S. Padilla, J. Cowden, D. E. Hinton, B. Yuen, S. Law et al., Use of medaka in toxicity testing, Curr Protoc Toxicol, vol.1, p.10, 2009.

C. Ton, Y. Lin, and C. Willett, Zebrafish as a model for developmental neurotoxicity testing, Birth Defects Res A Clin Mol Teratol, vol.76, pp.553-567, 2006.

Y. Nishimura, S. Murakami, Y. Ashikawa, S. Sasagawa, N. Umemoto et al., Zebrafish as a systems toxicology model for developmental neurotoxicity testing, Congenit Anom, vol.55, pp.1-16, 2015.

G. A. Buznikov, L. A. Nikitina, V. V. Bezuglov, J. M. Lauder, S. Padilla et al., An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae, Environ Health Perspect, vol.109, pp.651-661, 2001.

G. A. Buznikov, L. A. Nikitina, L. M. Raki?, I. Milo?evi?, V. V. Bezuglov et al., The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic interventions and a comparison with the monoamine depleter, reserpine, Brain Res Bull, vol.74, pp.221-231, 2007.

C. Hicks, D. Sorocco, and M. Levin, Automated analysis of behavior: a computer-controlled system for drug screening and the investigation of learning, J Neurobiol, vol.66, pp.977-990, 2006.

M. Leung, P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke et al., Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology, Toxicol Sci, vol.106, pp.5-28, 2008.

M. Bradley, J. Rutkiewicz, K. Mittal, K. Fernie, and N. Basu, In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens, Neurotoxicol Teratol, vol.52, pp.228-235, 2015.

J. Rutkiewicz, M. Bradley, K. Mittal, and N. Basu, Methylmercury egg injections: part 2-pathology, neurochemistry, and behavior in the avian embryo and hatchling, Ecotoxicol Environ Saf, vol.93, pp.77-86, 2013.

B. I. Escher and J. Hermens, Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ Sci Technol, vol.36, pp.4201-4217, 2002.

R. Ashauer and T. Jager, Physiological modes of action across species and toxicants: the key to predictive ecotoxicology, Environ Sci Process Impacts, vol.20, pp.48-57, 2018.

E. Jablonka and M. J. Lamb, The changing concept of epigenetics, Ann N Y Acad Sci, vol.981, pp.82-96, 2002.

V. Bollati and A. Baccarelli, Environmental epigenetics, Heredity, vol.105, pp.105-112, 2010.

F. Perera and J. Herbstman, Prenatal environmental exposures, epigenetics, and disease, Reprod Toxicol, vol.31, pp.363-373, 2011.

C. Guerrero-bosagna, M. Settles, B. Lucker, and M. K. Skinner, Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome, PLoS ONE, p.0, 2010.

M. Hemberger, W. Dean, and W. Reik, Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal, Nat Rev Mol Cell Biol, vol.10, pp.526-537, 2009.

E. Li, Chromatin modification and epigenetic reprogramming in mammalian development, Nat Rev Genet, vol.3, pp.662-673, 2002.

W. Reik, W. Dean, and J. Walter, Epigenetic reprogramming in mammalian development, Science, vol.293, pp.1089-1093, 2001.

S. Feng, S. E. Jacobsen, and W. Reik, Epigenetic reprogramming in plant and animal development, Science, vol.330, pp.622-627, 2010.

M. E. Potok, D. A. Nix, T. J. Parnell, and B. R. Cairns, Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern, Cell, vol.153, pp.759-772, 2013.

A. Fellous, R. Earley, and F. Silvestre, DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus, Ecol Evol, vol.8, p.6016, 2018.

A. Banik, D. Kandilya, S. Ramya, W. Stünkel, Y. S. Chong et al., Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring, 2017.

J. Feng, S. Fouse, and G. Fan, Epigenetic regulation of neural gene expression and neuronal function, Pediatr Res, vol.61, pp.58-63, 2007.

M. Raciti and S. Ceccatelli, Epigenetic mechanisms in developmental neurotoxicity, Neurotoxicol Teratol, vol.66, pp.94-101, 2018.

M. Ideta-otsuka, K. Igarashi, M. Narita, and Y. Hirabayashi, Epigenetic toxicity of environmental chemicals upon exposure during development-bisphenol A and valproic acid may have epigenetic effects, Food Chem Toxicol, vol.109, pp.812-816, 2017.

K. Thirtamara-rajamani, S. Doherty-lyons, C. Bolden, D. Willis, C. Hoffman et al., Prenatal and early-life exposure to high-level diesel exhaust particles leads to increased locomotor activity and repetitive behaviors in mice: diesel exhaust particles and autism, Autism Res, vol.6, pp.248-257, 2013.

S. Yokota, K. Mizuo, N. Moriya, S. Oshio, I. Sugawara et al., Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice, Neurosci Lett, vol.449, pp.38-41, 2009.

S. Yokota, N. Moriya, M. Iwata, M. Umezawa, S. Oshio et al., Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice, J Toxicol Sci, vol.38, pp.13-23, 2013.

S. Yokota, H. Takashima, R. Ohta, Y. Saito, T. Miyahara et al., Nasal instillation of nanoparticle-rich diesel exhaust particles slightly affects emotional behavior and learning capability in rats, J Toxicol Sci, vol.36, pp.267-276, 2011.

J. Shaw, J. D. Judy, A. Kumar, P. Bertsch, M. Wang et al., Incorporating transgenerational epigenetic inheritance into ecological risk assessment frameworks, Environ Sci Technol, vol.51, pp.9433-9445, 2017.

T. Klengel, B. G. Dias, and K. J. Ressler, Models of intergenerational and transgenerational transmission of risk for psychopathology in mice, Neuropsychopharmacology, vol.41, pp.219-231, 2016.

A. L. Knecht, L. Truong, M. T. Simonich, and R. L. Tanguay, Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish, Neurotoxicol Teratol, vol.59, pp.27-34, 2017.

. Carvan-mj-3rd, T. A. Kalluvila, R. H. Klingler, J. K. Larson, M. Pickens et al., Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish, PLoS ONE, vol.12, p.176155, 2017.

M. Aschner, Neurotoxic mechanisms of fish-borne methylmercury, Environ Toxicol Pharmacol, vol.12, pp.101-104, 2002.

S. L. Beauvais, S. B. Jones, J. T. Parris, S. K. Brewer, and E. E. Little, Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss), Ecotoxicol Environ Saf, vol.49, pp.84-90, 2001.

J. Bush, S. Moffatt, and C. Dunn, Even the birds round here cough': stigma, air pollution and health in Teesside, Health Place, vol.7, pp.47-56, 2001.

S. Llacuna, A. Gorriz, C. Sanpera, and J. Nadal, Metal accumulation in three species of passerine birds (Emberiza cia, Parus major, and Turdus merula) subjected to air pollution from a coal-fired power plant, Arch Environ Contam Toxicol, vol.28, pp.298-303, 1995.

R. Pilsner, J. Lazarus, A. L. Nam, D. Letcher, R. J. Sonne et al., Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife, Mol Ecol, vol.19, pp.307-314, 2010.

