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Abstract: In view of major economic problems caused by viruses, the development of genetically
resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking
virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives
results in a dramatic change of the genetic background that can alter the resistance efficiency or
durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of
resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large
part of the resistance phenotype, conferred by a given QTL, depends on the genetic background.
We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic
background could impact resistance or durability. We propose that the genetic background may
impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide
Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by
loss-of-susceptibility—such as eIF4E-based resistances—are more likely to rely on gene redundancy
among the multigene family of host susceptibility factors. Finally, we show how the genetic
background is likely to shape the evolution of resistance-breaking isolates and propose how to
take this into account in order to breed plants with increased resistance durability to viruses.
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1. Introduction

In a given organism, the expression and effect of genes rely on a multitude of interactions
within the genome and with the environment. Notably, phenotypes associated with specific genes
are known to have effects of varying intensity depending on the variation of additional genetic
factors, a phenomenon well characterized in the development of most organisms [1,2]. Several studies
showed how similar mutations affecting genes are associated with very different, if not contradictory,
phenotypes, and how these discrepancies rely ultimately on the so-called “genetic background”.
Interestingly, the analysis of the genetic background effect can be a key to unravel so far uncharacterized
mechanisms or redundancy effects among genes with an emphasis on developmental processes [3].
Genetic background has been defined as “the entire genetic and genomic context of an organism;
the complete genotype of an organism across all loci” [1]. In the view of a plant breeder, who aims
at producing elite crops by introducing multiple traits originating from Crop Wild Relatives (CWR)
into crops [4,5], it is understandable that the whole breeding process will be linked with numerous
introgressions into the crop genome, therefore resulting in profound changes in the genetic background.
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For example, it is estimated that nearly one quarter of the tomato genome is made of introgressed
genome from CWR into cultivated tomato, including a 50 Mb introgression on chromosome nine,
associated with a Tm2a resistance, to the tomato mosaic virus, originating from Solanum peruvianum [6].
More recently, it was shown that this latter introgression has been associated with profound changes
by linkage with genes affecting metabolism [7]. It seems highly likely that such “hitch-hiking” effects
may impact as well responses to biotic/abiotic stresses among other plant features.

Genetic resistances to pest and pathogens represent a large proportion of traits sought after by
breeding programs. Plants have evolved sophisticated resistance mechanisms to pathogens, including
viruses that can be responsible for heavy crop losses. Very briefly, those mechanisms can be categorized
as resistance associated with pathogen recognition, followed by defense induction and resistance by
the loss-of-susceptibility affecting plant factors on which the pathogen relies for infection. In addition,
quantitative resistance relying on Quantitative Trait Loci (QTL) can decrease pathogen traits related to
infection efficiency or can modulate the efficiency of major-effect resistance genes [8,9]. As a result of
the breeding process, resistances that have been isolated as simple genetic traits or/and QTL in CWR
are transferred into crops.

The durability of a resistance can be defined as, “the persistence of resistance efficiency when
resistant cultivars are used over long periods, on large surfaces and in the presence of the target
pathogen” [10]. Low resistance durability is the consequence of appearance and the increase in the
frequency of Resistance-Breaking (RB) variants within virus populations. The genetic changes required
for a pathogen to overcome plant resistance mechanisms and the effects of such changes on its fitness
are key determinants of resistance durability [11].

In this review, we discuss how the plant genetic background can affect the efficiency and durability
of genetic resistance to viruses and what the potential underlying molecular mechanisms are. By taking
the point of view of the breeders, we will not here discuss the role of the pathogen genetic background
on resistance breaking (for example, [12,13]). The role of the genetic background will be discussed
in the light of what is known about the resistance mechanisms. We will pay attention to what has
also been characterized on the resistance durability to other pathogens, as this may hint at future
research directions.

2. Genetic Background Matters in Resistance to Viruses: Lessons from QTL Analyses

The strategy based on the transfer of a resistance gene from a donor genotype or CWR into
a recipient elite cultivar, dates back to Holmes’ work on tobacco and pepper tobamovirus resistance in
the 1930s [14,15]. Since then, backcross programs aiming to perform such transfers have been very
successfully undertaken by plant breeders. In the biotechnology era, transgenesis has even shown
that resistance gene transfers to distant plant species, for which crosses are not feasible, could also
be efficient. This indicates that all, or a very large part, of the resistance phenotype is expressed
after these transfers and suggests a little effect of the genetic background of the recipient cultivar on
resistance expression.

Notwithstanding, there have been few reports of major-effect resistance genes with incomplete
penetrance [16–21]. Penetrance can be defined as the proportion of individuals that carry a particular
gene and express the expected phenotype—here being resistance [1]. Penetrance is said “complete”
when 100% of individuals carrying the gene express the phenotype, and “incomplete”, with different
possible degrees. The penetrance of a particular resistance gene can be potentially affected by genetic
background effects, but also by environmental effects. In the case of plant resistance to pathogens, such
environmental effects may include changes of pathogenicity, i.e., aggressiveness or resistance-breaking
properties in the pathogen population [17]. Unfortunately, these different kinds of effects have rarely
been disentangled. However, when climatic conditions and pathogen populations are homogeneous
and stable, incomplete penetrance may be attributable to genetic background effects. Gene expressivity,
i.e., the extent of phenotypic expression in an individual carrying a given gene controlling this
phenotype [1], could also provide a measure of the effect of the genetic background and/or of the
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environment on a resistance gene. However, measures of expressivity of major-effect resistance genes
have rarely been conducted. It should be noted that the term penetrance, and even more, expressivity,
are used much more in the field of animal biology than in plant biology.

