C. Alonso-blanco and B. Mendez-vigo, Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis, Curr Opin Plant Biol, vol.18, pp.37-43, 2014.

J. A. Bac-molenaar, D. Vreugdenhil, C. Granier, and J. J. Keurentjes, Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci, J Exp Bot, vol.66, issue.18, p.4585414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231273

M. Bouteille, G. Rolland, C. Balsera, O. Loudet, and B. Muller, Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis, PLoS ONE, vol.7, issue.2, p.3286473, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190638

Y. Geng, R. Wu, C. W. Wee, F. Xie, X. Wei et al., A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis, Plant Cell, vol.25, issue.6, p.3723617, 2013.

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nat Genet, vol.37, issue.5, pp.501-507, 2005.

X. Zhang, R. J. Hause, and J. O. Borevitz, Natural Genetic Variation for Growth and Development Revealed by High-Throughput Phenotyping in Arabidopsis thaliana. G3 (Bethesda), vol.2, p.3276187, 2012.

P. Clauw, F. Coppens, D. Beuf, K. Dhondt, S. Van-daele et al., Leaf responses to mild drought stress in natural variants of Arabidopsis, Plant Physiol, vol.167, issue.3, p.4348775, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01607038

N. J. Provart, J. Alonso, S. M. Assmann, D. Bergmann, S. M. Brady et al., 50 years of Arabidopsis research: highlights and future directions, New Phytol, vol.209, issue.3, pp.921-965, 2016.

N. Gonzalez and D. Inze, Molecular systems governing leaf growth: from genes to networks, J Exp Bot, vol.66, issue.4, pp.1045-54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01607253

H. Vanhaeren, N. Gonzalez, F. Coppens, L. De-milde, T. Van-daele et al., Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana, Elife, vol.3, p.4014012, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01601538

C. Trontin, S. Tisné, L. Bach, and O. Loudet, What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants?, Curr Opin Plant Biol, vol.14, issue.3, pp.225-256, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000536

C. Bazakos, M. Hanemian, C. Trontin, J. M. Jimenez-gomez, and O. Loudet, New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype, Annu Rev Plant Biol, vol.68, pp.435-55, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607849

C. Alonso-blanco, M. G. Aarts, L. Bentsink, J. J. Keurentjes, M. Reymond et al., What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell, vol.21, pp.1877-96, 2009.

M. A. Grillo, C. Li, M. Hammond, L. Wang, and D. W. Schemske, Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana, New Phytol, vol.197, issue.4, pp.1321-1352, 2013.

P. A. Salome, K. Bomblies, R. A. Laitinen, L. Yant, R. Mott et al., Genetic architecture of flowering-time variation in Arabidopsis thaliana, Genetics, vol.188, issue.2, pp.421-454, 2011.

D. Tabas-madrid, B. Mendez-vigo, N. Arteaga, A. Marcer, A. Pascual-montano et al., Genomewide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse

A. Walter, H. Scharr, F. Gilmer, R. Zierer, K. A. Nagel et al., Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species, New Phytol, vol.174, issue.2, p.17388907, 2007.

L. Barboza, S. Effgen, C. Alonso-blanco, R. Kooke, J. J. Keurentjes et al., Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley, Proc Natl Acad Sci, vol.110, issue.39, p.3785751, 2013.

K. Bomblies, J. Lempe, P. Epple, N. Warthmann, C. Lanz et al., Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants, PLoS Biol, vol.5, issue.9, p.236, 2007.

O. Loudet, T. P. Michael, B. T. Burger, L. Mette, C. Mockler et al., A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana, Proc Natl Acad Sci, vol.105, issue.44, pp.17193-17201, 2008.

J. Masle, S. R. Gilmore, and G. D. Farquhar, The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature, vol.436, issue.7052, pp.866-70, 2005.

C. F. Mouchel, G. C. Briggs, and C. S. Hardtke, Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root, Genes Dev, vol.18, issue.6, pp.700-714, 2004.

S. Sureshkumar, M. Todesco, K. Schneeberger, R. Harilal, S. Balasubramanian et al., A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana, Science, vol.323, issue.5917, pp.1060-1063, 2009.

M. Todesco, S. Balasubramanian, T. T. Hu, M. B. Traw, M. Horton et al., Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana, Nature, vol.465, issue.7298, pp.632-638, 2010.