D. O. Carpenter, Effects of metals on the nervous system of humans and animals, Int J Occup Med Environ Health, vol.14, pp.209-218, 2001.

N. Basu, J. Head, D. Nam, J. R. Pilsner, M. J. Carvan et al., Effects of methylmercury on epigenetic markers in three model species: mink, chicken and yellow perch, Comp Biochem Physiol C: Toxicol Pharmacol, vol.157, pp.322-327, 2013.

K. Harris, N. J. Bartlett, and V. K. Lloyd, Daphnia as an emerging epigenetic model organism, Genet Res Int, vol.2012, p.147892, 2012.

A. Sih, A. Bell, and J. C. Johnson, Behavioral syndromes: an ecological and evolutionary overview, Trends Ecol Evol, vol.19, pp.372-378, 2004.

K. Verhoeven, B. M. Vonholdt, and V. L. Sork, Epigenetics in ecology and evolution: what we know and what we need to know, Mol Ecol, vol.25, pp.1631-1638, 2016.

S. P. Porterfield, Thyroidal dysfunction and environmental chemicals-potential impact on brain development, Environ Health Perspect, vol.108, issue.3, pp.433-438, 2000.

T. Colborn, Neurodevelopment and endocrine disruption, Environ Health Perspect, vol.112, pp.944-949, 2004.

A. Brouwer, M. P. Longnecker, L. S. Birnbaum, J. Cogliano, P. Kostyniak et al., Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs, Environ Health Perspect, vol.107, pp.639-649, 1999.

T. Modesto, H. Tiemeier, R. P. Peeters, V. Jaddoe, A. Hofman et al., Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children, JAMA Pediatr, vol.169, pp.838-845, 2015.

G. C. Román, A. Ghassabian, J. J. Bongers-schokking, V. Jaddoe, A. Hofman et al., Association of gestational maternal hypothyroxinemia and increased autism risk, Ann Neurol, vol.74, pp.733-742, 2013.

Å. Bergman, J. J. Heindel, S. Jobling, K. Kidd, T. R. Zoeller et al., State of the science of endocrine disrupting chemicals 2012: summary for decision-makers. World Health Organization, 2013.

D. Crews and A. C. Gore, Life imprints: living in a contaminated world, Environ Health Perspect, vol.119, pp.1208-1210, 2011.

K. Van-der-ven, K. D. Moens, L. N. Hummelen, P. V. Van-remortel, P. Maras et al., Effects of the antidepressant mianserin in zebrafish: molecular markers of endocrine disruption, Chemosphere, vol.65, pp.1836-1845, 2006.

I. Ferraz-da-silva, L. C. Freitas-lima, J. B. Graceli, and L. Rodrigues, Organotins in neuronal damage, brain function, and behavior: a short review, Front Endocrinol, vol.8, p.366, 2017.

Z. Du, J. Xia, X. Sun, X. Li, C. Zhang et al., A novel nuclear xenobiotic receptors (AhR/PXR/CAR)-mediated mechanism of DEHP-induced cerebellar toxicity in quails (Coturnix japonica) via disrupting CYP enzyme system homeostasis, Environ Pollut, vol.226, pp.435-443, 2017.

R. T. Zoeller and K. M. Crofton, Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals, Neurotoxicology, vol.21, pp.935-945, 2000.

C. A. Frye, E. Bo, G. Calamandrei, L. Calzà, F. Dessì-fulgheri et al., Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems, J Neuroendocrinol, vol.24, pp.144-159, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00750171

M. A. Campinho, J. Saraiva, C. Florindo, and D. M. Power, Maternal thyroid hormones are essential for neural development in zebrafish, Mol Endocrinol, vol.28, pp.1136-1149, 2014.

F. Wang, M. Fang, D. E. Hinton, M. Chernick, S. Jia et al., Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47, Chemosphere, vol.198, pp.342-350, 2018.

Q. Wang, N. Lai, X. Wang, Y. Guo, P. Lam et al., Bioconcentration and transfer of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae, Environ Sci Technol, vol.49, pp.5123-5132, 2015.

X. Chen, C. Huang, X. Wang, J. Chen, C. Bai et al., BDE-47 disrupts axonal growth and motor behavior in developing zebrafish, Aquat Toxicol, vol.120, pp.35-44, 2012.

A. M. Stewart, O. Braubach, J. Spitsbergen, R. Gerlai, and A. V. Kalueff, Zebrafish models for translational neuroscience research: from tank to bedside, Trends Neurosci, vol.37, pp.264-278, 2014.

A. V. Kalueff, A. M. Stewart, and R. Gerlai, Zebrafish as an emerging model for studying complex brain disorders, Trends Pharmacol Sci, vol.35, pp.63-75, 2014.

R. J. Denver, S. Pavgi, and Y. B. Shi, Thyroid hormone-dependent gene expression program for Xenopus neural development, J Biol Chem, vol.272, pp.8179-8188, 1997.

M. Ehrsam, S. A. Knutie, and J. R. Rohr, The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues, Environ Toxicol Chem, vol.35, pp.2239-2244, 2016.

T. Balbi, S. Franzellitti, R. Fabbri, M. Montagna, E. Fabbri et al., Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: effects on gene transcription, Environ Pollut, vol.218, pp.996-1004, 2016.

A. Matsushima, K. Ryan, Y. Shimohigashi, and I. A. Meinertzhagen, An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: hatching rates and swimming behavior alter in a dose-dependent manner, Environ Pollut, vol.173, pp.257-263, 2013.

A. Mendes and J. J. , The endocrine disrupters: a major medical challenge, Food Chem Toxicol, vol.40, pp.781-788, 2002.

H. Segner, K. Caroll, M. Fenske, C. R. Janssen, G. Maack et al., Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project, Ecotoxicol Environ Saf, vol.54, pp.302-314, 2003.

A. Ward, M. Thistle, K. Ghandi, and S. Currie, Copper interacts with nonylphenol to cancel the effect of nonylphenol on fish chemosensory behaviour, Aquat Toxicol, vol.142, pp.203-209, 2013.

K. Fent, Ecotoxicological effects at contaminated sites, Toxicology, vol.205, pp.223-240, 2004.

K. Schmidt, G. Staaks, S. Pflugmacher, and C. Steinberg, Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behavior, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio), Aquat Toxicol, vol.71, pp.49-59, 2005.

J. E. Casida, Pest toxicology: the primary mechanisms of pesticide action, Chem Res Toxicol, vol.22, pp.609-619, 2009.

J. A. Timbrell, Principles of biochemical toxicology, 2008.

J. R. Bloomquist, Ion channels as targets for insecticides, Annu Rev Entomol, vol.41, pp.163-190, 1996.

T. Narahashi, J. M. Frey, K. S. Ginsburg, and M. L. Roy, Sodium and GABAactivated channels as the targets of pyrethroids and cyclodienes, Toxicol Lett, vol.64, pp.429-436, 1992.

J. E. Casida, Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects, Arch Insect Biochem Physiol, vol.22, pp.13-23, 1993.