A more frequent and precise source of data to quantify the role of the genetic background on
resistance is the genetic analysis of quantitative resistance (QTL analyses). Basically, QTL analyses rely
on additive genetic models, where the effects of different resistance loci cumulate in an additive manner
to determine the overall resistance level. More complex genetic models also include non-additive
pairwise effects between loci, i.e., epistatic effects. Epistasis occurs when the effect of a particular allele
on the resistance level is different when associated to different alleles present at one or more other loci
in the genetic background. Epistatic effects can thus be measured by the extent of the departure from
a purely additive model. Consequently, the abundance and effect of epistasis involving resistance loci
provides a measure of the effect of the genetic background on resistance genes.

We have collected published QTL analyses on virus resistance with a focus on those that
incorporated epistasis analyses (Table 1). These 19 studies identified a large number of QTL with
additive effects and these additive QTL usually explain a large part of inherited resistance variability
(i.e., broad-sense heritability). In such situations, the effect of a resistance gene or locus (QTL) will
simply add to that of the genetic background.

It should be noted that the majority of studies analyzed epistatic effects only among pairs of QTLs
that were previously shown to display additive effects, with the exception of nine studies of virus
resistance in pepper (Table 1A). From these nine studies, we can observe that: (i) Some QTL have
epistatic effects but no detectable additive effects, (ii) the number of additive QTL is higher than the
number of epistatic QTL (30 vs. 18) but this difference is not statistically significant (p = 0.22; χ2 test),
and (iii) the effects of additive QTL and of epistases between pairs of QTL on the resistance level
are similar (22% and 20% on average, respectively). If we consider the 19 QTL studies (Table 1A,B),
67 additive QTL were detected in total. Among these, 30 (45%) also displayed significant epistatic
relationships with one or more of the other additive QTL. Epistatic effects were smaller than additive
effects (15% vs. 21%). Epistatic effects are observed for QTL that display small additive effects
(proportion of phenotypic variance explained by the QTL R2 < 0.25), but also for major-effect QTL
(R2 > 0.25) or even QTL that have strong effects and could be almost considered as major-effect genes
(R2 > 0.60). Moreover, if we categorize the additive QTL into “purely additive” and “both additive and
epistatic”, those in the second category have a significantly higher additive effect on the resistance
phenotype than those in the first category (mean R2 of 17.4% and 26% for “purely additive” and “both
additive and epistatic” QTL, respectively; p-value = 0.005; Monte-Carlo simulations). This suggests
that a major-effect QTL could be more sensitive to genetic background effects than minor-effect QTL.
This partly supports Chandler et al. who argued that, in general, alleles of moderate phenotypic effects,
that are intermediate between major-effect alleles and minor-effect QTLs, show the greatest sensitivity
to genetic background [1].

The overall picture that emerges from these studies is that epistatic effects (and by extension
genetic background effects) (i) are not rare, (ii) involve fewer loci than additive effects, and (iii) have
smaller effects on the resistance phenotype than additive effects. However, the abundance of epistasis
among resistance QTL and the intensity of epistatic effects are probably underestimated. First, epistasis
has mainly been studied between QTL previously shown to display additive effects and QTL showing
only epistatic effects have rarely been looked for (Table 1). Second, all studies of epistasis have focused
on pairwise effects between loci and interactions between more than two loci have not been explored.
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Table 1. Published data on virus resistance QTL in plants. (Only studies where epistases between resistance QTL have been looked for are indicated.)

Reference Plant Virus Number of
Additive QTL

Effect of Additive
QTL (R2) a,b

Number of
Epistatic QTL

Effect of Epistatic
QTL (R2) a

Global QTL
Effect (R2) a

Broad-Sense
Heritability

A—Studies Where Epistases Have been Looked for in the Whole Genome

[22,23] Capsicum annuum (pepper) Pepper veinal mottle virus
(PVMV) 4 10%, 62% (67%, 68%) c 2 (non

additive) 20% 76% (including
epistasis) 95%

[22,23] Capsicum annuum (pepper) Potato virus Y (PVY) 6 10%, 10%, 10%, 12%,
25% (33%) c

2 (1 non
additive) 25% 66–71% (including

epistasis) 90–96%

[24] Capsicum annuum (pepper) Cucumber mosaic virus
(CMV) 2 19%, 24% 2 (1 non

additive) 33% 57% (including
epistases) 94%

[25] Capsicum annuum (pepper) CMV (strain N) 3 4%, 8%, 64% 2 (non
additive) 29% NA d NA

[25] Capsicum annuum (pepper) CMV (strain MES) 2 13%, 45% 2 (1 non
additive) 25% NA NA

[26] Capsicum annuum (pepper) PVY (virus accumulation
or AUDPC) 4 15%, 16%, 16%, 34% 0 - 34–44% 64–98%

[26] Capsicum annuum (pepper) PVY (frequency of
resistance breakdown) 3 9%, 13%, 40% 4 (1 non

additive) 11, 17, 19% 69% (including
epistases) 87%

[27] Capsicum annuum (pepper) PVY 3 6%, 26%, 35% 2 (both also
additive) 11% 58% (including

epistasis) 93%

[27] Capsicum annuum (pepper) CMV 3 11%, 22%, 31% 2 (both also
additive) 9% 51% (including

epistasis) 98%

B—Studies Where Epistases Have been Looked for Only Between QTL with Additive Effects

