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Abstract
Purpose of Review Climate change affects populations of forest insect pests in a number of ways. We reviewed the most recent
literature (2013–2017) on this subject including previous reviews on the topic. We provide a comprehensive discussion of the
subject, with special attention to insect range expansion, insect abundance, impacts on forest ecosystems, and effects on forest
insect communities. We considered forest insects according to their major guilds and biomes.
Recent Findings Effects of climate change on forest insects are demonstrated for a number of species and guilds, although
generalizations of results available so far are difficult because of species-specific responses to climate change. In addition,
disentangling direct and indirect effects of climate change is complex due to the large number of variables affected. Modeling
based on climate projections is useful when combined with mechanistic explanations.
Summary Expansion of either the true range or the outbreak range is observed in several model species/groups of major insect
guilds in boreal and temperate biomes. Mechanistic explanations are provided for a few species and are mainly based on increase
in winter temperatures. In relation to insect abundance, climate change can either promote outbreaks or disrupt trophic interac-
tions and decrease the severity of outbreaks. There is good evidence that some recent outbreaks of bark beetles and defoliating
insects are influenced by climate change and are having a large impact on ecosystems as well as on communities of forest insects.

Keywords Biome . Community . Guild . Impact . Outbreak . Range . Review

Introduction

There is general consensus among scientists that the global
climate is changing at an unprecedented rate, with many
regions experiencing warming trends, frequent high tem-
perature extremes, and shifts in precipitation patterns [1••].
An increase of 0.61 °C in global mean temperature record-
ed since the beginning of the twentieth century (i.e., com-
paring the years 1850–1900 and 1986–2005, 5–95% CI is

0.55–0.67 °C) [1, 2], and the predicted warming of 2–6 °C
by 2100 [3] have direly increased the need to understand
the impacts of climate change.

Interactions and feedbacks between climate and the health
of forest ecosystems are expected [4]. Changes in disturbance
patterns mediated by climate warming are predicted to be the
greatest impacts on forests in the coming decades [5]. Current
increases in frequency and intensity of biotic and abiotic dis-
turbances to forest ecosystems have been attributed, at least in
part, to climate change [1••], but uncertainties remain in a
number of cases. Outbreaks of forest insects are major agents
of mortality and ecosystem change in forests worldwide, and
climate has been attributed to be an important driver of chang-
es to disturbance regimes mediated by forest insects. Large-
scale tree mortality resulting from drought, fire, and/or insect
outbreaks can result in loss of carbon sinks and have feed-
backs on climate change, with serious consequences for bio-
diversity and ecosystem function [6•, 7].

Disturbances have been defined as Bdisrupting the function
of an ecosystem and changing resource availability or the
physical environment^ [5]. Consequences of disturbance can
result in loss of resilience accompanied by major ecological
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transformations [8]. Forest insect outbreaks are major distur-
bances by native or non-native insects, as they can be syn-
chronous over large geographic areas and cause region-wide
mortality of host trees in a relatively short period of time [9,
10, 11•, 12]. Disturbance due to forest insects have been re-
corded to increase land surface temperature and cause declines
in gross primary productivity [13, 14].

Predicted geophysical impacts of climate change include
floods, droughts, and rise in sea levels. General circulation
models predict the greatest warming at high latitudes in win-
ter, a decrease in precipitation at mid-latitudes in summer, and
an increase in frequency of extreme climatic events such as
storms and droughts [4]. Bark beetles, for example, can cause
tree mortality following severe drought that is associated with
warm temperatures, due to positive feedbacks on their popu-
lations from availability of susceptible hosts and favorable
temperatures, amplified over spatial and temporal scales [10,
15•]. Predictions of insect outbreaks suggest changes in spa-
tiotemporal patterns of defoliators and bark beetles. Bentz
et al. [16] predict that spruce bark beetle, Dendroctonus
rufipennis, outbreaks may occur throughout the range of
spruce in North America in the future. Outbreak dynamics
of the spruce budworm, Choristoneura fumiferana, are pre-
dicted to change, move further north, and on to secondary host
species [17, 18]. Similarly, cyclical outbreaks of larch bud
moth, Zeiraphera griseana, are predicted to decrease in mag-
nitude in optimal mid-elevation zones of the Alps, and to shift
toward higher altitudes [19]. However, predictions on future
outbreak dynamics of defoliators remain uncertain as there is
conflicting evidence on outbreak severity [20]. In general,
poleward and upward shifts of pests and pathogens have been
documented, but predictions are complicated due to interac-
tions and uncertainties associated with changing weather pat-
terns, extreme climate events, and differing responses of
plants and insects to these events [21]. The consequences of
higher frequency of extreme events are still poorly document-
ed. For example, both positive and negative effects of climate
on expansion and population dynamics can occur, as was ob-
served in the pine processionary moth, Thaumetopoea
pityocampa, during summer heat waves in 2003. This heat
wave led to a collapse of the front edge population in France
by killing early stages of the insect [22], while at the same
time, triggering a record annual expansion in the Italian Alps
by facilitating female flight [23].

Insect populations are particularly responsive to climate
change because of their sensitivity to temperature, short gen-
eration times, and high flight capacity. Observations of insect
herbivory on an oak lineage duringQuaternary climate change
indicate that there was higher damage during warm and wet
periods [24]. In recent years, the magnitude and severity of
epidemics have increased, with outbreak populations
expanding to northern and high-elevation areas, where in the
past, such disturbances were relatively rare [10, 18, 25•].

