration successful
despite a performance drop within a tolerance level and specific
circumstances. We evaluated the performance of BioDiscML
on three datasets tested in RGIFE, including Central Nervous
System (CNS), DLBCL, and Prostate Cancer datasets. On the
10 tested datasets by RGIFE, the three selected datasets showed
accuracies around 60–70% for 10 CV, while BioDiscML identified
models and signatures providing prediction performance close
to perfection (100% accuracy) with lower number of features.
Performances are reported in Table 2, where, for each dataset,
we identified two models found by BioDiscML. To provide a
fair comparison with the RGIFE manuscript we selected models
having the best 10 CV accuracy (with best bootstrapping accuracy
and lowest number of features in case of models’ performance
equality), which ended with 100% accurate models. But since
this typical measure approach tends to be over-optimistic on
the real performance of the models and because overfitting was
suspected, we also reported models having the best bootstrapping
accuracy. Obtained models show accuracies between 10CV and
Bootstrapping more consistent, hence showing models are stable.
In any case, 10CV accuracy was always better with BioDiscML
results. The two signatures found for CNS dataset presented
an overlap of five genes, and a merged list of the signatures
show several GSEA significant hits related medulloblastoma

and other cancers. For BLBCL dataset, no genes overlapped
the two signatures, and we found significant hits related to
dehydrogenase activity in the GSEA analysis on the merged list
of the signatures, which has a link with follicular lymphoma to
diffuse large B-cell lymphoma (Montoto et al., 2007). Finally, the
prostate cancer signatures showed no overlap either, but GSEA
analysis on the merge lists show several hits related to this cancer.

In terms of computing performances, on a same server
containing four Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz
(48 threads), BioDiscML runtime was 28, 387, and 393min on
CNS, DLBCL, and Prostate Cancer datasets resp., and generated
5,751, 6,479, and 6,408 models resp., without exceeding 16 GB
memory usage. In comparison, computation time reported by
RGIFE in their Supplementary Data show ranges about 180–
400 min.

DISCUSSION

A Simplified but Customizable Automated
ML Tool
BioDiscML tool has been developed to enhance biomarker
discovery using an exhaustive ML approach and propose
automation of ML steps to perform such task. A large variety
of algorithms is available and combinations of strategies
are countless if we consider the hyperparameters of all
classifiers and feature selection algorithms. This complexity
is a barrier to non-expert users attempting to use ML
to analyze their data. Thus, we designed BioDiscML to
simplify ML steps without penalizing the performance,
such as using fast and optimal feature ranking algorithms
and feature search methods, limit the number of features
after feature ranking, and establish predefined classifiers
hyperparameters to reduce computing time. Although
editable in BioDiscML configuration file, these intentional
limitations provide researchers a program that generate results
without intervention within a few hours of calculation on a
recent computer.

A Sampling Procedure to Avoid Overtfitted
Models
BioDiscML implements a sampling step to assess the non-
overfitting and the good performance of identified models
and signatures, where it splits the dataset into two stratified
(class balancing is preserved) random parts. The program
also accepts a second input file as a test dataset, as long as
it is in the same format as the train set. In case of very
limited instances, it is possible to skip the sampling operation,
although not recommended because of the risk to not detect
overfitted models. A reasonable number of instances (i.e.,
samples) should be provided to BioDiscML, else it is expected
to obtain models with low performances. For example, we
estimate that a highly heterogeneous dataset, such as prostate
or breast cancer data, should contain at least half-hundred
patients per class, while a dataset based on a study involving
cloned living species could be limited to half a dozen individuals
per class.
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TABLE 2 | Performances of RGIFE vs. BioDiscML measured by accuracy obtained through 10-fold cross validation (10CV_ACC) and bootstrapping (BS_ACC).

RGIFE BioDiscML

Dataset 10CV_ACC #Features Model 10CV_ACC BS_ACC #Features Model Search Criterion

CNS 77.1 Not reported KNN 100 80.7 12 A2DE BSSFSE AUC

93.3 98.6 11 HT FSSBSE AUC

DLBCL 68 9 RF 100 93 6 A1DE FSSBSE MCC

98.7 98.3 6 NB FSSBSE AUC

Prostate cancer 95.2 158 SVM 100 91 12 VFI BSSFSE ACC

99 95.7 10 NB FSSBSE AUC

Classifiers evaluated by RGIFE were K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM). Most performant classifiers identified by BioDiscML were

Average two Dependance Estimators (A2DE), Hoeffding Tree (HT), Average 1 Dependance Estimators (A2DE), Voting Features Intervals (VFI), and Naive Bayes (NB). Hyperparameters

are described in Supplementary Data. Various criteria were used, including AUC, MCC, and FDR, and two feature search BSSFSE and FSSBSE. The signatures are shown in

Supplementary Data.