[28] Beta spp. x Beta vulgaris
(sugar beet) Beet yellows virus (BYV) 3 4%, 7%, 11% 0 - NA NA

[29] Cucumis melo (melon) CMV-M6 4 5%, 10%, 12%, 35% 2 9% 78% (including
epistasis) NA

[30] Zea mays (maize) Maize chlorotic dwarf virus
(MCDV) 4 3%, 4%, 24%, 25% 2 NA 55% (including

epistasis) 87%

[31] Prunus armeniaca (apricot) Plum pox virus (PPV) 6 9%, 14%, 15%, 16%,
17%, 56% 3 NA 12–78% (including

epistasis) 59–72%

[32] Phaseolus vulgaris (common
bean)

Beet curly top virus
(BCTV) 2 12%, 47% 2 NA 24–53% e NA

[33] Arabidopsis thaliana PPV 3 7%, 23%, 66% 0 - NA 92%
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Table 1. Cont.

Reference Plant Virus Number of
Additive QTL

Effect of Additive
QTL (R2) a,b

Number of
Epistatic QTL

Effect of Epistatic
QTL (R2) a

Global QTL
Effect (R2) a

Broad-Sense
Heritability

B—Studies Where Epistases Have been Looked for Only Between QTL with Additive Effects

[34] Cucumis melo (melon) Tomato leaf curl New Dehli
virus (ToLCNDV) 3 13%, 18%, 67% 3 3, 11% NA NA

[35] Zea mays (maize) Sugarcane mosaic virus
(SCMV) 5 8%, 10%, 20%, 28%,

56% 3 7, 18, 29% 77% (including
epistases) 77–94%

[36] Avena sativa (oat) Barley yellow dwarf virus
(BYDV) 4 6%, 8%, 9%, 36% 3 3, 5% 50–58% (including

epistases) 58%

[37] Triticum aestivum (wheat) Wheat yellow mosaic virus
(WYMV) 3 5%, 10%, 54% 2 5% 34–57% (without

epistasis) 84%

a Part of the phenotypic variance explained by the QTL(s) (coefficient of determination R2). When different values were available for a given QTL, depending on the analysis method or
dataset, the maximal value was indicated. b in bold and italics: QTL showing significant epistatic effects. c figures between parentheses correspond to QTL that have been identified with
a model that considers the major QTL as a co-factor. Therefore, the effects (R2 values) of these QTL cannot be compared with those of the other QTL. d NA: Data not available. e It was not
clear from that study if the epistasis was included or not.
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Though widespread, QTL analyses usually do not provide insights into the mechanisms involved
in the genetic background effects on resistance genes. This is mainly because most of these QTLs
have not been cloned [9]. Mechanistic studies have been performed mostly on major-effect resistance
genes. In a few instances, resistance QTL can correspond to particular alleles of major-effect genes.
For example, the resistance QTL pvr2 and pvr6 were shown to encode the translation initiation
factors eIF4E and eIFiso4E, respectively [22,38,39]. Overall, similar background effects can be
expected on the two categories of resistance listed above, effector-triggered resistance, and resistance
by loss-of-susceptibility.

3. Effector-Triggered Dominant Resistances: Efficiency and Durability Depend on
Genetic Background

Active resistance processes to viruses have been characterized in many plant species as relying
on the specific recognition of pathogen proteins, called Avirulence factors (Avr) or effectors. These
mechanisms are known as Effector Triggered Immunity or ETI (see reference [40]). The resistance
process is mediated by R-genes, encoded by the plant genomes, that code for proteins containing
Nucleotide Binding Domains and Leucine-Rich Repeats (NB-LRR). NB-LRR factors are encoded by
large families of genes and are associated with resistance to all kinds of pathogens and pests affecting
plants (oomycetes, fungi, bacteria, insects, and nematodes, etc.). In the frame of the current review,
we will only focus on NB-LRR associated with resistance to viruses, a topic that has been recently
reviewed elsewhere [41]. The NB-LRR protein may interact directly or indirectly with the viral effector,
which triggers a complex signaling pathway ultimately resulting in the activation of the resistance
response. ETI often ultimately results in a Hypersensitive Response (HR), an induced localized plant
cell death at the site of penetration of the pathogen, highly recognizable by necrosis, and resulting in
the pathogen’s death. In some cases, Extreme Resistance (ER) has been described at the cell level with
no apparent necrosis. In all cases, ETI includes very complex signaling cascades involving protein
phosphorylations, involvement of phytohormones, and activation of specific transcription factors,
resulting in the expression of Pathogenesis Related (PR) proteins.

R genes controlling dominant resistance, isolated from CWR, are favored by breeders and have
been introgressed into many elite crop cultivars [8,42]. Many R genes have been cloned and the
corresponding Avr factors identified [41], but significantly, R genes have been routinely selected in
breeding schemes based on resistance phenotype or marker-assisted selection without the formal
identification of the underlying gene. While NB-LRR are seen as the major determinant of ETI,
introgressing them to new genetic background can undermine their function. While a number of
R genes retain their effectiveness when transgenically introduced into heterologous plant species
belonging to the same family, as exemplified by the transfer of Rx in Nicotiana species [43], NB-LRR
genes tend not to function properly when transferred to plants of a different family [44]. This may be
due to lack of appropriate protein partners. Conversely, because NB-LRR proteins have to be tightly
regulated, introgression into a new genetic background can destabilize this repression, leading to
spontaneous tissue necrosis (reviewed in [45]).