Long-term surveys and examination of outbreak dynamics
of five species of European Lepidoptera between 1800 and
2011 revealed climate-driven changes in outbreak severity,
cyclicity, and frequency, but there were mixed effects of tem-
perature on outbreak activity [12, 26, 27]. It is often argued
that the frequency and severity of C. fumiferana outbreaks in
North America have increased in the twentieth century. A
regional tree ring chronology study [28] represents the longest
and most replicated reconstruction of outbreak dynamics in
North America (1551–1995). They identified nine potential
outbreaks and three uncertain outbreaks in a 400-year period
and concluded that while outbreak frequency was higher dur-
ing the twentieth century (~ 30 years) compared to the 1660–
1850 period (~ 50 years), higher outbreak frequency might
have occurred prior to 1660 (~ 28 years). While there is evi-
dence that recent warmer temperatures have permitted the
expansion of bark beetle outbreaks to higher latitudes and
elevations than in the past, similar trends are more ambiguous
to discern for Lepidoptera [20].

Reports of forest decline are becoming more frequent and
habitat shifts are occurring throughout the continental USA,
bringing to the limelight the importance of interactions involv-
ing drought, insects, and fire [29]. Climate and weather can
have direct effects on trees, as drought and storms can weaken
trees and predispose them to attack by bark beetles and path-
ogens. Climate can also have direct effects on insects as they
are small poikilotherms with limited thermoregulation ability
[30]. For example, in the hemlock wooly adelgid, Adelges
tsugae, nymphs were observed 3 months ahead of their nor-
mal phenology in December 2015, the warmest recorded
December in Tennessee, USA, accelerating their development
[31]. Intense but not moderate drought appears to favor bark
beetle performance and tree mortality, although its impact is
not consistent among species [32]. Warm temperatures result
in changes in physiology and accelerated development in in-
sects [33], particularly in northern latitudes where the growing
season is short. Changes in phenology and phenological mis-
matches with host trees and/or natural enemies can alter tro-
phic relationships and either favor or be detrimental to forest
insect populations [34, 35]. Physiological changes in insects
in response to temperature can facilitate changes in their dis-
tribution patterns [21]. Field-based experimental manipula-
tions of host plants [36] and insects to determine their relative
responses to changes in temperature [37–39] can help predict
the nature and extent of range shifts and to better understand
how forest ecosystems will respond to climate change [40].

In this paper, we review the current state of knowledge on
the response of forest insects to climate change, with special
attention to insect range expansion, population dynamics, and
impacts on communities and forest ecosystems. We systemat-
ically analyzed literature from the past 5 years (2013–2017)
for direct, indirect, and interacting effects of climate change on
forest insect outbreaks and used reviews from earlier

36 Curr Forestry Rep (2018) 4:35–50



publications (e.g., [41•]). We compiled information from dif-
ferent biomes and geographical areas on the effect of climate
change on forest insects, dealing with range expansion, pop-
ulation abundance, host shifts, and community interactions.
We highlight the importance of using experimental manipula-
tions to test the effect of climate warming on the phenology
and performance of host trees, forest insects, and their natural
enemies to better predict the response of communities and
ecosystems to climate change. We identify gaps in current
knowledge and suggest areas for future research that would
advance our understanding of the impacts of climate change.

Literature Review and Analysis

We screened the peer-reviewed literature between 1948 and
2017 using Scopus on 7 July 2017 with Bforests^ AND
Binsect*^ AND Bclimat*^ AND Bchang*^ as our search
terms. We obtained 1246 hits of papers containing these terms
in the title, key words, or abstract. We focused our search on
papers published between 2013 and 2017, and removed pa-
pers where the title or abstract revealed that they were not
relevant. A total of 213 papers were selected for further anal-
ysis. These papers were classified based on whether they ad-
dressed (1) climatic drivers (temperature, precipitation, wind,
CO2, O3); (2) their biomes (subarctic, boreal, temperate, sub-
tropical or tropical); (3) forest type (natural or planted); (4)
forest interactions (fire, drought, growth, dispersal, carbon,
pathogens, trade); (5) feeding guilds (defoliators, bark beetles
and wood borers, gall makers, sap suckers, seed and cone
insects); (6) response of plants and/or insects (performance,
phenology, voltinism); and (7) outcomes of climate change
(range shift, host shift, outbreak dynamics). Forty of these
papers were reviews or book chapters, which we then separat-
ed from the primary literature. We further added relevant pa-
pers that were accepted or in press and not picked up by
Scopus.

Range Expansion

The range edge of forest herbivores is not easy to detect,
especially when populations occur at low densities [41•].
Consequently, range expansion is difficult to document in
nature, unless individuals are conspicuous, occur at high den-
sity, or cause obvious symptoms on trees. There are a few
species of native forest insects for which range expansion
has been precisely ascertained and related to climatic vari-
ables, including T. pityocampa [42] and bark beetles [10]. In
addition, introductions of non-native forest insects into novel
geographic areas represent an opportunity to assess potential
range expansion zones, although in this case, it is not always
clear whether the expansion is limited by niche availability or

climatic factors [43]. Through analysis of case studies report-
ed in Table 1, we address the above questions and provide an
interpretation that could facilitate further research in this field.