J. E. Casida, Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects, Annu Rev Entomol, vol.63, pp.125-144, 2018.

T. Blacquière, G. Smagghe, C. Van-gestel, and V. Mommaerts, Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment, Ecotoxicology, vol.21, pp.973-992, 2012.

N. Simon-delso, V. Amaral-rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon et al., Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites, Environ Sci Pollut Res Int, vol.22, pp.5-34, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641649

A. Kretschmann, R. Ashauer, K. Hitzfeld, P. Spaak, J. Hollender et al., Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna, Environ Sci Technol, vol.45, pp.4980-4987, 2011.

J. De-bruijn and J. Hermens, Qualitative and quantitative modelling of toxic effects of organophosphorous compounds to fish, Sci Total Environ, vol.109, pp.441-455, 1991.

J. Keizer, D. '-agostino, G. Nagel, R. Volpe, T. Gnemi et al., Enzymological differences of AChE and diazinon hepatic metabolism: correlation of in vitro data with the selective toxicity of diazinon to fish species, Sci Total Environ, vol.171, pp.213-220, 1995.

A. Kretschmann, R. Ashauer, T. G. Preuss, P. Spaak, B. I. Escher et al., Toxicokinetic model describing bioconcentration and biotransformation of diazinon in Daphnia magna, Environ Sci Technol, vol.45, pp.4995-5002, 2011.

R. Ashauer, A. Hintermeister, I. Caravatti, A. Kretschmann, and B. I. Escher, Toxicokinetic and toxicodynamic modeling explains carry-over toxicity from exposure to diazinon by slow organism recovery, Environ Sci Technol, vol.44, pp.3963-3971, 2010.

R. Ashauer, I. O'connor, and B. I. Escher, Toxic mixtures in time-the sequence makes the poison, Environ Sci Technol, vol.51, pp.3084-3092, 2017.

A. Bal-price, H. T. Hogberg, K. M. Crofton, M. Daneshian, R. E. Fitzgerald et al., Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity, 2018.

M. De-groot, R. Westerink, and M. Dingemans, Don't judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing, Toxicol Sci, vol.132, pp.1-7, 2013.

J. Legradi, M. Van-pomeren, A. Dahlberg, and J. Legler, Effects of hydroxylated polybrominated diphenyl ethers in developing zebrafish are indicative of disruption of oxidative phosphorylation, Int J Mol Sci, 2017.

P. I. Racz, M. Wildwater, M. Rooseboom, E. Kerkhof, R. Pieters et al., Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds, Toxicol In Vitro, vol.44, pp.11-16, 2017.

R. Van-der-oost, G. Sileno, M. Suárez-muñoz, M. T. Nguyen, H. Besselink et al., SIMONI (Smart Integrated Monitoring) as a novel bioanalytical strategy for water quality assessment: part I-model design and effect-based trigger values, Environ Toxicol Chem, vol.36, pp.2385-2399, 2017.

A. S. Monzel, L. M. Smits, K. Hemmer, S. Hachi, E. L. Moreno et al., Derivation of human midbrain-specific organoids from neuroepithelial stem cells, Stem Cell Rep, vol.8, pp.1144-1154, 2018.

A. M. Tukker, M. Van-groot, F. Wijnolts, E. Kasteel, L. Hondebrink et al., Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons, ALTEX, vol.33, pp.261-271, 2016.

A. S. Monzel, L. M. Smits, K. Hemmer, S. Hachi, E. L. Moreno et al., Derivation of human midbrain-specific organoids from neuroepithelial stem cells, Stem Cell Rep, vol.8, pp.1144-1154, 2017.

L. Maltby, N. Blake, T. Brock, and P. J. Van-den-brink, Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems, Environ Toxicol Chem, vol.24, pp.379-388, 2005.

M. B. Colovi?, D. Z. Krsti?, T. D. Lazarevi?-pa?ti, A. M. Bond?i?, and V. M. Vasi?, Acetylcholinesterase inhibitors: pharmacology and toxicology, Curr Neuropharmacol, vol.11, pp.315-335, 2013.

M. L. Olsen, B. S. Khakh, S. N. Skatchkov, M. Zhou, C. J. Lee et al., New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling, J Neurosci, vol.35, pp.13827-13835, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02626798

M. Aschner, S. Ceccatelli, M. Daneshian, E. Fritsche, N. Hasiwa et al., Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use, Altex, vol.34, pp.49-74, 2017.

Y. Pei, J. Peng, M. Behl, N. S. Sipes, K. R. Shockley et al., Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes, Brain Res, vol.1638, pp.57-73, 2016.

S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain et al., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat Biotechnol, vol.27, pp.275-280, 2009.

K. Hayess, C. Riebeling, R. Pirow, M. Steinfath, D. Sittner et al., The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro, Toxicology, vol.314, pp.135-147, 2013.

X. Wu, X. Yang, A. Majumder, R. Swetenburg, F. T. Goodfellow et al., From the cover: astrocytes are protective against chlorpyrifos developmental neurotoxicity in human pluripotent stem cell-derived astrocyte-neuron cocultures, Toxicol Sci, vol.157, pp.410-420, 2017.

S. Singh, A. Srivastava, V. Kumar, A. Pandey, D. Kumar et al., Stem cells in neurotoxicology/developmental neurotoxicology: current scenario and future prospects, Mol Neurobiol, vol.53, pp.6938-6949, 2016.

H. E. Wheeler, C. Wing, S. M. Delaney, M. Komatsu, and M. E. Dolan, Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells, PLoS ONE, vol.10, p.118020, 2015.

K. R. Ryan, O. Sirenko, F. Parham, J. Hsieh, E. F. Cromwell et al., Neurite outgrowth in human induced pluripotent stem cellderived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity, Neurotoxicology, vol.53, pp.271-281, 2016.

R. Meamar, L. Dehghani, and F. Karamali, Toxicity effects of methamphetamine on embryonic stem cell-derived neuron, J Res Med Sci, vol.17, pp.470-474, 2012.

W. S. Cao, J. C. Livesey, and R. F. Halliwell, An evaluation of a human stem cell line to identify risk of developmental neurotoxicity with antiepileptic drugs, Toxicol In Vitro, vol.29, pp.592-599, 2015.

K. Hubbard, P. Beske, M. Lyman, and P. Mcnutt, Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons, J Vis Exp, 2015.

R. A. Rocha, J. V. Gimeno-alcañiz, R. Martín-ibañez, J. M. Canals, D. Vélez et al., Arsenic and fluoride induce neural progenitor cell apoptosis, Toxicol Lett, vol.203, pp.237-244, 2011.

N. Gjorevski, A. Ranga, and M. P. Lutolf, Bioengineering approaches to guide stem cell-based organogenesis, Development, vol.141, pp.1794-1804, 2014.

C. Lee, R. M. Bendriem, W. W. Wu, and R. Shen, 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders, J Biomed Sci, vol.24, p.59, 2017.

S. F. Mccomish and M. A. Caldwell, Generation of defined neural populations from pluripotent stem cells, Philos Trans R Soc Lond B Biol Sci, 2018.

M. Frega, S. Van-gestel, L. K. Van-der-raadt, J. Keller, J. Van-rhijn et al., Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays, J Vis Exp, 2017.