R-based resistance-breaking is usually associated with mutations in the viral Avirulence factors,
resulting in their non-recognition by the R gene [46–49]. The resistance durability is closely linked
to (i) the fitness cost associated with the RB mutations and (ii) the opportunity of the mutation
to arise [50–54]. Pleiotropic effects of resistance-breaking mutations may result in across-host
fitness trade-offs, known as resistance-breaking (or virulence) costs. For different pathosystems
involving R-mediated resistance and viruses, resistance-breaking costs were analyzed through the
monitoring of within-host components of the viral fitness [55–58]. Those studies showed that the
resistance-breaking mutants were usually less competitive than the parental isolates in susceptible
plants. Duff-Farrier et al. [59] showed that the durability of the Rx-mediated resistance differs according
to the genetic backgrounds. The potato Rx gene provides resistance against the Pepino mosaic virus
(PepMV) in tomato (Solanum lycopersicum). The authors showed that two point mutations in the
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avirulence factor (coat protein; CP) of PepMV conferred Rx breaking in S. lycopersicum, whereas
they did not confer Rx breaking in N. tabacum and only one of them allowed for Rx breaking in
N. benthamiana, suggesting that the durability of Rx-mediated resistance may depend on the genetic
background in which it is present. Outside those extreme effects of the genetic background on
resistance, more subtle effects have been described concerning R-based resistance in conjunction
with introgression. Deng et al described how the resistance to the bacterium Xanthomonas oryzae pv.
oryzae (Xoo), associated with membrane-localized LRR protein encoded by Xa3/Xa26, is more efficient
in the Oryza sativa ssp. japonica rice background than in the O. sativa ssp. indica one [60], a fact
that is associated with a higher expression of Xa3/Xa26. One QTL associated with differences in
resistance [61] is associated with a defense-responsive WRKY transcription factor. They noticed how
the japonica background is associated with a higher expression of the WRKY45 allele 1 that might
contribute to an increased response to Xa3/Xa26-mediated response [60]. Similarly, genetic background
has been shown to be instrumental in the resistance mediated by Me1 and Me3 R genes in pepper
toward nematodes: introgression of those genes into a susceptible background made it more likely
for the plant to be attacked by the parasite than when they were introgressed into a partially resistant
background [62].

Recent studies have highlighted molecular factors affecting NB-LRR accumulation and
consequently resistance expression (Figure 1). Among them, the glycine-tyrosine-phenylalanine (GYF)
domain protein EXA1 has been identified as a negative regulator of NB-LRR protein accumulation,
and as a result, limits plant immunity [63]. Other factors, such as molecular chaperones and the
ubiquitin-mediated proteasome system have been shown to affect the NB-LRR folding, accumulation,
or turnover [64,65]. However, network analysis involving Arabidopsis mutants impaired in different
branches of the resistance pathway (namely Jasmonate, Ethylene, Phytoalexin Deficient 4 and Salicylate)
shows how those pathways are connected and buffered [66]. This allows us to maintain a robust
response to pathogens, even if one branch of the signaling pathway, downstream of the R gene,
is impaired [67]. Altogether, those studies show that variability among those factors, as well as
among downstream regulatory pathways between genetic backgrounds, could modulate the resistance
response. This in turn could directly affect how pathogens can subsist in plants, therefore allowing
selection of resistance-breaking variants and jeopardizing the resistance durability.

Besides genetic background, strictly speaking, the role played by epigenetic mechanisms in
plant-pathogen interactions has gained interest during the last years [68]. Indeed, DNA methylation
and demethylation, various histone modifications, noncoding small-interfering RNA (sRNA)-mediated
transcriptional gene silencing, and posttranscriptional gene silencing (PTGS) were shown to be
implicated in the control of plant defense against pathogens [68,69]. While only a few studies
associate chromatin modification to plant innate immunity [70], histone modification was shown
to be directly involved in chromatin remodeling and transcriptional control of a subset of R genes in
Arabidopsis [71]. However, most of those studies refer to fungal and bacterial pathogens. Concerning
resistance to plant viruses, the majority of studies describe epigenetic mechanisms involving RNA
molecules (sRNA) that were shown to naturally protect plants from viruses, which can be both inducers
and targets of PTGS. Those epigenetic regulations involved in plant-virus interactions, including
virus-induced transgenerationally inherited epigenetic modifications, were recently discussed by
Baulcombe and Dean [72]. Sharma et al. highlighted, in particular, that siRNA-mediated methylation
of viral DNA confers resistance to various plant DNA viruses, including geminiviruses (family
Geminiviridae) [73]. Epigenetic modifications were shown to be involved in virus resistance via
siRNA-mediated RNA-directed DNA methylation by Yadav and Chattopadhyay [74]. The authors
reported that a soybean variety resistant to a geminivirus, showed a rapid degradation of viral RNAs,
in comparison to a susceptible variety, due to the fact that viral DNA is targeted at the transcriptional
level, while virus-derived transcripts are targeted by posttranscriptional silencing. This is a nice
example of viral genome methylation as an epigenetic defense against geminiviruses.
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resulting in a signaling cascade involving MAP Kinases and hormones, Transcription Factors (TF) 
activation of Pathogenesis-Related (PR) genes and ultimately, repression (or suppression) of the virus 