C. Trontin, S. Kiani, J. A. Corwin, K. Hematy, J. Yansouni et al., A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana, Plant J, vol.78, issue.1, pp.121-154, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204062

J. Kroymann and T. Mitchell-olds, Epistasis and balanced polymorphism influencing complex trait variation, Nature, vol.435, issue.7038, pp.95-103, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02104679

A. E. Prinzenberg, H. Barbier, D. E. Salt, B. Stich, and M. Reymond, Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis, Plant Physiol, vol.154, issue.3, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203874

Z. H. Lemmon and J. F. Doebley, Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL, Genetics, vol.198, issue.1, p.4174946, 2014.

M. Simon, O. Loudet, S. Durand, A. Bérard, D. Brunel et al., QTL mapping in five new large RIL populations of Arabidopsis thaliana genotyped with consensus SNP markers, Genetics, vol.178, pp.2253-64, 2008.

O. Loudet, . Marchadier, and T. Hanemian, Raw phenotypic data obtained on the Arabidopsis RILs with the Phenoscope robots, vol.1, 2018.

D. Vlad, F. Rappaport, M. Simon, and O. Loudet, Gene transposition causing natural variation for growth in Arabidopsis thaliana, PLoS Genet, vol.6, issue.5, p.1000945, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203934

O. Loudet, . Marchadier, and T. Hanemian, Genotypic description of the near isogenic lines (HIFs) used for QTL validation and significance of the observed segregating phenotypes, p.1, 2018.

J. F. Botto, C. Alonso-blanco, I. Garzaron, R. A. Sanchez, and J. J. Casal, The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis, Plant Physiol, vol.133, issue.4, p.300712, 2003.

S. El-din-el-assal, A. -. Blanco, C. Peeters, A. J. Raz, V. Koornneef et al., A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2, Nat Genet, vol.29, issue.4, pp.435-475, 2001.

V. B. Tognetti, O. Van-aken, K. Morreel, K. Vandenbroucke, B. Van-de-cotte et al., Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance, Plant Cell, vol.22, issue.8, 2010.

H. Nijveen, W. Ligterink, J. J. Keurentjes, O. Loudet, J. Long et al., AraQTL-workbench and archive for systems genetics in Arabidopsis thaliana, Plant J, vol.89, issue.6, pp.1225-1260, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01532690

O. Meyerhoff, K. Muller, M. R. Roelfsema, A. Latz, B. Lacombe et al., AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold, Planta, vol.222, issue.3, pp.418-445, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086608

E. D. Vincill, A. E. Clarin, J. N. Molenda, and E. P. Spalding, Interacting glutamate receptor-like proteins in Phloem regulate lateral root initiation in Arabidopsis, Plant Cell, vol.25, issue.4, p.3663269, 2013.

F. A. Cubillos, O. Stegle, C. Grondin, M. Canut, S. Tisne et al., Extensive cis-regulatory variation robust to environmental perturbation in Arabidopsis, Plant Cell, vol.26, issue.11, pp.4298-310, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204141

W. M. Waterworth, J. Kozak, C. M. Provost, C. M. Bray, K. J. Angelis et al., DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks, BMC Plant Biol, vol.9, 2009.

P. Central and P. , , p.2708163

H. Zhao, S. Lu, R. Li, T. Chen, H. Zhang et al., The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes, J Exp Bot, vol.66, issue.21, p.4623693, 2015.

P. Clauw, F. Coppens, A. Korte, D. Herman, B. Slabbinck et al., Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture, Plant Cell, vol.28, pp.2417-2451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602195

J. A. Bac-molenaar, C. Granier, J. J. Keurentjes, and D. Vreugdenhil, Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis, Plant Cell Environ, vol.39, issue.1, pp.88-102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635370

R. Kooke, W. Kruijer, R. Bours, F. Becker, A. Kuhn et al., Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis, Plant Physiol, vol.170, issue.4, p.4825126, 2016.

M. Meijon, S. B. Satbhai, T. Tsuchimatsu, and W. Busch, Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis, Nat Genet, vol.46, issue.1, pp.77-81, 2013.

L. Rishmawi, J. Buhler, B. Jaegle, M. Hulskamp, and M. Koornneef, Quantitative trait loci controlling leaf venation in Arabidopsis, Plant Cell Environ, vol.40, issue.8, pp.1429-1470, 2017.

P. J. Flood, W. Kruijer, S. K. Schnabel, R. Van-der-schoor, H. Jalink et al., Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability, Plant Methods, vol.12, p.4754911, 2016.

X. Zhang, C. Huang, D. Wu, F. Qiao, W. Li et al., High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth, Plant Physiol, vol.173, issue.3, p.5338669, 2017.

M. M. Muraya, J. Chu, Y. Zhao, A. Junker, C. Klukas et al., Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping, Plant J, vol.89, issue.2, pp.366-80, 2017.