Defoliators

Range expansion linked to climate change has been observed
in a dozen model species/groups in the boreal and temperate
biomes, with mechanistic explanations provided for a few
species. Increase in winter temperature appears to be the factor
facilitating the survival and the occupation of geographic
areas that were previously inaccessible due to harsh climate.
Such a direct effect has been observed for geometrids associ-
ated with mountain birch, the autumnal moth, Epirrita
autumnata, and the winter moth, Operophtera brumata, in
the boreal areas of northern Europe, where eggs now encoun-
ter more favorable conditions during winter [46, 47]. In the
case of T. pityocampa in Europe, larvae intensify feeding with
more permissive winter temperatures, resulting in range ex-
pansion that is independent of population outbreaks [23, 42,
49] (Fig. 1). An interesting indirect effect involving the host
plant has been hypothesized and modeled for C. fumiferana in
Canada, which is associated with balsam fir as its main host
and black spruce as a secondary host. Climate change is pre-
dicted to advance the phenology of the secondary host that is
more abundant at the upper latitudinal edge, making it more
susceptible to defoliation during outbreaks, and thus facilitat-
ing expansion of the outbreak area into higher latitudes [17,
18, 44, 45, 70] (Fig. 1). In Z. griseana, increased late winter
and early spring temperatures create a phenological mismatch
between larval hatching and spring budburst of larch at the
optimal elevation belt (1800–2000 m), resulting in a shift to-
ward higher elevations [51, 52]. Models are available to pre-
dict further range expansion of species for which the mecha-
nism of response is known, and tests with independent data
have shown they are reliable [71, 72]. However, generaliza-
tion is difficult because of the specificity of reaction norms
and ecological adaptations.

Other species have been observed to expand their
ranges, and often, climate change has been invoked to
explain these patterns. Climate-matching models, that
may or may not include species-specific parameters, have
been used to predict future scenarios. These tools are use-
ful to build hypotheses about mechanisms and to encour-
age scientists to design experiments tailored to individual
species, although we should use caution before drawing
general conclusions about the effects of climate change on
range expansions [73–75].

Non-native defoliators also expand their range in response
to climate change. In the case of the gypsy moth, Lymantria
dispar, in North America, the reaction norm of larvae varies
within the range, with local adaptations that may explain re-
cent colonization of the upper part of the range [48]. This
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indicates that selection can act on a relatively short time scale
to enable populations to quickly adapt to new conditions
caused by climate change.

Bark Beetles and Wood Borers

Bark beetles of the genus Dendroctonus have recently
provided evidence of range expansion in North America
where they are responsible for large outbreaks in different
geographical regions. In the southeastern USA, the south-
ern pine beetle, Dendroctonus frontalis, is moving north
due to milder winters that enhance performance [54, 55].
In the north-west, the mountain pine beetle, Dendroctonus
ponderosae, is expanding northward and eastward for the
same reason [56, 57, 71]. These obligate tree-killing in-
sects require a large number of individuals to mass-attack
trees and overcome their defenses. As they can disperse
for long distances, it is difficult to precisely define the
edge of their range and document expansions. Most of
what is known depends on the availability of precise in-
formation on the location of dead trees and the cause of
death, which are now available due to modern surveil-
lance technology. These species are difficult to detect
when associated with weakened trees under endemic con-
ditions, whereas damage and tree mortality become obvi-
ous during epidemics. Therefore, the range edge generally
considered is that of the epidemic range, and the margins
of the endemic range remain largely unknown. During the
expansion of the epidemic range of North American
Dendroctonus spp., a number of interactions directly or
indirectly related to climate change have played an impor-
tant role [58, 59•, 60–62]. Increase in temperature resulted
in higher beetle performance, change in phenology, asso-
ciated microbes, and their interactions. The northward and

eastward expansion of D. ponderosae in Canada exposed
a new host species, jack pine, to attack and successful
colonization by the beetle, resulting in the invasion of
previously unoccupied regions [60, 63•] (Fig. 1). Bentz
and Jönsson [62] review quantitative models that predict
the influence of temperature and precipitation on bark
beetle outbreaks. Ecological niche models such as
Maxent are now used for several species to match suitable
climate habitats and predict range expansions [63•].

Although we have evidence of range expansion for
other bark and wood-boring insects, the mechanisms have
not yet been clearly explained. Of these, two non-native
insects that became invasive in various parts of the world,
the emerald ash borer, Agrilus planipennis [53], and the
Sirex woodwasp, Sirex noctilio [76], have large expansion
potential in their newly invaded areas. Human-mediated
transportation has been attributed to have facilitated the
expansion of A. planipennis in the USA.

Other Guilds

Two native species feeding on seedlings, one scolytine beetle
[64] and one weevil [65], have been considered in climate-
matching studies, and in both cases, there is potential for range
expansion with increasing temperature under different scenar-
ios of climate and host plants. Similarly, climate-matching
provides estimates of range expansion for a few species of
non-native gall makers, such as cynipid gall wasps [66, 67]
and sap suckers. The best studied species is A. tsugae in east-
ern North America, which is expanding its range due to low
winter mortality, fast development rates in early spring [31,
68, 69], and improved potential to overcome cold snaps [77].