Figure 1. Potential effects of the genetic background on a NB-LRR based resistance to a viral pathogen.
(A) classical representation of the guard model. On the left side, NB-LRR remains inactive in plants
unchallenged by virus (represented by green rods). On the right side, virus-activation of NB-LRR
resulting in a signaling cascade involving MAP Kinases and hormones, Transcription Factors (TF)
activation of Pathogenesis-Related (PR) genes and ultimately, repression (or suppression) of the virus
in the plant. (B) Potential regulations of the response cascade susceptible to act at each stage of the
signaling response are indicated in red (see accompanying text for details). Those variations may
decrease the efficiency of the response, therefore resulting in a higher accumulation of viruses in the
plant, allowing the development of resistance breaking (RB) isolates, through mutations represented
by a red star.

At the plant level, DNA methylation could be involved with resistance to viruses. Indeed,
Zhao et al. studied the DNA methylation polymorphism in flue-cured tobacco accessions and candidate
markers for Tobacco mosaic virus (TMV) resistance [75]. In particular, they conducted experiments to
analyze the DNA methylation pattern within TMV-resistant and TMV-susceptible tobacco groups using
the methylation-sensitive amplified polymorphism (MSAP) technique. Their results showed that three
polymorphic sites (MSAP fragments) were significantly correlated with TMV resistance [75]. Recently,
a possible role of the methylation of the resistance gene CTV.20 in response to Citrus tristeza virus (genus
Closterovirus, family Closteroviridae) infection was suggested [76]. A hypermethylation of the CTV.20
gene was observed in resistant Poncirus trifoliata and tolerant to carrizo citrange (derived from a cross
C. sinensis L. Osb. × P. trifoliata L. Raf.), either healthy or infected, while a partial demethylation was
detected in susceptible sweet (Citrus sinensis L. Osb.) and sour orange (Citrus aurantium L.) following
CTV infection [76]. Altogether, those studies confirmed that epigenetic mechanisms can play a role in
virus resistance.

4. Resistances Associated with Mutations in Susceptibility Factors: Redundancy, an Ambivalent
Factor That Impacts Resistance Durability

The completion of the viral cycle results from a complex interplay between virus and host-encoded
factors, also called susceptibility factors. In this scheme, absence or non-adequacy of a single
susceptibility factor leads to full or partial recessive resistance to viruses [77]. The first demonstration
of this concept of loss-of-susceptibility resistance genes in crops came out through the identification
of eukaryotic initiation factors as key players in plant-potyvirus interactions [38,78–80]. Since then,
antiviral recessive resistance genes in model plants and several crop species were identified and
have been reviewed [81]. Recently, the genetic manipulation of eukaryotic initiation factors using
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CRISPR/Cas9 technology allowed to confer virus resistance or lower susceptibility in important crops
such as cucumber, rice, and cassava [82–84]. Moreover, a proof-of-concept study in Arabidopsis showed
that eIF4E genes could be engineered to copy natural resistance alleles and generate resistance at no
yield loss [85].

Often, those susceptibility factors have been shown to be encoded by small multigenic families.
Functional redundancy among those multiple paralogs of a susceptibility factor can play either in
favor or against resistance or its durability. In the former case, the redundancy enables diversification
of the susceptibility factors and the plant fitness is not affected whereas viruses lose the copy they can
use. In the latter case, viruses can use multiple copies and therefore can break down the resistance.
The positive role of host gene redundancy on resistance has been exemplified in Chinese cabbage
(Brassica rapa cv pekinensis) [86]. Redundancy of copies of eukaryotic translation initiation factors in
Chinese cabbage was shown to arise from the mis-splicing of eIFiso4E gene, enabling diversification
and resulting in the plant being able to evade virus infection. Indeed, when the copy that Turnip mosaic
virus (TuMV) normally uses in Chinese cabbage is non-functional for both plant and virus, there is no
apparent disadvantage for the plant. The durability of the resistance is dependent upon the virus not
being able to mutate in order to hijack other eIFiso4E orthologs. In the lettuce (Lactuca sativa)/Lettuce
mosaic virus (LMV) pathosystem, the mo1 resistance conferred by mutations in the eIF4E copy has
largely remained durable in the field, despite the ability to easily select RB LMV variants in laboratory
experiments [13]. The durability of the mo1 lettuce resistance could be explained by a combination
of factors, including the nature and fitness costs associated with these mutations, the fact that LMV
is not able to use the eIFiso4E isoform in lettuce [78], but also the geographical structure of LMV
populations [13].