Feature Selection Procedures in
BioDiscML Are Fast and Scalable
Omics datasets are generally composed of a thousands of
features. To simplify input datasets and save computation
time BioDiscML implements a feature ranking and dimension
reduction procedure. Many approaches exist (Chandrashekar
and Sahin, 2014) and most are applicable to biological problems
(Saeys et al., 2007), but we choose to only implement Information
Gain (Krishnaiah and Kanal, 1982) for classification, and ReliefF
(Robnik-Sikonja and Kononenko, 1997), for regression, since
they are fast and highly scalable univariate tests (Saeys et al.,
2007). Information Gain shown very good performance on
biological data (Li et al., 2004, 2011; Abusamra, 2013), as for
ReliefF (Marchiori et al., 2005; He and Yu, 2010; Wang et al.,
2016). Besides, their ranking capability provides an easy way
to eliminate redundant, non-informative and noisy information,
hence our choice to provide only those in BioDiscML.

BioDiscML Uses All Available Classifiers
From a Widely Accepted and Efficient ML
Library
There is a plethora of ML algorithms specialized in classification
(i.e., categorical class) and regression (i.e., continuous class).
BioDiscML coversmany of them but can also bemanually limited
to the most known and widely applied in biomedical research for
the development of predictive models such as Random Forest,
Decision Trees, Rules, Naive Bayes, Artificial Neural Networks,
Bayesian Networks and Support Vector Machines. They all
resulted in effective and accurate decision-making (Jagga and
Gupta, 2015). But the final models created with these classifiers
in various studies were all delivered after an exhaustive search
work. BioDiscML aims to reduce this search time by providing
the models adapted to user datasets. All ML algorithms are
provided by an advanced freely available ML library toolkit,
called Weka. Besides this library, various ML libraries exist, such
as SciKit-Learn (Nelli, 2015) (written in Python) and packages
in R (Lesmeister, 2017). BioDiscML implements Weka library
for various reasons, including its wide usage in computational
biology (Gewehr et al., 2007; Bendl et al., 2014; Bernardi et al.,

2015; Arganda-Carreras et al., 2017; Chicco, 2017; Alves et al.,
2018), its high citation rate (at August 2018) and its highly
versatile object-oriented language JAVA (e.g., easy to parallelize,
multi-platform compatibility, GUI integration, generally already
installed on clients, etc.), which is much faster (Fourment and
Gillings, 2008) and scalable than Python or R. Finally, the user
can use Weka GUI (graphical interface) to explore BioDiscML
results, generate ROC curves or try other combinations of
classifiers by hand. For example, the output files generated by
BioDiscML are compatible with Weka and can be loaded in
its GUI.

A Combination of Model Search and
Feature Search Procedures to Identify
Highly Predictive Models
BioDiscML combines the model search and the feature search
together to identify biomarker signatures. Using the various
search methods (i.e., stepwise and top k) and optimized criteria,
each model is associated to a signature of features. Forward
and backward stepwise search methods return signatures that
are optimized on the classifier and the criterion. Note that
the backward stepwise search approaches (BSS, BSSFSE) are
not the usual “backward elimination” used in the literature
(Sutter and Kalivas, 1993) for variables selection since it would
be computationally expensive here. Instead, backward selection
starts from worst features and will generally return performant
models only when most of features have a relatively good
univariate information gain or ReliefF score. The signature then
reveals a combination of biomarkers which, associated together
in a model, provide a highly predictive value of the class.

To assess the overall performance of the models, their
robustness and the absence of overfitting, various well-known
evaluation methods (Arlot and Celisse, 2010) have been
implemented in BioDiscML, because some may not be adapted
to all situations. For example, for biomedical studies which
generally produce a low number of patients (i.e., instances),
bootstrapping is a good alternative to sampling (Chen et al.,
2002) (i.e., split in train and test set, involving waste of data).
Besides, it is known that k-fold cross validation tends to deliver
over-optimist performances (Smith et al., 2014). To facilitate the
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choice of the best models, we provide many performance metrics
that can be averaged over all evaluation methods. BioDiscML
also provide an ensemble classifier based on a voting system to
include many models with different signatures. This method is
known to provide better predictive performance than could be
obtained from any of the constituent learning algorithms alone
(Polikar, 2006).

Signature Interpretation Is Still a Challenge
A biologist will want to interpret and validate in silico the
signature, since there is an obvious relation between the identified
biomarkers in a signature and the predicted class (e.g., outcome).
To perform such task, there exist many Gene Set Enrichment
Analysis (GSEA) tools, such as ToppGene suite (Chen et al.,
2009) or Enrichr (Kuleshov et al., 2016). These GSEA tools
will provide a characterization of signature and confirm to the
biologist if the signature has a biological meaning with the
original study from which the dataset have been generated. Some
more extensive literature searches may providemore insights and
help linking the signatures’ features with the predicted class.