J. Ogorevc, S. Orehek, and P. Dov?, Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species, J Anim Sci Biotechnol, vol.7, p.10, 2016.

D. H. Betts and I. C. Tobias, Canine pluripotent stem cells: are they ready for clinical applications?, Front Vet Sci, vol.2, p.41, 2015.

R. Verma, J. Liu, M. K. Holland, P. Temple-smith, M. Williamson et al., Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids, Bioresrourc Open Access, vol.2, pp.72-76, 2013.

K. Ramaswamy, W. Y. Yik, X. Wang, E. N. Oliphant, W. Lu et al., Derivation of induced pluripotent stem cells from orangutan skin fibroblasts, BMC Res Notes, vol.8, p.577, 2015.

A. Arini, K. Mittal, and N. Basu, A systems biology approach to advancing adverse outcome pathways for risk assessment, pp.31-41, 2018.

A. Arini, K. Mittal, P. Dornbos, J. Head, J. Rutkiewicz et al., A cell-free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species, Environ Toxicol Chem, vol.36, pp.3081-3090, 2017.

N. Basu, C. A. Ta, A. Waye, J. Mao, M. Hewitt et al., Pulp and paper mill effluents contain neuroactive substances that potentially disrupt neuroendocrine control of fish reproduction, Environ Sci Technol, vol.43, pp.1635-1641, 2009.

A. Arini, J. E. Cavallin, J. P. Berninger, R. Marfil-vega, M. Mills et al., In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern, Environ Pollut, vol.211, pp.9-19, 2016.

K. B. Tierney, D. H. Baldwin, T. J. Hara, P. S. Ross, N. L. Scholz et al., Olfactory toxicity in fishes, Aquat Toxicol, vol.96, pp.2-26, 2010.

D. Ottoson, Analysis of the electrical activity of the olfactory epithelium, Acta Physiol Scand Suppl, vol.35, pp.1-83, 1955.

J. Caprio, Peripheral filters and chemoreceptor cells in fishes. Sensory biology of aquatic animals, pp.313-338, 1988.

W. Carr, The molecular nature of chemical stimuli in the aquatic environment, Sensory biology of aquatic animals, pp.3-27, 1988.

P. Zhu, O. Fajardo, J. Shum, Z. Schärer, Y. Friedrich et al., Highresolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device, Nat Protoc, vol.7, pp.1410-1425, 2012.

R. Tabor, E. Yaksi, J. Weislogel, and R. W. Friedrich, Processing of odor mixtures in the zebrafish olfactory bulb, J Neurosci, vol.24, pp.6611-6620, 2004.

H. Baier and S. Korsching, Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals, J Neurosci, vol.14, pp.219-230, 1994.

R. W. Friedrich and M. T. Wiechert, Neuronal circuits and computations: pattern decorrelation in the olfactory bulb, FEBS Lett, vol.588, pp.2504-2513, 2014.

Y. Sato, N. Miyasaka, and Y. Yoshihara, Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish, J Neurosci, vol.27, pp.1606-1615, 2007.

L. R. Saraiva, G. Ahuja, I. Ivandic, A. S. Syed, J. C. Marioni et al., Molecular and neuronal homology between the olfactory systems of zebrafish and mouse, Sci Rep, vol.5, p.11487, 2015.

A. Packard, N. Schnittke, R. Romano, S. Sinha, and J. E. Schwob, DeltaNp63 regulates stem cell dynamics in the mammalian olfactory epithelium, J Neurosci, vol.31, pp.8748-8759, 2011.

N. Schnittke, D. B. Herrick, B. Lin, J. Peterson, J. H. Coleman et al., Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium, Proc Natl Acad Sci, vol.112, pp.5068-5077, 2015.

W. M. Grant and C. C. Thomas, Toxicology of the eye, third edition, J Toxicol Cutaneous Ocul Toxicol. Taylor & Francis, vol.6, pp.155-156, 1987.

D. A. Fox, Retinal and visual system: occupational and environmental toxicology, Handb Clin Neurol, vol.131, pp.325-340, 2015.

J. I. Matsui, A. L. Egana, T. R. Sponholtz, A. R. Adolph, and J. E. Dowling, Effects of ethanol on photoreceptors and visual function in developing zebrafish, Invest Ophthalmol Vis Sci, vol.47, pp.4589-4597, 2006.

M. Mela, S. Cambier, N. Mesmer-dudons, A. Legeay, S. R. Grötzner et al., Methylmercury localization in Danio rerio retina after trophic and subchronic exposure: a basis for neurotoxicology, Neurotoxicology, vol.31, pp.448-453, 2010.

M. Mela, S. R. Grötzner, A. Legeay, N. Mesmer-dudons, J. Massabuau et al., Morphological evidence of neurotoxicity in retina after methylmercury exposure, Neurotoxicology, vol.33, pp.407-415, 2012.

C. L. Tanan, D. F. Ventura, J. M. De-souza, S. R. Grotzner, M. Mela et al., Effects of mercury intoxication on the response of horizontal cells of the retina of thraira fish (Hoplias malabaricus), Braz J Med Biol Res, vol.39, pp.987-995, 2006.

C. Quintaneiro, A. Soares, and M. S. Monteiro, Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos, Chemosphere, vol.194, pp.595-601, 2018.

N. M. Roy, B. Carneiro, and J. Ochs, Glyphosate induces neurotoxicity in zebrafish, Environ Toxicol Pharmacol, vol.42, pp.45-54, 2016.

S. R. Marigoudar, D. Mohan, A. Nagarjuna, and P. Karthikeyan, Biomarker and histopathological responses of Lates calcarifer on exposure to sub lethal concentrations of chlorpyrifos, Ecotoxicol Environ Saf, vol.148, pp.327-335, 2018.

K. T. Kirla, K. J. Groh, A. E. Steuer, M. Poetzsch, R. K. Banote et al., From the cover: zebrafish larvae are insensitive to stimulation by cocaine: importance of exposure route and toxicokinetics, Toxicol Sci, vol.154, pp.183-193, 2016.

I. Perlman, The electroretinogram: ERG in Webvision: the organization of the retina and visual system, 2018.

M. W. Seeliger, A. Rilk, and S. Neuhauss, Ganzfeld ERG in zebrafish larvae, Doc Ophthalmol, vol.104, pp.57-68, 2002.

S. Schuster, P. Machnik, and W. Schulze, Behavioral assessment of the visual capabilities of fish, Encyclop Fish Physiol, vol.1, pp.143-149, 2011.

S. E. Brockerhoff, Measuring the optokinetic response of zebrafish larvae, Nat Protoc, vol.1, pp.2448-2451, 2006.

C. M. Maurer, Y. Huang, and S. Neuhauss, Application of zebrafish oculomotor behavior to model human disorders, Rev Neurosci, vol.22, pp.5-16, 2011.

S. Neuhauss, Behavioral genetic approaches to visual system development and function in zebrafish, J Neurobiol, vol.54, pp.148-160, 2003.

P. S. Steyger, L. L. Cunningham, C. R. Esquivel, K. L. Watts, and J. Zuo, Editorial: cellular mechanisms of ototoxicity, Front Cell Neurosci, vol.12, p.75, 2018.