Table 1 Range expansion of forest insect pests

Guild Biome Area Species Host Approach or factors considered References

Defoliators Boreal Canada Choristoneura fumiferana Abies, Picea Phenology match, models [17, 18, 28, 44, 45]

Scandinavia Geometrids Betula Winter survival [46, 47]

Temperate N. America* Lymantria dispar Broadleaves NA [48]

Europe Thaumetopoea pityocampa Pinus, Cedrus Winter survival [22, 42, 49, 50]

Europe Zeiraphera griseana Larix, Picea NA [51, 52]

Bark beetles and
wood borers

Temperate N. America* Agrilus planipennis Fraxinus NA [53]

N. America Dendroctonus frontalis Pinus Winter survival [54, 55]

N. America Dendroctonus ponderosae Pinus Winter survival, model [56–63]

Other guilds:
Seedling feeders

Temperate N. America Dendroctonus rhizophagus Pinus Model [64]

Europe Hylobius abietis Pinus Model [65]

Gall makers Temperate Europe* Andricus spp. Quercus NA [66]

Europe* Dryocosmus kuriphilus Castanea NA [67]

Sap suckers Temperate N. America* Adelges tsugae Tsuga Winter survival [31, 68, 69]

*Non-native species
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Range Expansion Rates

Estimates of the speed at which forest insects are expanding
are available for a few species and rely mainly on comparing
the edge of the expansion front over time, varying from a few
hundred meters in T. pityocampa in the Alps, to hundreds of
kilometers in C. fumiferana in Canada. Although this is large-
ly dependent on the local population density of insects, dis-
persal potential alone does not determine expansion. Climatic
and host-related factors in the new range are crucial for the
successful establishment of expanding populations. There are,

however, cases when dispersal occurs under particularly suit-
able climatic conditions, such as warm nights that favor the
spread of moths at the range edge [23]. InD. ponderosae, rates
of spread and thereby, range expansion, can be determined
using dispersal rates and population growth rates that are
governed by host tree interactions as well as climate [71].
Inadvertent human transportation of insects can facilitate
range expansion in both native [50] and non-native pests
[53, 78]. In non-native pests, it can be difficult to disentangle
active from passive dispersal, unless genetic fingerprinting of
expanding populations reveals how they arrived in the new
range.

Insect Abundance

The effects of climate change on insect performance are im-
portant to predict population trajectories of forest insects and
the impacts of outbreaks on forest ecosystems [63•] (Table 2).
Temperature and precipitation have direct impacts on trees
and are major drivers of population change in insects. Most
of the data available so far on forest insect epidemics are
restricted to temperate and boreal ecosystems. In temperate
climates, insects respond positively to temperature [33] and
their abundance can peak at warm temperatures [89]. Warm
spring temperatures can also favor tree growth, advance
budburst, and produce high-quality foliage that can potentially
aid early larval feeding. Hot, dry summers can modify tree
defenses and resistance to herbivory. Elevated temperature
and ozone can increase the emission of volatile organic com-
pounds and modify herbivory [84]. Temperate insects are gen-
erally cold tolerant and exhibit adaptations such as diapause
and super-cooling tolerance that can facilitate shifts to north-
ern latitudes or higher elevations even with a slight increase in
temperature [85]. However, warm temperatures can be dele-
terious by disrupting development rates and diapause require-
ments [44]. Climate change can therefore either favor out-
breaks, or disrupt trophic interactions, and decrease the sever-
ity of outbreaks (Table 2). For example, variation in precipi-
tation negatively affects caterpillar parasitism [106]. Also,
outbreaks of Z. griseana across the Alps have collapsed since
the 1980s [93], even though recent temperatures are warmer
than those of the past.

Defoliators

In boreal and temperate defoliators, an increase in temperature
generally favors population growth. Increasing temperature
and precipitation had positive effects on tree growth during
an epidemic ofC. fumiferana [79], potentially increasing early
instar larval survival. Tree ring chronologies of jack pine bud-
worm, Choristoneura pinus, revealed that cool May tempera-
tures followed by warm, dry summers favored outbreaks on

Range expansion 
independent of 
outbreak

Pine processionary moth

Outbreak-related 
range expansion,
with host shift

Mountain pine beetle

Expansion of  
outbreak range,
with severe 
defoliation on 
secondary host

Spruce budworm

Fig. 1 Scenarios of range expansion related to climate change in three
important forest pests, the pine processionary moth, T. pityocampa (large
arrow: latitudinal expansion in northern France, small arrow: elevational
expansion in the Italian Alps), the mountain pine beetle, D. ponderosae
(the arrow indicates the expansion fromBritish Columbia to Alberta), and
the eastern spruce budworm, C. fumiferana (light blue oval: outbreak of
1962–1992, dark blue oval: current outbreak, 2006-present)
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jack pine and scots pine between 1956 and 1986, resulting in
five outbreaks of C. pinus, with jack pine being primarily
affected, and scots pine showing a 1-year lag in defoliation
[80]. Similar dendrochronological evidence suggests that
western spruce budworm, Choristoneura occidentalis, out-
breaks increased after 1890 in northwestern USA when fire
disturbance decreased and that outbreaks generally began near
the end of warm, dry periods [86]. In Europe, populations of
T. pityocampa respond positively to higher than average sum-
mer temperature and spring rainfall, although the mechanisms
are unclear and patterns vary depending on local environmen-
tal conditions [92]. Increased outbreak frequency at upper
range limits have been observed in several Thaumetopoea
spp., but the link with climate warming is still to be
ascertained [91•]. Higher temperatures did not affect survival,
but reduced development time of sawflies by up to 41% [90],
potentially increasing the risk of outbreaks. If larval develop-
ment time is shorter at warmer temperatures, predation risk
could decrease. However, interactions can be complex, as per-
formance of natural enemies can also improve with warmer
temperatures [107].