In opposition, viruses can evolve towards resistance breaking through the acquisition of mutations
that either restore compatible interactions with the mutated host susceptibility factor, as seen in pepper
(Capsicum annuum) with the pvr2/eIF4E1 resistance breakdown [87], or that possibly allow PVY to
switch from eIF4E to the isoform eIFiso4E, as recently suggested in tobacco (Nicotiana tabacum) [88]
(Figure 2). Lastly, Bastet et al. [85] showed how mutation within the TuMV-VPg, associated with
loss-of-function (Knock-Out) of eIFiso4E (hereafter named eifiso4e) resistance-breaking [89], expanded
the virus ability to recruit both isoforms, eIFiso4E and eIF4E1. As a result, resistance to the RB isolate
could only be attained when the broken-down eifiso4e resistance allele was combined with an eif4e1
resistance allele. It is highly likely that by integrating an eif4e1 resistance allele in combination with
eifiso4e, a higher durability of the latter gene should be achieved, although this remains to be tested.
All these examples, taken from various plants and pathosystems, illustrate how redundancy among
eIF4E-coding genes may reduce eIF4E-based resistance durability by making other eIF4E factors
available to viruses [90]. It also suggests how the elusive genetic background effect can, in some cases,
be narrowed down to simple redundancy effects involving one or a small number of genes.

In relation to the impact of protein accumulation on NB-LRR-based resistance mechanisms (see
above), similar considerations could be put forward on eIF4E-based resistance (Figure 3). Regulatory
feedbacks among different translation initiation factors isoforms have been shown earlier [91].
Moreover, eIFiso4E protein accumulation has been shown to be regulated by the ubiquitin proteasome
system [92] and members of the eIF4E family are known to be post-translationally regulated [90].
Interestingly, in tomato (Solanum lycopersicum), a comparison between a natural functional eIF4E
resistance allele and an engineered loss-of-function KO allele, unveiled an unexpected regulatory
process between the members of the eIF4E family, impairing the effectiveness of a resistance
strategy based on eIF4E-KO [93]. Therefore, any genetic factor regulating the accumulation of plant
susceptibility proteins could play a role on resistance durability. In this regard, it is very interesting
that in pepper, the major durability QTL identified, associated with the eIF4E1 pvr23 allele overcoming
is located in the region of a natural loss-of-function allele of eIFiso4E, suggesting that similar regulatory
mechanisms could be at stake (see below). It is also interesting to note that mutations affecting the
glycine-tyrosine-phenylalanine (GYF) domain protein EXA1, identified as a negative regulator of
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NB-LRR protein accumulation (see above), is also involved in resistance to Plantago asiatica mosaic
virus (PlAMV), a potexvirus [94]. The authors suggested that this resistance might be associated
with the direct regulation of the susceptibility factors eIF4E and eIF4G. It remains to be determined
whether EXA1, which also contains a conserved eIF4E-binding motif, could function by upregulating
unidentified NB-LRR or through indirect effect on eIF4E.
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Figure 2. Different Resistance-Breaking pathways for potyviruses in plants. Potyviruses are represented
by their VPg (main virulent determinant for eIF4E-mediated resistance). Two plant translation initiation
factors are represented: eIF4E1 (4E1) and its isoform eIFiso4E (iso4E). Mutations affecting eIF4E1 or
the viral VPg are represented by green and red stars, respectively. KO mutants for eIF4E or eIFiso4E
are crossed out. The figure is a schematic representation of resistance-breaking strategies in Capsicum
annuum, Nicotiana tabacum and Arabidopsis thaliana as depicted in References [85,87,88], respectively.
Briefly, in Capsicum annuum, mutation in the viral VPg allows the virus to hijack the resistant eIF4E1
protein; in Nicotiana benthamiana, it allows the virus to recruit eIFiso4E while losing its initial ability to
recruit eIF4E1; finally, in Arabidopsis thaliana, it allows the virus to recruit both eIF4E1 and eIFiso4E.
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Figure 3. Potential effects of the genetic background on a eIF4E-based resistance to a viral pathogen.
(A) Simple representation of eIF4E-based resistance. (B) Potential modulation of this resistance
(or resistance breaking) in mixed genetic background through the presence of an additional eIF4E factor
(indicated in red), or (C), by regulation of eIF4E accumulation level through feedback mechanisms
or modulation of the eIF4E level regulation. Increased eIF4E accumulation allows minimal virus
replication and results in the emergence of RB isolates. Mutations affecting the host eIF4E1 or the
viral VPg are represented by green and red stars, respectively. The ‘plus’ sign indicates an increased
accumulation of eIF4E1. The ‘cross mark’ indicates that the virus cannot recruit the corresponding
eIF4E copy.
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5. The Genetic Background Drives the Evolution of Resistance-Breaking Isolates

5.1. Role Played by Minor Genes (Quantitative Trait Loci or QTL) in the Level and the Durability of the
Resistance Conferred by a Major Gene

The presence of QTL, besides the major-effect resistance gene, was shown to impact the durability
of resistance in different pathosystems (plant–virus/fungus/nematode) [95–97]. The emergence of RB
variants overcoming the major resistance gene was very rare or did not occur in the plant genotypes
combining the major resistance gene in a quantitatively resistant genetic background, but increased in
a susceptible genetic background. In pepper, Quenouille et al. identified plant QTL for a trait related
to the frequency of the emergence of RB variants of PVY overcoming major resistance alleles at the
eIF4E1 pvr2 locus [26,98]. In particular, they showed that all QTL involved in viral accumulation were
also involved in the RB frequency of the major resistance gene pvr2. Interestingly and unexpectedly,
the QTL allele with the largest effect on the decrease of RB frequency came from the susceptible
parent of the progeny. In contrast, the minor-effect QTL alleles came from the resistant parent. This
means that transfer of a resistance gene in the genetic background of an elite cultivar could either
increase or decrease resistance durability. Later on, the same authors evaluated a larger collection
of pepper landraces, representing the worldwide genetic diversity, for its ability to modulate the
breakdown frequency by PVY of pvr2 [99]. The RB-mutations in the virus differed between plant
genotypes, indicating differential selection effects exerted on the virus population by the different
genetic backgrounds. The RB frequency was positively correlated with the level of virus accumulation,
confirming the impact of quantitative resistance loci on resistance durability [99].