A. B. Coffin and J. Ramcharitar, Chemical ototoxicity of the fish inner ear and lateral line, Adv Exp Med Biol, vol.877, pp.419-437, 2016.

P. L. Mcneil, D. Boyle, T. B. Henry, R. D. Handy, and K. A. Sloman, Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio), Aquat Toxicol, vol.152, pp.318-323, 2014.

F. A. Olivari, P. P. Hernández, and M. L. Allende, Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae, Brain Res, vol.1244, pp.1-12, 2008.

A. A. Bhandiwad, D. G. Zeddies, D. W. Raible, E. W. Rubel, and J. A. Sisneros, Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay, J Exp Biol, vol.216, pp.3504-3513, 2013.

L. Buck, M. J. Winter, W. S. Redfern, and T. T. Whitfield, Ototoxin-induced cellular damage in neuromasts disrupts lateral line function in larval zebrafish, Hear Res, vol.284, pp.67-81, 2012.

X. Liu, J. Lin, Y. Zhang, N. Guo, and Q. Li, Sound shock response in larval zebrafish: a convenient and high-throughput assessment of auditory function, Neurotoxicol Teratol, vol.66, pp.1-7, 2018.

A. H. Groneberg, U. Herget, S. Ryu, D. Marco, and R. J. , Positive taxis and sustained responsiveness to water motions in larval zebrafish, Front Neural Circuits, vol.9, p.9, 2015.

R. Olive, S. Wolf, A. Dubreuil, V. Bormuth, G. Debrégeas et al., Rheotaxis of larval zebrafish: behavioral study of a multi-sensory process, Front Syst Neurosci, vol.10, p.14, 2016.

P. Oteiza, I. Odstrcil, G. Lauder, R. Portugues, and F. Engert, A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish, Nature, vol.547, pp.445-448, 2017.

D. Stengel, F. Zindler, and T. Braunbeck, An optimized method to assess ototoxic effects in the lateral line of zebrafish, 2017.

, Comp Biochem Physiol C, vol.193, pp.18-29

M. Froehlicher, A. Liedtke, K. J. Groh, S. Neuhauss, H. Segner et al., Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies, Aquat Toxicol, vol.95, pp.307-319, 2009.

F. Ladich and R. R. Fay, Auditory evoked potential audiometry in fish, Rev Fish Biol Fish, vol.23, pp.317-364, 2013.

D. Stengel, S. Wahby, and T. Braunbeck, In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos, Environ Sci Pollut Res Int, vol.25, pp.4066-4084, 2018.

C. Grienberger and A. Konnerth, Imaging calcium in neurons, Neuron, vol.73, pp.862-885, 2012.

S. L. Renninger and M. B. Orger, Two-photon imaging of neural population activity in zebrafish, Methods, vol.62, pp.255-267, 2013.

C. M. Berg-maurer, C. A. Trivedi, J. H. Bollmann, D. Marco, R. J. Ryu et al., The severity of acute stress is represented by increased synchronous activity and recruitment of hypothalamic CRH neurons, J Neurosci, vol.36, pp.3350-3362, 2016.

D. Bene, F. Wyart, and C. , Optogenetics: a new enlightenment age for zebrafish neurobiology, Dev Neurobiol, vol.72, pp.404-414, 2012.

G. R. Garcia, P. D. Noyes, and R. L. Tanguay, Advancements in zebrafish applications for 21st century toxicology, Pharmacol Ther, vol.161, pp.11-21, 2016.

D. Kokel, J. Bryan, C. Laggner, R. White, C. Cheung et al., Rapid behavior-based identification of neuroactive small molecules in the zebrafish, Nat Chem Biol, vol.6, pp.231-237, 2010.

P. D. Noyes, D. E. Haggard, G. D. Gonnerman, and R. L. Tanguay, Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants, Toxicol Sci, vol.145, pp.177-195, 2015.

D. M. Reif, L. Truong, D. Mandrell, S. Marvel, G. Zhang et al., High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes, Arch Toxicol, vol.90, pp.1459-1470, 2016.

R. Triebskorn, S. Adam, H. Casper, W. Honnen, M. Pawert et al., Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms, Ecotoxicology, vol.11, pp.451-465, 2002.

A. Viarengo, E. Ponzano, F. Dondero, and R. Fabbri, A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs, Mar Environ Res, vol.44, pp.69-84, 1997.

I. Mukhopadhyay, A. Nazir, D. K. Saxena, and D. K. Chowdhuri, Heat shock response: hsp70 in environmental monitoring, J Biochem Mol Toxicol, vol.17, pp.249-254, 2003.

J. Rank, K. K. Lehtonen, J. Strand, and M. Laursen, DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark, Aquat Toxicol, vol.84, pp.50-61, 2007.

M. C. Fossi, Nondestructive biomarkers in ecotoxicology, Environ Health Perspect, vol.102, pp.49-54, 1994.

B. Allner, M. Hennies, C. F. Lerche, T. Schmidt, K. Schneider et al., Kinetic determination of vitellogenin induction in the epidermis of cyprinid and perciform fishes: evaluation of sensitive enzyme-linked immunosorbent assays, Environ Toxicol Chem, vol.35, pp.2916-2930, 2016.

E. Küster and R. Altenburger, Comparison of cholin-and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl exposure, Biomarkers, vol.11, pp.341-354, 2006.

A. Whitehead, S. L. Anderson, A. Ramirez, and B. W. Wilson, Cholinesterases in aquatic biomonitoring: assay optimization and species-specific characterization for a California native fish, Ecotoxicology, vol.14, pp.597-606, 2005.

A. Kretschmann, R. Ashauer, J. Hollender, and B. I. Escher, Toxicokinetic and toxicodynamic model for diazinon toxicity-mechanistic explanation of differences in the sensitivity of Daphnia magna and Gammarus pulex, Environ Toxicol Chem, vol.31, pp.2014-2022, 2012.

C. Barriga-vallejo, C. Aguilera, J. Cruz, J. Banda-leal, D. Lazcano et al., Ecotoxicological biomarkers in multiple tissues of the neotenic Ambystoma spp. for a non-lethal monitoring of contaminant exposure in wildlife and captive populations, Water Air Soil Pollut Focus, vol.228, p.415, 2017.

A. T. Troiano and C. E. Grue, Plasma cholinesterase activity as a biomarker for quantifying exposure of green sturgeon to carbaryl following applications to control burrowing shrimp in Washington State, Environ Toxicol Chem, vol.35, pp.2003-2015, 2016.

G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Feather-stone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem Pharmacol, vol.7, pp.88-95, 1961.

P. A. Neale and B. I. Escher, Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay, Environ Toxicol Chem, vol.32, pp.1526-1534, 2013.

P. Mineau and . Service, Cholinesterase-inhibiting insecticides: their impact on wildlife and the environment, 1991.

F. Gagné and C. Blaise, Effects of municipal effluents on serotonin and dopamine levels in the freshwater mussel Elliptio complanata, Comp Biochem Physiol C, vol.136, pp.117-125, 2003.