C. R. Moore, L. S. Johnson, I. Y. Kwak, M. Livny, K. W. Broman et al., High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response, Genetics, vol.195, issue.3, pp.1077-86, 2013.

P. Central and P. ,

J. P. Mojica, J. Mullen, J. T. Lovell, J. G. Monroe, J. R. Paul et al., Genetics of water use physiology in locally adapted Arabidopsis thaliana, Plant Sci, vol.251, pp.12-22, 2016.

G. Blanc, A. Charcosset, B. Mangin, A. Gallais, and L. Moreau, Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize, Theor Appl Genet, vol.113, issue.2, pp.206-230, 2006.

L. M. Nice, B. J. Steffenson, G. L. Brown-guedira, E. D. Akhunov, C. Liu et al., Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild x Cultivated Barley, Genetics, vol.203, issue.3, p.4937491, 2016.

J. Yu, J. B. Holland, M. D. Mcmullen, and E. S. Buckler, Genetic design and statistical power of nested association mapping in maize, Genetics, vol.178, issue.1, pp.539-51, 2008.

Z. W. Brenton, E. A. Cooper, M. T. Myers, R. E. Boyles, N. Shakoor et al., A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy, Genetics, vol.204, issue.1, p.5012387, 2016.

Y. F. Huang, D. Madur, V. Combes, C. L. Ky, D. Coubriche et al., The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations, Genetics, vol.186, issue.1, p.2940303, 2010.

A. J. Studer and J. F. Doebley, Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1, Genetics, vol.188, issue.3, p.3176526, 2011.

E. Sanchez-bermejo, W. Zhu, C. Tasset, H. Eimer, S. Sureshkumar et al., Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis, Plant Physiol, vol.169, issue.1, p.4577429, 2015.

D. Marais, D. L. Auchincloss, L. C. Sukamtoh, E. Mckay, J. K. Logan et al., Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response, Proc Natl Acad Sci, vol.111, issue.7, pp.2836-2877, 2014.

L. Jakobson, L. Vaahtera, K. Toldsepp, M. Nuhkat, C. Wang et al., Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling, PLoS Biol, vol.14, issue.12, 2016.

T. P. Michael, F. Jupe, F. Bemm, S. T. Motley, J. P. Sandoval et al., High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell, Nat Commun, vol.9, issue.1, p.5803254, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626875

M. Civelek and A. J. Lusis, Systems genetics approaches to understand complex traits, Nat Rev Genet, vol.15, issue.1, p.3934510, 2014.

D. J. De-koning and L. M. Mcintyre, Back to the Future: Multiparent Populations Provide the Key to Unlocking the Genetic Basis of Complex Traits, Genetics, vol.206, issue.2, p.5494722, 2017.

R. She and D. F. Jarosz, Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change, Cell, vol.172, issue.3, p.5788306, 2018.

J. B. Fernandes, M. Seguela-arnaud, C. Larcheveque, A. H. Lloyd, and R. Mercier, Unleashing meiotic crossovers in hybrid plants, Proc Natl Acad Sci USA, vol.115, issue.10, p.5877974, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628879

H. I. Mckhann, C. Camilleri, A. Berard, T. Bataillon, J. L. David et al., Nested core collections maximizing genetic diversity in Arabidopsis thaliana, Plant J, vol.38, issue.1, pp.193-202, 2004.

O. Loudet, V. Gaudon, A. Trubuil, and F. Daniel-vedele, Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family, Theor Appl Genet, vol.110, issue.4, p.15678326, 2005.

R. Koumproglou, T. M. Wilkes, P. Townson, X. Y. Wang, J. Beynon et al., STAIRS: a new genetic resource for functional genomic studies of Arabidopsis, Plant J, vol.31, issue.3, pp.355-64, 2002.

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, issue.7, pp.889-90, 2003.

D. Arends, P. Prins, R. C. Jansen, and K. W. Broman, R/qtl: high-throughput multiple QTL mapping, Epub 2010/10/23, vol.26, p.2982156, 2010.

K. W. Broman, R/qtlcharts: interactive graphics for quantitative trait locus mapping, Genetics, vol.199, issue.2, p.4317647, 2015.

M. F. Jourjon, S. Jasson, J. Marcel, B. Ngom, and B. Mangin, MCQTL: multi-allelic QTL mapping in multi-cross design, Bioinformatics, vol.21, issue.1, pp.128-158, 2005.

F. A. Cubillos, J. Yansouni, H. Khalili, S. Balzergue, S. Elftieh et al., Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures, BMC Genomics, vol.13, issue.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01189696