In tobacco, combining a major PVY resistance gene with another gene involved in viral
accumulation has proved to enhance eIF4E va-mediated resistance durability [100]. The authors
suggested that combining the va gene, responsible for limiting potyvirus cell-to-cell movement,
with another va2 locus, involved in limiting virus accumulation, could increase the durability of
va-mediated resistance. The correlation between increased virus accumulation and reduced durability
of the resistance is consistent with a simple explanation where the virus has a higher probability
of accumulating mutations associated with RB [26,98,99]. Following their generation, the fate of
resistance-breaking variants depends not only on their accumulation (fitness) but also on the genetic
drift that randomly changes the frequencies of viral variants from generation to generation. The success
of the emergence of the RB variants (and as a consequence, the decrease of resistance durability)
depends, in particular, on the viral effective population size (Ne), defined “as the number of individuals
passing their genes to the next generation” [27]. During plant infection, the viral population undergoes
bottlenecks, leading to drastic reductions in Ne, and potentially, to the loss of the fittest variants.
Therefore, plant genetic factors may affect Ne, and slowing down pathogen evolution could increase
resistance durability. Tamisier et al. showed that Ne at the viral inoculation step is a diversified and
highly heritable trait among a pepper population [27], and one of the QTL controlling Ne may also
decrease virus adaptation to pvr2-mediated resistance [27]. Accordingly, Rousseau et al. showed that
the frequency of pvr2 resistance breakdown was determined by complex interactions between virus
Ne, the level of resistance efficiency, and the intensity of selection exerted by the plant on the virus
population [101].

5.2. Role Played by the Genetic Background in the Modulation of the Genetic Drift and Selection within
Virus Populations

Owing to their large population size and short generation time, viruses have a great potential to
quickly evolve and adapt under selection pressures [102]. Host factors (including genetic background),
in combination with environmental factors, likely affect virus evolution and adaptation, helping
viruses to invade new hosts and potentially form more virulent strains [50,103,104]. The durability
of deployed resistance genes ultimately depends on the overall evolutionary potential of viruses
(which is determined by the genetic structure of viral populations), on the functional flexibility of
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the pathogen avirulence factors targeted by the resistance gene(s), and on ecological effects which
may increase or slow down the emergence of resistance-breaking isolates [103]. Diversity in viral
species has been described previously as a mechanism to avoid host resistance or as a reservoir to
maintain variants with selective advantages in other environments, and has been correlated with
the ability to infect numerous hosts [105]. In particular, it is generally assumed that weeds and wild
hosts have a broader genetic diversity than crop species, and therefore allow for the establishment of
viral populations with a higher degree of genetic variability, potentially including resistance-breaking
variants that can be selected at a higher frequency [106]. There are many examples of damaging
viruses emerging into cultivated crops from native ecosystems, and it has been argued that “the viral
genetic variability contained in reservoir populations is the most important genetic determinant of viral
emergence” [103]. Weeds, where viral populations are under selective constraints that are potentially
different from those in crops, could contribute to the emergence of RB variants for crops. Due to the
maintenance of virus inoculum sources for long periods in the field and the possibility of hosting
mixed infections, weeds could play an important role in generating virus variability by mutation,
recombination, and/or reassortment, representing a stepping-stone in moving towards resistance
breaking. Garcia-Andres et al. [107], provided evidence of the relevance of the wild species S. nigrum
as a reservoir of begomoviruses that causes epidemics of Tomato yellow leaf curl virus (TYLCD) and of
recombination as a force driving their evolution. Jaag and Nagy [108] showed that environmental and
host factors could play an important role in viral RNA recombination, one of the major driving forces
in RNA virus evolution [103]. A recent example of the emergence of a resistance-breaking virus that
may have resulted from host-switching, is the description of a new resistance-breaking tobamovirus,
an Israeli isolate of Tomato brown rugose fruit virus (ToBRFV), that is able to overcome Tm-2-mediated
resistance in tomato [109].

The complexity of host range expansion and therefore the difficulty of predicting the
resistance-breaking in crops, was highlighted by Moreno-Perez et al. [110]. The authors showed
that the effects on the virus fitness of different mutations in Pepper mild mottle virus (PMMoV) coat
protein, that result in overcoming L gene resistance in pepper, depend on the host genotype and on the
type (single or mixed) of infection. The authors showed that the RB mutations may be neutral, costly,
or favorable for the virus fitness depending on the genotype of susceptible hosts [110].

In a recent study, Rousseau et al. [111] hypothesized that breeding of plant varieties exposing
viruses to stronger genetic drift, could slow virus adaptation and may represent an approach for
increasing resistance durability. In this study, the authors combined high-throughput sequencing with
experimental evolution in order to follow, within the host dynamics of five RB-variants of PVY in
fifteen closely related pepper genotypes that carry the resistance gene pvr23, but differ in their genetic
backgrounds. Their results showed that “the viruses experienced considerable diversity in genetic drift
regimes, depending on the host genotype”. Importantly, they showed that the genetic drift experienced
by virus populations was a heritable plant trait.