F. Gagné, P. Cejka, C. André, R. Hausler, and C. Blaise, Neurotoxicological effects of a primary and ozonated treated wastewater on freshwater mussels exposed to an experimental flow-through system, Comp Biochem Physiol C, vol.146, pp.460-470, 2007.

L. Page, Y. Vosges, M. Servili, A. Brion, F. Kah et al., Neuroendocrine effects of endocrine disruptors in teleost fish, J Toxicol Environ Health B Crit Rev, vol.14, pp.370-386, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00750686

A. Waye and V. L. Trudeau, Neuroendocrine disruption: more than hormones are upset, J Toxicol Environ Health B Crit Rev, vol.14, pp.270-291, 2011.

M. Gesto, A. Tintos, J. L. Soengas, and J. M. Míguez, beta-Naphthoflavone and benzo(a)pyrene alter dopaminergic, noradrenergic, and serotonergic systems in brain and pituitary of rainbow trout (Oncorhynchus mykiss), Ecotoxicol Environ Saf, vol.72, pp.191-198, 2009.

P. D. Robinson, Behavioural toxicity of organic chemical contaminants in fish: application to ecological risk assessments (ERAs), Can J Fish Aquat Sci, vol.66, pp.1179-1188, 2009.

H. G. Van-der-geest, G. D. Greve, E. M. De-haas, B. B. Scheper, M. Kraak et al., Hydropsyche angustipennis to copper and diazinon, Environ Toxicol Chem, vol.18, pp.1965-1971, 1999.

D. Kokel and R. T. Peterson, Using the zebrafish photomotor response for psychotropic drug screening, Methods Cell Biol, vol.105, pp.517-524, 2011.

N. Klüver, M. König, J. Ortmann, R. Massei, A. Paschke et al., Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds, Environ Sci Technol, vol.49, pp.7002-7011, 2015.

A. Valente, K. Huang, R. Portugues, and F. Engert, Ontogeny of classical and operant learning behaviors in zebrafish, Learn Mem, vol.19, pp.170-177, 2012.

X. H. Wang, C. L. Souders, Y. H. Zhao, and C. J. Martyniuk, Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat, Toxicol Lett, vol.283, pp.13-20, 2018.

C. Vignet, L. Menach, K. Lyphout, L. Guionnet, T. Frère et al., Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish-part II: behavior, Environ Sci Pollut Res Int, vol.21, pp.13818-13832, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110845

C. Vignet, V. M. Trenkel, A. Vouillarmet, G. Bricca, M. Bégout et al., Changes in brain monoamines underlie behavioural disruptions after zebrafish diet exposure to polycyclic aromatic hydrocarbons environmental mixtures, Int J Mol Sci, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595462

J. Hellou, K. Cheeseman, E. Desnoyers, D. Johnston, M. Jouvenelle et al., A non-lethal chemically based approach to investigate the quality of harbour sediments, Sci Total Environ, vol.389, pp.178-187, 2008.

L. Sohn, R. J. Brodie, G. Couldwell, E. Demmons, and J. Sturve, Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus, Ecotoxicology, vol.27, pp.900-907, 2018.

B. B. Castro, C. Silva, I. Macário, B. Oliveira, F. Gonçalves et al., Feeding inhibition in Corbicula fluminea (O.F. Muller, 1774) as an effect criterion to pollutant exposure Perspectives for ecotoxicity screening and refinement of chemical control, Aquat Toxicol, vol.196, pp.25-34, 2018.

S. Villa, D. Nica, V. Pescatore, T. Bellamoli, F. Miari et al., Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae), Environ Pollut, vol.238, pp.130-139, 2018.

J. Chevalier, E. Harscoët, M. Keller, P. Pandard, J. Cachot et al., Exploration of Daphnia behavioral effect profiles induced by a broad range of toxicants with different modes of action, Environ Toxicol Chem, vol.34, pp.1760-1769, 2015.
URL : https://hal.archives-ouvertes.fr/ineris-01855086

C. Araújo, M. Moreira-santos, and R. Ribeiro, Active and passive spatial avoidance by aquatic organisms from environmental stressors: a complementary perspective and a critical review, Environ Int, vol.92, pp.405-415, 2016.

N. Rastetter and A. Gerhardt, Continuous monitoring of avoidance behaviour with the earthworm Eisenia fetida, J Soils Sediments, 2017.

M. R. Mitzel, N. Lin, J. K. Whalen, and N. Tufenkji, Chlamydomonas reinhardtii displays aversive swimming response to silver nanoparticles, Environ Sci Nano, vol.4, pp.1328-1338, 2017.

P. Martin and P. Bateson, Measuring behaviour: an introductory guide, 1993.

M. Langer-jaesrich, C. Kienle, H. Köhler, and G. A. , Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos, Ecotoxicology, vol.19, pp.1294-1301, 2010.

E. R. Hunting, C. Mulder, M. Kraak, A. M. Breure, and W. Admiraal, Effects of copper on invertebrate-sediment interactions, Environ Pollut, vol.180, pp.131-135, 2013.

A. Gerhardt and E. Svensson, Monitoring of behavioral patterns of aquatic organisms with an impedance conversion technique, Environ Intematlonal, vol.20, pp.209-219, 1994.

A. Gerhardt, Biomonitoring of polluted water reviews on actual topics environmental research forum, TTP Switzerland, pp.95-118, 1999.

J. W. Harrison, L. Beecraft, and R. Smith, Implications of irradiance exposure and non-photochemical quenching for multi-wavelength (bbe FluoroProbe) fluorometry, J Photochem Photobiol B, vol.189, pp.36-48, 2018.

M. Lechelt, W. Blohm, B. Kirschneit, M. Pfeiffer, E. Gresens et al., Monitoring of surface water by ultrasensitive Daphnia toximeter, Environ Toxicol, vol.15, pp.390-400, 2000.

L. Jou, S. Lin, B. Chen, W. Chen, and C. Liao, Synthesis and measurement of valve activities by an improved online clam-based behavioral monitoring system, Comput Electron Agric, vol.90, pp.106-118, 2013.

A. Ragas, L. Teuschler, L. Posthuma, and C. Cowan, Human and ecological risk assessment of chemical mixtures, Mixture toxicity, pp.157-212, 2010.

A. Kortenkamp and R. Altenburger, Toxicity from combined exposure to chemicals, Mixture toxicity, pp.95-119, 2010.

T. Backhaus and M. Faust, Predictive environmental risk assessment of chemical mixtures: a conceptual framework, Environ Sci Technol, vol.46, pp.2564-2573, 2012.

S. Kim, J. K. Lee, S. Lee, J. Kim, J. Kim et al., Perfluorooctane sulfonic acid exposure increases cadmium toxicity in early life stage of zebrafish, Danio rerio, Environ Toxicol Chem, vol.30, pp.870-877, 2011.

E. Fritsche, H. Alm, J. Baumann, L. Geerts, H. Håkansson et al., Literature review on in vitro and alternative developmental neurotoxicity (DNT) testing methods, 2015.

, , vol.12

P. Grandjean and P. J. Landrigan, Neurobehavioural effects of developmental toxicity, Lancet Neurol, vol.13, pp.330-338, 2014.