Positive relationships between temperature, drought, and
herbivory do not necessarily occur. Dendrochronological
analyses of Z. griseana outbreaks over 500 years reveal peri-
odicities of 4, 8, and 16 years throughout the time series,
except during 1690–1790, and since 1980, suggesting that
disruption of periodicity may be related to changes in climate
[93]. Although still peaking at 8–10-year intervals, present
outbreaks show a ca. threefold decrease in larval density com-
pared to the outbreaks that occurred before the 1970s (Roques,
unpublished data). Manipulative forest warming mesocosm
experiments enable us to quantify the relative responses of
host trees and their herbivores to changes in ambient temper-
ature. Studies using forest tent caterpillar, Malacosoma
disstria, and its host trees under controlled conditions exam-
ined its relative response to changes in temperature [37–39].
Under warmer temperature regimes in late winter and spring,
tree phenology generally advanced more than insect phenolo-
gy, altering synchrony between O. brumata and oak budbreak
in the Netherlands between 1975 and 2000 [83, 108].
However, in some years, eggs may hatch up to 30 days before
oak leaves appear, although this effect is not predicted to be
consistent. Genetic variability in the date of egg hatch, and
possible host shifts, are likely to allow adaptation through
severe selection in the original population [109].

In dry, tropical forests, high temperature and low precipi-
tation decreased growth and development of Saturniid cater-
pillars feeding on Salicaceae, compared to cooler, wetter con-
ditions [94]. Young oak trees did not suffer greater herbivory
when exposed to L. dispar larvae under drought conditions
[87], and inadequate winter chilling disrupted synchrony be-
tween L. dispar and its host trees, potentially decreasing the
severity of outbreaks [88]. In four species of leaf beetles,

Chrysomela spp., that feed on willows in subarctic Russia,
spring and fall temperatures increased by 2.5 to 3.0 °C over
a 21-year period (1993–2014) [81]. While host plant quality
increased with temperature, beetle abundance did not increase.
Chrysomela lapponica populations actually declined due to
the impact of natural enemies and declining pollution, sug-
gesting that changes in air quality might confound data on
long-term population dynamics. Trophic interactions can af-
fect population abundance and outbreak dynamics. In subarc-
tic mountain birch forests, defoliation rates are higher during
outbreaks in high elevations. Pepi et al. [82] showed that pre-
dation rates on E. autumnata and O. brumata larvae were
almost twice as high in low versus high elevation sites, and
that release from predation pressure at high elevations can
favor outbreaks in these cooler habitats. It therefore appears
that top-down effects can override bottom-up effects of cli-
mate warming in some tri-trophic systems.

Bark Beetles and Wood Borers

Population abundance and outbreaks of bark beetles are gen-
erally related to drought, except for D. frontalis, for which the
relationship with precipitation is obscure [32]. D. ponderosae
outbreaks occur throughout western North America and the
recent outbreak in British Columbia, Canada, was unprece-
dented in its scale and impact [10]. By the end of the outbreak,
populations of the beetle had breached the Rocky Mountains,
and moved into the boreal forest where host shifts and repro-
duction on jack pine, a novel host species, have been recorded.
Other species of potential hosts include red pine and eastern
white pine. Novel hosts exhibited lower defenses to attack
than co-evolved hosts such as lodgepole and ponderosa pine
[96•]. Warmer temperatures associated with climate change
are a significant factor in recent outbreaks and range expan-
sion of D. ponderosae due to positive influences on develop-
ment phenology and winter survival [110, 111]. Diapause and
winter survival influence voltinism and population abun-
dance. Whether or not D. ponderosae population structure
and voltinism would change with warmer temperatures has
been speculated. Along latitudinal and elevational gradients
in the western USA, the number of days required to complete
a generation was similar in both cool and warm sites. [61, 62].
Thermal units required to complete a generation were lowest
at cool sites, but individuals did not become bivoltine even at
the warmest sites. The need to maintain cold sensitive life
stages in the winter prevents bivoltinism from evolving in this
species [61, 62]. There is evidence that the invasion of popu-
lations into more northern latitudes was possible due to chang-
es in cellular and metabolic functions, with genome scale dif-
ferentiation, that allow populations to better withstand cooler
northern climates and facilitate longer dispersal distances.
Such landscape-wide selective adaptation has permitted
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D. ponderosae populations to colonize and reproduce in pre-
viously inaccessible areas [59•].

The likelihood of bivoltinism in D. rufipennis as the cli-
mate warms is also uncertain because it inhabits relatively
colder habitats that necessitate obligate winter diapause and
slow developmental rates [112]. In its coldest locations,
D. rufipennis is semivoltine, having a generation every 2 years.
In these areas, cool temperatures experienced by larvae can
result in a facultative pre-pupal diapause, followed by an ob-
ligate diapause by teneral adults the following winter. In a
warmer climate, accelerated development could result in pop-
ulations transitioning to univoltine life cycles due to elimina-
tion of the pre-pupal diapause phase [112]. The phenology of
the European spruce bark beetle, Ips typographus, has been
predicted with models such as PHENIPS [112] to estimate
flight periods, diapause, and development in the context of
climate change. Berec et al. [97] predict that changes in
voltinism will not exceed two generations per year, as they
expect only minor changes in development time under current
climate change scenarios. At the southern edge of the range,
however, under warm autumn conditions, a third generation
can be produced, with emerging beetles dispersing in the
spring and summer [113]. Multivoltine populations of
I. typographus have resulted in high timber loss at low and
medium elevations of the southeastern Alps [113].