Moreover, in some cases, the biologist, based on its experience
and knowledge, may not find the biomarkers he expects in the
signatures. This is a consequence of the feature search procedure
which produces highly optimized signatures. This optimization
tends to ignore all redundant features that could potentially help
the biological interpretation of the biomarkers related to the
class. To overcome this issue, BioDiscML retrieves all correlated
features that could have been excluded during the feature subset
selection andmodel search procedure. It is important to note that
adding signature’s perfectly correlated features (100% correlated)
to the model will maintain its performance. At the opposite,
it is expected to have a slight performance drop when adding
“almost-correlated” features (95–99% correlation), which can be
tested by training and evaluation of the model with the added
correlated features.

Some scientific visualization tools would have probably been
welcome in BioDiscML, but JAVA visualization libraries are
rare. However, to overcome this lack, BioDiscML generates a
subset of the input dataset containing only the sample values of
the signature’ features. This subset in comma-separated values
format can be loaded easily in other visualization software such
as Microsoft Excel, Orange (Demšar et al., 2013), RapidMiner
(Hofmann, 2016), or R (Gardener, 2012) to generate heatmaps
or boxplots.

BioDiscML Exhaustive Approach
Outperforms Recently Published Tools
We benchmarked BioDiscML against recent tools proposing
different approaches to discover biomarker signatures.
Benchmarks showed that BioDiscML outperforms these state-
of-art methods using same datasets. Because of its exhaustive
approach, it was able to identify one or more models with smaller
signatures providing much better prediction performances.
We also demonstrated in the case of the stem cell dataset that
BioDiscML signature contained different genes but similar
ontologies than the MINT signature, with a better prediction
performance. A GSEA also showed that the BioDiscML
signature had much more biological evidence, denoted by the

occurrence of stem cells topics in the co-expression databases.
The genes in the BioDiscML signatures were also present in
neurodegenerative diseases, highlighting the link of these genes
with the neuronal system, supported by evidence of efficient
stem cell-based therapies for neural repair (Volkman and Offen,
2017). For the other benchmarked datasets which contained gene
references, the GSEA analyses also showed supporting evidences
assessing the biological relation between the genes found in
the signatures and the biological experiment from where they
were produced.

It is important to note that short but still very predictive
model’ signatures can be extended as an “enriched” signature
which include the correlated genes. These enriched signatures
may increase the accuracy of the signature, but more importantly
they can help to better understand the biological meaning of
the model. On the MINT dataset, BioDiscML showed a perfect
prediction on the test set with the enriched signature and
retrieved more ontologies.

Finally, in this paper we benchmarked BioDiscML only on
transcriptomics datasets from microarray data provided by the
tools we tested. But BioDiscML showed also good performances
in other omics datasets tested in other contexts (data not shown).

Performant Models Identified in Minutes
BioDiscML computing performances are highly dependent on
the size of the input dataset and the available processors. To
generate all models implemented in the software, it requires a
few hours of computation. However, it is possible to restrict
BioDiscML to a specific list of algorithms, hence reducing the
computation time to seconds or minutes. It is also possible
to extract the best signatures and models produced since the
beginning of BioDiscML execution at any time. We have
prioritized the training of themost common and fastest classifiers
to propose a large number of computed models shortly after
starting BioDiscML. More complex models, such as Multilayer
perceptrons, are set in low priority. More running time will
simply increase the probability to obtain a better model. The
user is informed in the command line output the progression of
the program (i.e., the number of models trained and remaining
to train). Finally, BioDiscML can be stopped at any moment,
especially if the user is not interested to let BioDiscML train
complex classifiers.

CONCLUSIONS

This paper introduces BioDiscML, dedicated to identify optimal
combination of biomarkers (i.e., features) and machine learning
models to predict measured outcomes. It provides a user-
friendly and powerful solution to researchers in the medical
field looking to identify predictive features, essential to the
development of personalized medicine approaches and research
of new therapeutic targets. This software has the benefit to exploit
a large number of machine learning classifiers within a fully
automated process combined with data pre-processing, hence
facilitating the work of a non-machine learning experts audience.
Expert users have also the possibility to configure advanced
options. BioDiscML is a great opportunity to reduce biomarkers
search time, by revealing the most adapted classifiers to a given
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dataset and even proposes new algorithms poorly explored in the
literature that could have a great potential to classify biological
data. Otherwise, although this program has been tested with
omics data and proven its better performances compared to
recent computational biology tools created for the same purpose,
it is compatible with any other non-biological data. Finally,
the ML library used in BioDiscML is highly maintained, hence
enabling convenient additions of newly implemented algorithms
in future versions.

DATA AND SOFTWARE AVAILABILITY

BioDiscML software project and the datasets analyzed during the
current study are available at https://github.com/mickaelleclercq/
BioDiscML under GPL-3.0 license. This software written in JAVA
is compatible with the main operating systems. Windows, Linux
and Mac.
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