R. A. Relyea, A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities, Oecologia, vol.159, pp.363-376, 2009.

N. L. Scholz, N. K. Truelove, J. S. Labenia, D. H. Baldwin, and T. K. Collier, Doseadditive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides, Environ Toxicol Chem, vol.25, pp.1200-1207, 2006.

J. W. Deneer, Toxicity of mixtures of pesticides in aquatic systems, Pest Manag Sci, vol.56, pp.516-520, 2000.

C. A. Laetz, D. H. Baldwin, T. K. Collier, V. Hebert, J. D. Stark et al., The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ, Health Perspect, vol.117, p.348, 2009.

P. A. Pape-lindstrom and M. J. Lydy, Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model, Environ Toxicol Chem, vol.16, pp.2415-2420, 1997.

J. V. Harbers, M. Huijbregts, L. Posthuma, and D. Van-de-meent, Estimating the impact of high-production-volume chemicals on remote ecosystems by toxic pressure calculation, Environ Sci Technol, vol.40, pp.1573-1580, 2006.

D. De-zwart and L. Posthuma, Complex mixture toxicity for single and multiple species: proposed methodologies, Environ Toxicol Chem, vol.24, pp.2665-2676, 2005.

. Van-der-oost, R. Postma, and J. Pldzdol, Ecologische Sleutelfactor Toxiciteit. Deel 1: methode voor het in beeld brengen van de toxiciteit, 2016.

D. Barceló, Effect-directed analysis of key toxicants in european river basins: a review, Environ Sci Pollut Res, vol.14, issue.9, pp.30-38, 2007.

W. Brack, K. Schirmer, L. Erdinger, and H. Hollert, Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments, Environ Toxicol Chem, vol.24, pp.2445-2458, 2005.

M. Hecker and H. Hollert, Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges, Environ Sci Pollut Res Int, vol.16, pp.607-613, 2009.

G. Qu, J. Shi, T. Wang, J. Fu, Z. Li et al., Identification of tetrabromobisphenol A diallyl ether as an emerging neurotoxicant in environmental samples by bioassay-directed fractionation and HPLC-APCI-MS/MS, Environ Sci Technol, vol.45, pp.5009-5016, 2011.

A. Bal-price, F. Pistollato, M. Sachana, S. K. Bopp, S. Munn et al., Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods, Toxicol Appl Pharmacol, 2018.

X. Ouyang, P. Leonards, Z. Tousova, J. Slobodnik, J. De-boer et al., Rapid screening of acetylcholinesterase inhibitors by effectdirected analysis using LC × LC fractionation, a high throughput in vitro assay, and parallel identification by time of flight mass spectrometry, Anal Chem, vol.88, pp.2353-2360, 2016.

L. Stütz, S. C. Weiss, W. Schulz, W. Schwack, and R. Winzenbacher, Selective two-dimensional effect-directed analysis with thin-layer chromatography, J Chromatogr A, vol.1524, pp.273-282, 2017.

O. E. Buenafe, A. Orellana-paucar, J. Maes, H. Huang, X. Ying et al., Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models, ACS Chem Neurosci, vol.4, pp.1479-1487, 2013.

D. Paolo, C. Seiler, T. Keiter, S. Hu, M. Muz et al., The value of zebrafish as an integrative model in effect-directed analysis-a review, Environ Sci Eur, vol.27, issue.8, 2015.

A. M. Orellana-paucar, A. Serruys, T. Afrikanova, J. Maes, D. Borggraeve et al., Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models, Epilepsy Behav, vol.24, pp.14-22, 2012.

S. Fabel, R. Niessner, and M. G. Weller, Effect-directed analysis by highperformance liquid chromatography with gas-segmented enzyme inhibition, J Chromatogr A, vol.1099, pp.103-110, 2005.

K. Ingkaninan, C. M. De-best, R. Van-der-heijden, A. Hofte, and B. Karabatak, High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products, J Chromatogr A, vol.872, pp.61-73, 2000.

F. S. Collins, G. M. Gray, and J. R. Bucher, Toxicology. Transforming environmental health protection, Science, vol.319, pp.906-907, 2008.

U. S. Epa, EBI Web Team, vol.3, 2015.

, The PubChem Project, vol.3, 2018.

A. M. Richard, R. S. Judson, K. A. Houck, C. M. Grulke, P. Volarath et al., ToxCast chemical landscape: paving the road to 21st century toxicology, Chem Res Toxicol, vol.29, pp.1225-1251, 2016.

P. Valdivia, M. Martin, W. R. Lefew, J. Ross, K. A. Houck et al., Multiwell microelectrode array recordings detect neuroactivity of ToxCast compounds, Neurotoxicology, vol.44, pp.204-217, 2014.

C. L. Frank, J. P. Brown, K. Wallace, W. R. Mundy, and T. J. Shafer, From the cover: developmental neurotoxicants disrupt activity in cortical networks on microelectrode arrays: results of screening 86 compounds during neural network formation, Toxicol Sci, vol.160, pp.121-135, 2017.

D. F. Tardiff, N. T. Jui, V. Khurana, M. A. Tambe, M. L. Thompson et al., Yeast reveal a "druggable" Rsp5/Nedd4 network that ameliorates ?-synuclein toxicity in neurons, Science, vol.342, pp.979-983, 2013.

D. F. Tardiff and S. Lindquist, Phenotypic screens for compounds that target the cellular pathologies underlying Parkinson's disease, Drug Discov Today Technol, vol.10, pp.121-128, 2013.

Y. Xi, M. Yu, R. Godoy, G. Hatch, L. Poitras et al., Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon, Dev Dyn, vol.240, pp.2539-2547, 2011.

. Parkinson-disease, -. Secondary-mesh, and . Ncbi, , vol.3, 2018.

. Pubchem, PubChem Classification Browser, vol.3, 2018.

U. S. Epa and . Ord, Downloadable Computational Toxicology Data, 2016.

, Chemistry Dashboard| Home, vol.3, 2018.

A. J. Williams, C. M. Grulke, J. Edwards, A. D. Mceachran, K. Mansouri et al., The CompTox Chemistry Dashboard: a community data resource for environmental chemistry, J Cheminform, vol.9, p.61, 2017.

I. Shah, J. Liu, R. S. Judson, R. S. Thomas, and G. Patlewicz, Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information, Regul Toxicol Pharmacol, vol.79, pp.12-24, 2016.

C. Dashboard, , vol.3, 2018.

N. Baker, T. Knudsen, and A. Williams, Abstract Sifter: a comprehensive front-end system to PubMed, 2017.

C. Gallampois, E. L. Schymanski, M. Krauss, N. Ulrich, M. Bataineh et al., Multicriteria approach to select polyaromatic river mutagen candidates, Environ Sci Technol, vol.49, pp.2959-2968, 2015.

C. Ruttkies, E. L. Schymanski, S. Wolf, J. Hollender, and S. Neumann, Met-Frag relaunched: incorporating strategies beyond in silico fragmentation, J Cheminform, 2016.

. Metfrag, , vol.3, 2018.

, The future of natural products research and mass spectrometry, GNPS, vol.3, 2018.