5.3. Combining Recessive and Dominant Resistance Genes Sharing the Same Viral Effector Impacts
Resistance-Breaking

Evolutionary constraints upon viral resistance-breaking determinant can be imposed by a trade-off
between the breakdown of a recessive resistance gene and host viability regulated by a dominant
resistance gene [50,104]. In the pea/Clover yellow vein virus (ClYVV) pathosystem, Atsumi et al. [104]
showed that the recessive gene cyv1 confers resistance to ClYVV and the major viral resistance-breaking
determinant is the P3N-PIPO protein. After overcoming the cyv1 resistance, the RB variants accumulate
efficiently and produce a more abundant P3N-PIPO that is also a viral effector recognized by the
dominant gene Cyn1, which induces systemic cell-death and the loss of host viability that is unfavorable
for the virus. The authors propose that a trade-off for the virus in overcoming paired defense
mechanisms may sustain the durability of resistance against ClYVV [50,104].



Int. J. Mol. Sci. 2018, 19, 2856 13 of 20

6. Concluding Remarks

In this review, we gathered scattered studies that have carried out a close examination of genetic
background effects on plant resistance genes or QTLs. Most of these studies have focused on resistance
efficiency, and only a few of them on resistance durability. However, this question is of high and
generic interest because the effect of genetic background determines the transferability of resistance
genes or QTL, from one species (or genotype) to another, and the predictability and efficiency of
genetic progress during breeding for resistance. Indeed, in the case of strong background effects,
a large part of resistance efficiency, durability, or the spectrum of action may be lost after the transfer.
The examination of QTL analyses of plant resistance to viruses summarized in Table 1 and supports
the view that the majority of detected QTL have an additive, and therefore, predictable effects on the
resistance phenotype. However, QTL involved in epistatic relationships (i.e., background dependent)
are also frequent and the mean effect of epistases on the variation of the resistance phenotype is quite
high. However, the types of epistasis were rarely mentioned in these studies. Indeed, three kinds
of epistases could be distinguished, with different outcomes for resistance. Positive epistasis is the
most favorable case as it corresponds to a more-than-additive effect between resistance alleles at two
QTL. Reciprocal sign epistasis is the least favorable case as the combination of resistance alleles at two
QTL contributes to a higher susceptibility than the combination of two susceptibility alleles. Finally,
negative epistasis is intermediate, showing a less-than-additive effect between resistance alleles at two
QTL. It would therefore be interesting to characterize more precisely the types of epistasis between
resistance QTL to gain insight into the mechanisms involved and the resistance benefit that we could
expect from these epistases. As a consequence, complex and frequent interactions are expected between
resistance genes or QTL and the genetic background.

A few mechanistic studies showed that the variability among molecular factors present in
the genetic backgrounds can affect NB-LRR accumulation, turnover, and downstream regulatory
pathways, and could consequently modulate the resistance response conferred by R-genes. This,
in turn, could directly affect how pathogens can subsist in plants, therefore allowing for the selection
of Resistance-Breaking variants and jeopardizing resistance durability. The redundancy for recessive
resistances, associated with mutations in susceptibility factors, has also been shown to be an ambivalent
factor impacting resistance durability. Indeed, functional redundancy among multiple paralogs of
a susceptibility factor can play either in favor or against the resistance level or its durability. In
the former case, the redundancy enables diversification of the susceptibility factors and the plant
fitness is not affected, whereas, viruses lose the copy they can use. In the latter case, viruses can use
multiple copies and therefore can break down the resistance. Furthermore, recent experimental viral
evolution studies performed in genotypes carrying the same major-resistance gene (inducing a strong
selection pression), but differing in the genetic drift they impose to the viral population, suggest that
breeding of plant varieties exposing viruses to stronger genetic drift could slow virus adaptation and
may represent an approach for increasing resistance durability. From an agronomic point of view,
selecting varieties where the control of virus evolution can be done by manipulating the evolutionary
forces acting on virus populations (including multiplying bottlenecks) could allow to achieve better
resistance durability. More generally, since background effects are largely unpredictable and can be
either positive or negative on the phenotypic expression of resistance genes or QTL, one can advise
breeders: (1) To diversify the recipient genotypes where resistance genes are introgressed, but also,
(2) to select directly for favorable backgrounds, like in recurrent selection programs that allow genome
mixing between several genotypes.
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Abbreviations

QTL Quantitative Trait Loci
RB Resistance breaking
eIF4E Eukaryotic translation initiation factor 4E
NB-LRR Nucleotide-Binding site Leucine Rich Repeats
BCTV Beet curly top virus
BYDV Barley yellow dwarf virus
BYV Beet yellows virus
ClYVV Clover yellow vein virus
CMV Cucumber mosaic virus
CTV Citrus tristeza virus
LMV Lettuce mosaic virus
MCDV Maize chlorotic dwarf virus
PepMV Pepino mosaic virus
PlAMV Plantago asiatica mosaic virus
PMMoV Pepper mild mottle virus
PPV Plum pox virus
PVMV Pepper veinal mottle virus
SCMV Sugarcane mosaic virus
TEV Tobacco etch virus
TMV Tobacco mosaic virus
ToBRFV Tomato brown rugose fruit virus
ToLCNDV Tomato leaf curl New Dehli virus
TuMV Turnip mosaic virus
TYLCV Tomato yellow leaf curl virus
WYMV Wheat yellow mosaic virus
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