In the longhorn beetle, Monochamus galloprovincialis, a
vector of the invasive pinewood nematode, temperature fluc-
tuations decrease longevity, while there is no effect of ambient
higher temperatures on survival [98]. Another highly invasive
species, A. planipennis, is predicted to drive ash, Fraxinus
spp. to extinction in North America, as current and future
winter temperatures may not be cold enough to cause signif-
icant mortality of larvae in much of its invaded range [95].

Other Guilds

Voltinism of the pine weevil, Hylobius abietis, is expected to
increase with climate change as well as the impact on regener-
ation, with severe implications on management practices [100,
114]. Seed and cone insects are poorly studied in relation to
climate change response. Since most species are host-specific
and depend on tight synchronywith cone development to share
the cone niche [115–117], climate change is likely to affect
interactions between cones and insects as well as between in-
sect species. However, adult emergence of three species of
larch cone flies, Strobilomyia spp., appeared to adjust tightly
to the earlier blossoming of larch in the Alps, which has ad-
vanced 12–15 days since the 1980s (Roques, unpublished ob-
servations). Reproductive loss occurred in about 85% of black
spruce, Picea mariana; balsam fir, Abies balsamea; eastern
larch, Larix laricina; and white spruce, Picea glauca; sampled
across three treeline zones in the Mealy Mountains in
Labrador, suggesting that cone insects can limit treeline

expansion due to climate change [118]. Drought prompts out-
breaks of the green spruce aphid, Elatobium abietinum, only at
moderate levels of tree stress, and climate change seems to
facilitate outbreaks [103]. In Australia, outbreaks of eucalypt
psyllids are dependent on rainfall affecting changes in host
quality, although the roles of climate change and CO2 enrich-
ment remain to be clarified [104, 105].

Outbreaks Related to Climate Change Effects
on Forest Ecosystems

Impacts of insect outbreaks due to climate change effects on
forest ecosystems have become evident in recent years and are
summarized in Table 3. Outbreaks impact forest ecosystems
and the mechanisms are dependent on the insect guild and
region [132]. Impacts can vary from fluctuations in tree
growth to changes in the succession of the ecosystem, where-
by forest regeneration may not occur to replace dead trees.
Although the relationships between climate change and out-
break propensity of forest insects are still a matter of discus-
sion (see previous chapter), some recent outbreaks (e.g.,
D. ponderosae), have large impacts on the ecosystem and
can generate feedbacks on climate change [6, 133]. Themech-
anisms by which insect outbreaks may affect ecosystem dy-
namics are numerous, and in the analysis below, we address
them in defoliators and bark and wood-boring insects.

Defoliators

The impact of defoliation in boreal ecosystems are the best-
known models. The C. fumiferana outbreak in Canada is
linked to an increase in both tree mortality and fire ignition.
However, observations during the past few decades and pre-
dictions based on climate scenarios document an overall reduc-
tion of impacts or a shift to higher latitudes [119, 120]. In
northern Europe, the impacts of natural and simulated defolia-
tion by geometrids on the growth of mountain birch, under
controlled conditions mimicking climate change, do not appear
to be important, and may depend on interactions with water
and nutrient availability [121, 122]. The effects of geometrid
defoliation in the outbreak range expansion area are instead
rather conspicuous, as they involve a shift from oligotrophic
to eutrophic communities in the understory layer [123], with
consequences for the abundance of mammalian herbivores
[25•]. An interesting study on the abundance of an insect her-
bivore of an understory plant along a temperature gradient has
shown that insect abundance is temperature-limited while the
plant is not, indicating a potential for increased herbivory with
climate change [125]. In North America, defoliation of
M. disstria appears to reduce the capacity of aspen to copewith
climate change-related droughts, although the mechanisms are
not clearly elucidated [126]. Similarly, defoliation of the
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Siberian moth, Dendrolimus sibiricus, on fir has been associ-
ated with climate change in central Asia, and with significant
tree mortality [124].

Bark Beetles and Wood Borers

The recent outbreak ofD. ponderosae in North America was a
magnitude larger in area and severity than previously recorded
outbreaks, resulting in questions on long-term impacts of tree
mortality on forest ecosystems. The range of one of its dom-
inant pine hosts, lodgepole pine, appears to shrink at the lower
edge, as seedling recruitment does not compensate for the
accelerated mortality of trees [127]. Wildfires and bark beetle
outbreaks are often correlated, as they respond to common
climatic drivers, rather than to their interactions [128, 129].
The outbreak converted forests that were net carbon sinks into
net carbon sources for several years during following the out-
break, due to severe reduction in net primary production [6,
133]. However, simulations of long-term impacts on the car-
bon cycle and regeneration of killed stands of lodgepole pine
predict potential recovery from tree mortality, depending on
local climatic conditions and natural vegetation [130, 131]. In
the Greater Yellowstone ecosystem, high-elevation whitebark
pine that was previously not affected by the beetle due inhos-
pitable climate is now being killed by D. ponderosae [134]. It
appears that whitebark pine mortality will continue, and re-
generation will be slow [134], making research and forest
management high priorities in this vulnerable ecosystem.