M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, N. Garg et al., Sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nat Biotechnol, vol.34, pp.828-837, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371824

G. T. Ankley, R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hornung et al., Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment, Environ Toxicol Chem, vol.29, pp.730-741, 2010.

K. H. Watanabe, M. E. Andersen, N. Basu, . Carvan-mj-3rd, K. M. Crofton et al., Defining and modeling known adverse outcome pathways: domoic acid and neuronal signaling as a case study, Environ Toxicol Chem, vol.30, pp.9-21, 2011.

. Aopwiki, , vol.3, 2018.

M. Sachana, S. Munn, and A. Bal-price, Adverse outcome pathway on chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities, 2016.

M. Sachana, S. Munn, and A. Bal-price, Adverse Outcome Pathway on binding of agonists to ionotropic glutamate receptors in adult brain leading to excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment, OECD Series Adverse Outcome Pathways, 2016.

P. Gong, H. Hong, and E. J. Perkins, Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers, Biomark Med, vol.9, pp.1225-1239, 2015.

A. Bal-price, P. J. Lein, K. P. Keil, S. Sethi, T. Shafer et al., Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity, Neurotoxicology, vol.59, pp.240-255, 2017.

P. Friedman, K. Watt, E. D. Hornung, M. W. Hedge, J. M. Judson et al., Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the toxcast phase I and II chemical libraries, Toxicol Sci, vol.151, pp.160-180, 2016.

C. A. Lalone, D. L. Villeneuve, J. Wu-smart, R. Y. Milsk, K. Sappington et al., Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death, Sci Total Environ, vol.584, pp.751-775, 2017.

C. L. Russom, C. A. Lalone, D. L. Villeneuve, and G. T. Ankley, Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality, Environ Toxicol Chem, vol.33, pp.2157-2169, 2014.

K. A. Fay, D. L. Villeneuve, C. A. Lalone, Y. Song, K. E. Tollefsen et al., Practical approaches to adverse outcome pathway development and weight-of-evidence evaluation as illustrated by ecotoxicological case studies, Environ Toxicol Chem, vol.36, pp.1429-1449, 2017.

D. Knapen, M. M. Angrish, M. C. Fortin, I. Katsiadaki, M. Leonard et al., Adverse outcome pathway networks i: development and applications, Environ Toxicol Chem, 2018.

C. A. Lalone, D. L. Villeneuve, and D. Lyons, ? highlight: sequence alignment to predict across species susceptibility (SeqAPASS): a web-based tool for addressing the challenges of cross-species extrapolation of ?. Toxicological. academic.oup, 2016.

X. Li, J. Yu, J. Li, Y. Wu, and B. Li, Dopaminergic dysfunction in mammalian dopamine neurons induced by simazine neurotoxicity, Int J Mol Sci, 2017.

R. J. Polinsky, Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease, Clin Ther, vol.20, pp.634-647, 1998.

E. Küster and R. Altenburger, Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio), Chemosphere, vol.68, pp.751-760, 2007.

E. D. Clotfelter, A. M. Bell, and K. R. Levering, The role of animal behaviour in the study of endocrine-disrupting chemicals, Anim Behav, vol.68, pp.665-676, 2004.

R. Kirubagaran and K. P. Joy, Changes in brain monoamine levels and monoamine oxidase activity in the catfish, Clarias batrachus, during chronic treatments with mercurials, Bull Environ Contam Toxicol, vol.45, pp.88-93, 1990.

D. N. Weber, V. P. Connaughton, J. A. Dellinger, D. Klemer, A. Udvadia et al., Selenomethionine reduces visual deficits due to developmental methylmercury exposures, Physiol Behav, vol.93, pp.250-260, 2008.

T. L. Huang, P. O. Obih, R. Jaiswal, W. R. Hartley, and A. Thiyagarajah, Evaluation of liver and brain esterases in the spotted gar fish (Lepisosteus oculatus) as biomarkers of effect in the lower Mississippi River Basin, Bull Environ Contam Toxicol, vol.58, pp.688-695, 1997.

C. A. Murphy, K. A. Rose, M. C. Alvarez, and L. A. Fuiman, Modeling larval fish behavior: scaling the sublethal effects of methylmercury to populationrelevant endpoints, Aquat Toxicol, vol.86, pp.470-484, 2008.

L. N. Ivan, B. R. Schmitt, K. A. Rose, S. C. Riley, J. B. Rose et al., Evaluation of the thiamine dose-response relationship for lake trout (Salvelinus namaycush) fry using an individual based model, J Great Lakes Res, 2018.

F. X. Mora-zamorano, R. Klingler, N. Basu, J. Head, C. A. Murphy et al., Developmental methylmercury exposure affects swimming behavior and foraging efficiency of yellow perch (Perca flavescens) Larvae, ACS Omega, vol.2, pp.4870-4877, 2017.

B. M. Armstrong, F. X. Mora-zomorano, M. N. Carvan, S. Mcnaught, N. Basu et al., Yellow perch recruitment in Lake Michigan: exploring the impacts of methylmercury induced behavioral alterations, 2018.

M. C. Alvarez, C. A. Murphy, K. A. Rose, I. D. Mccarthy, and L. A. Fuiman, Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus), Aquat Toxicol, vol.80, pp.329-337, 2006.

F. X. Mora-zamorano, R. Klingler, A. Debofsky, M. Waltz, J. Larson et al., Gene expression alteration associated with early embryonic methylmercury exposure in zebrafish (Danio rerio) and yellow perch (Perca flavescens), Environ Sci Technol, vol.195, pp.301-311, 2018.

C. A. Murphy, Modeling the effects of endocrine disrupting chemicals on Atlantic croaker: understanding biomarkers and predicting population responses, 2006.

M. C. Celander, J. V. Goldstone, N. D. Denslow, T. Iguchi, P. Kille et al., Species extrapolation for the 21st century, Environ Toxicol Chem, vol.30, pp.52-63, 2011.

D. Krewski, D. Acosta, M. Andersen, H. Anderson, J. C. Bailar et al., Toxicity testing in the 21st century: a vision and a strategy, J Toxicol Environ Health B Crit Rev, vol.13, pp.51-138, 2010.

C. A. Murphy, N. Garcia-reyero, M. J. Carvan, . Jones, and . Mj, Development of an adverse outcome pathway for neurodevelopment in larval fish to predict effects of contaminants on survival and growth across multiple ecologically relevant taxa, 2015.

U. Hass, The need for developmental neurotoxicity studies in risk assessment for developmental toxicity, Reprod Toxicol, vol.22, pp.148-156, 2006.

E. K. Peterson, D. B. Buchwalter, J. L. Kerby, M. K. Lefauve, C. W. Varian-ramos et al., Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation, Curr Zool, vol.63, pp.185-194, 2017.

. Oecd and . Users, Handbook supplement to the Guidance Document for developing and assessing Adverse Outcome Pathways, OECD Series on Adverse Outcome Pathways, 2018.

D. L. Villeneuve, M. M. Angrish, M. C. Fortin, I. Katsiadaki, M. Leonard et al., Adverse outcome pathway networks II: network analytics, Environ Toxicol Chem, 2018.