Impact of Climate Change on Forest Insect
Communities

Climate change is predicted to disrupt trophic interactions if
one or more members of the community respond positively or
negatively to changes in temperature or precipitation. In par-
ticular, species may shift their phenology at different rates,

having cascading and potentially deleterious effects on the
community (Table 4). A 40-year time series of phenological
events in plants, birds, reptiles, insects, and fungi in Russia
revealed that phenology advancedmost significantly in plants,
compared to other taxa. However, inter-annual variation in
plants, reptiles, and insects was highly synchronized, indicat-
ing that there was a community-level shift in phenological
synchrony [136], suggesting that communities may have a
certain adaptive capacity to resist changes in phenological
synchrony. In general, with increasing climatic variability,
parasitism levels are predicted to decrease as host-specific
parasitoids would have difficulties tracking host populations
[106]. Parasitism rates and parasitoid diversity also decreased
with elevation, with endoparasitoids of endophagous insects
being most protected from the impacts of climate change
[144]. Outbreaks of phytophagous insects are therefore pre-
dicted to increase because of lower parasitism rates as the
climate warms [106, 144].

Defoliators

Herbivory is associated with budburst and tree growth, both of
which respond strongly to temperature. Herbivore density,
diversity and consumption of foliage on high latitude geno-
types of silver birch, Betula pendula, were correlated with
birch phenology, providing evidence that climate indirectly
affects herbivore communities [137]. While it is generally
proposed that climate-induced herbivory will increase at
higher latitudes, this has seldom been tested. Diversity and
abundance of leaf miners of birch from 59° to 69° N in
Europe decreased with latitude [101], due to a stronger re-
sponse to summer temperatures at northern latitudes, suggest-
ing that herbivory will likely increase at higher latitudes with
climate warming. Host plant preferences can also change at
warmer temperatures. Jing et al. [140] measured developmen-
tal parameters of three defoliators and their preferences for
five host plants at temperatures from 16 to 31 °C and showed

Table 3 Outbreaks related to climate change effects on forest ecosystems and host tree distribution

Guild Biome Area Species Host Response and/or mechanism References

Defoliators Boreal Canada Choristoneura fumiferana Abies, Picea Defoliation of spruce
budworm and fire ignition
and tree mortality

[119, 120]

Finland Geometrids Betula Impact of defoliation on growth [121, 122]

Scandinavia Operophtera brumata Broadleaves Understory vegetation change [18, 123]

Sub-boreal Altaj Russia Dendrolimus sibiricus Abies Increase of defoliation [124]

Temperate Europe Cheilosia fasciata Allium ursinum Host plant abundance along
elevation gradient

[125]

N. America Malacosoma disstria Populus Starting decline by defoliation [126]

Bark beetles and
wood borers

Temperate N. America Dendroctonus ponderosae Pinus Host plant range shrinking.
Relationships with wild fire.
Impacts on carbon

[127–131]
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that with increase in temperature, development time was
shorter, and survival rate and fitness increased. A shift in feed-
ing preference for host plants also occurred, leading to in-
creased herbivory on certain plants and a potential altering
of forest communities.

Sensitivity of communities to climate warming can be stud-
ied using elevation gradients to monitor community responses
to variation in temperature and precipitation. In a temperate
forest on Changbai Mountain in China, ground beetle and
geometrid moth assemblages shifted more strongly with alti-
tude compared to changes in vegetation, suggesting that cli-
mate change will facilitate a shift in their distribution, and
raising concerns about extinction of mountain-top communi-
ties that may be unable tomove further uphill [145]. The effect
of future atmospheres on forest insect communities have also
been explored with CO2 enrichment studies [138]. The effects
of CO2 and O3 on herbivore abundance and species richness
did not significantly alter aspen arthropod community compo-
sition, but occasionally altered birch insect community com-
position, suggesting that spatiotemporal responses of insect
communities are difficult to predict, because of their
variability.

Changes due to climate warming may not necessarily result
in serious, long-term deleterious effects on communities or
ecosystems. Population dynamics of subarctic moth assem-
blages were observed over 32 years in Finnish Lapland where
there were rapid increases in temperature and precipitation in
the study site [135]. Even though populations increased over
this period, per capita rates of change were negatively associ-
ated with climate change variables in time series models. It
appears that negative effects of climate change on population
growth can be buffered by other ecological factors [135, 139].

Bark Beetles and Wood Borers

In Europe, trapping bark beetles along an altitudinal gradient
revealed that there was no effect of elevation on species rich-
ness. There was a positive relationship between the abundance

of aggressive tree-killing beetles and temperature, while less
aggressive species exhibited the opposite trend [141]. The au-
thors suggest that with warming, spruce forests may face in-
creasing damage from aggressive species, threatening growth
and survival of Norway spruce at low elevations and southern
latitudes. Similar patterns were observed in Mexico in non-
aggressive, pine-infesting bark beetles along an altitudinal gra-
dient [142]. Species richness and abundance were highest at
the lowest elevation and there was a positive relationship be-
tween temperature and bark beetle abundance. At lower eleva-
tions, projected rise in temperature is predicted to cause higher
damage by bark beetles on susceptible tree species.

Predators, competitors, and mutualists play an important
role in the population dynamics of bark beetles. Predators
such as woodpeckers, clerid beetles, and flies can cause high
mortality on adult beetles and larvae [146]. The direct impacts
of warming on predation rates and bark beetle performance
are not known, and we need to consider phenological re-
sponses of natural enemies to changes in temperature regimes
in future studies [15•]. Warm temperatures can directly and
indirectly influence the composition of mutualistic fungi and
determine beetle fitness. Simulations of temperature variabil-
ity on persistence of fungi in mutualistic associations with
D. ponderosae showed that thermal migration between warm
and cool conditions would stabilize mutualisms in the long-
term [147]. If climate change forces one of the mainmutualists
out of the association, beetle fitness and outbreak potential
could decrease [147].

Other Guilds

Ecological factors and community interactions appear to mod-
erate the responses that warming might elicit. In open-top
warming experiments, populat ions of the aphid,
Chaitophorus populicola, were higher when tended by mutu-
alistic ants, regardless of temperature [139]. In their study,
plant stress decreased with warming only when both ants
and C. populicola aphids were associated in mutualistic

Table 4 Effects of climate change on forest insect communities

Guild Biome Region Species Host Approach References

Defoliators Boreal Finland Moths NA Time series light trapping (also outbreak) [135]

Russia Several taxa NA Time series [136]

Finland Several taxa Betula Effect of temperature on communities [137]

Finland Leaf miners NA Latitudinal gradient [101]

Temperate N. America Betula, Populus CO2, O3 FACE [138]

N. America Chaitophorus populicola Populus FACE and insect mutualism [139]

Eastern China Lepidoptera Various Species response to temperature [140]

Bark beetles and
wood borers

Temperate Europe Bark beetles Picea Effect of temperature on communities [141]

C. America Bark beetles Pinus Effect of temperature on communities [142]

Other guilds Temperate S. Korea Beetles Effect of temperature on communities [143]
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interactions, suggesting that such interspecific interactions
could buffer the effects of warming on herbivore communi-
ties. Temperature-based predictions of beetle abundance from
several families in South Korea indicate that species can vary
in their response to temperature [143]. Of the 18 species they
analyzed, 6 were predicted to increase in abundance and 12
were predicted to decrease. They predicted that as the climate
warms, more beetle species will decrease in abundance. There
are very few studies on climate change and tropical insect
communities. A unique study using a 137-month time series
of 100 species of fruit-feeding butterflies in Uganda showed
that temporal shifts in peaks of butterfly abundance were cor-
related with temporal shifts in peaks of vegetation greenness
depending on temperature and precipitation, and that assem-
blages of ENSO warm phase years differed from other years
[148]. Projected changes in climate can be used to predict
patterns of species distribution and richness. Distribution
models for 43 species of flightless Australian ground beetles
suggest that with upward shifts in distribution, species current-
ly confined to lower and drier mountain ranges will be more
vulnerable to climate change impacts than those restricted to
the highest and wettest mountains. Poor ecological conditions
would make communities more susceptible to the negative
consequences of climate change.

Conclusions

1. Information available on the relationships between cli-
mate change and forest insects has increased in the last
few years. The effects of climate change are clear in some
species, but cannot be generalized to all species, even
within the same guild or biome. The direction of the effect
of climate change can vary from positive to negative and
it is often difficult to disentangle indirect and direct ef-
fects, as well as tri-trophic interactions. Predictions based
on the link between climate change and insect distur-
bances are important, as insects are critical to forest suc-
cession [5, 149]. Modeling is a useful tool, although pre-
dictions can be misleading when input data are scarce or
not appropriate. The mechanistic nature of process-based
phenology models permit predictions of population dy-
namics in a changing climate [63•].

2. In both defoliators and bark and wood-boring insects,
relationships between tree mortality and environmental
factors provide strong evidence that changes in magni-
tude, frequency, and intensity of recent outbreaks are driv-
en by direct or indirect effects of climate. Warm temper-
atures can decrease winter mortality and diapause require-
ments, thereby shortening generation time and increasing
voltinism. Indirect positive effects on insects can occur
through deleterious effects of warm temperatures and
drought on defenses of host trees. Species-specific

responses to temperature can result in variable impacts
of climate change on outbreak behavior.

3. Several species of defoliators and bark beetles now have
higher survival and reproductive rates at high elevations
and more northern latitudes than in the past. Populations
are therefore expanding into new ranges, affecting novel
and evolutionarily naïve host species. Novel host species
are not equipped with the same defense capacities as co-
evolved hosts and can suffer greater damage from herbiv-
ory. Whether or not forest ecosystems will be resilient to
disturbance regimes they have not co-evolved with, re-
quires long-term monitoring of forest regeneration and
ecosystem impacts.

4. Climate change can disrupt trophic interactions depend-
ing on species-specific responses of individuals at each
trophic level to increase in temperature. More studies are
needed on the temperature dependence of functional re-
sponses of predator-prey systems to predict the outcomes
of climate change scenarios. To this end, functional re-
sponse settings added to greenhouse studies or field
mesocosm experiments can be used to evaluate physio-
logical and behavioral responses to increase in ambient
temperature across trophic levels and assess the extent to
which climate change will alter trophic interactions.

5. Mechanistic studies linking climate change variables to
plant and insect performance are needed, especially when
factors other than temperature are considered. Microcosm
studies with CO2 or O3 enrichment treatments, or rainfall
simulations with closed-top chambers can be used to mea-
sure plant and insect responses to modified conditions
under climate change.

6. Historical datasets about herbivory in forests can be used to
reconstruct damage dynamics in relation to climate change,
provided the role of the main variables can be disentangled
[102, 150]. Climate change studies conducted so far con-
cern mainly temperate and boreal forests. More research is
needed on the impact of climate change on species and
communities in subtropical and tropical forests.
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