C. H. Chandler, S. Chari, and I. Dworkin, Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution, Trends Genet, vol.29, pp.358-366, 2013.

C. H. Chandler, S. Chari, A. Kowalski, L. Choi, D. Tack et al., How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects, PLoS Genet, vol.13, 2017.

J. L. Gallois, A. Guyon-debast, A. Lecureuil, D. Vezon, V. Carpentier et al., The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy, Plant Cell, vol.21, pp.442-459, 2009.

H. Zhang, N. Mittal, L. J. Leamy, O. Barazani, and B. H. Song, Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement, Evol. Appl, vol.10, pp.5-24, 2017.

M. Brozynska, A. Furtado, and R. J. Henry, Genomics of crop wild relatives: Expanding the gene pool for crop improvement, Plant Biotechnol. J, vol.14, pp.1070-1085, 2016.

T. Lin, G. Zhu, J. Zhang, X. Xu, Q. Yu et al., Genomic analyses provide insights into the history of tomato breeding, Nat. Genet, vol.46, pp.1220-1226, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639866

G. Zhu, S. Wang, Z. Huang, S. Zhang, Q. Liao et al., Rewiring of the Fruit Metabolome in Tomato Breeding, Cell, vol.172, pp.249-261, 2018.

R. Nelson, T. Wiesner-hanks, R. Wisser, and P. Balint-kurti, Navigating complexity to breed disease-resistant crops, Nat. Rev. Genet, vol.19, pp.21-33, 2018.

M. L. Pilet-nayel, B. Moury, V. Caffier, J. Montarry, M. C. Kerlan et al., Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection, Front. Plant Sci, vol.8, 1838.
URL : https://hal.archives-ouvertes.fr/hal-01905321

, Int. J. Mol. Sci, vol.19, 2018.

R. Johnson, Durable resistance: Definition of, genetic control, and attainment in plant breeding, Phytopathology, vol.71, pp.567-568, 1981.

F. Fabre, C. Bruchou, A. Palloix, and B. Moury, Key determinants of resistance durability to plant viruses: insights from a model linking within-and between-host dynamics, Virus Res, vol.141, pp.140-149, 2009.

J. Montarry, J. Doumayrou, V. Simon, and B. Moury, Genetic background matters: a plant-virus gene-for-gene interaction is strongly influenced by genetic contexts, Mol. Plant Pathol, vol.12, pp.911-920, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01462654

M. Sorel, L. Svanella-dumas, T. Candresse, G. Acelin, A. Pitarch et al., Key mutations in the cylindrical inclusion involved in lettuce mosaic virus adaptation to eIF4E-mediated resistance in lettuce, Mol. Plant Microbe Interact, vol.27, pp.1014-1024, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632897

K. B. Scholthof, Spicing Up the N Gene: F. O. Holmes and Tobacco mosaic virus Resistance in Capsicum and Nicotiana Plants, Phytopathology, vol.107, pp.148-157, 2017.

F. O. Holmes, Inheritance of resistance to tobacco-mosaic disease in tobacco, Phytopathology, vol.28, pp.553-561, 1938.

L. S. Boiteux, Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense, Theor. Appl. Genet, vol.90, pp.146-149, 1995.

B. Moury, A. Palloix, K. G. Selassie, and G. Marchoux, Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains, Euphytica, vol.94, pp.45-52, 1997.

H. Pidon, A. Ghesquiere, S. Cheron, S. Issaka, E. Hebrard et al., Fine mapping of RYMV3: A new resistance gene to Rice yellow mottle virus from Oryza glaberrima, Theor. Appl. Genet, vol.130, pp.807-818, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522297

S. Poque, G. Pagny, L. Ouibrahim, A. Chague, J. P. Eyquard et al., Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana, BMC Plant Biol, vol.15, p.159, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01262384

L. Ouibrahim, M. Mazier, J. Estevan, G. Pagny, V. Decroocq et al., Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes, Plant J, vol.79, pp.705-716, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640977

A. C. Chandra-shekara, M. Gupte, D. Navarre, S. Raina, R. Raina et al., Light-dependent hypersensitive response and resistance signaling against Turnip Crinkle Virus in Arabidopsis, Plant J, vol.45, pp.320-334, 2006.

C. Caranta, V. Lefebvre, and A. Palloix, Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci, Mol. Plant. Microbe Interact, vol.10, pp.872-878, 1997.

C. Caranta and A. Palloix, Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses, Theor. Appl. Genet, vol.92, pp.15-20, 1996.

C. Caranta, A. Palloix, V. Lefebvre, and A. Daubèze, QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host cells, Theor. Appl. Genet, vol.94, pp.431-438, 1997.

C. Caranta, S. Pflieger, V. Lefebvre, A. M. Daubeze, A. Thabuis et al., QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper, Theor. Appl. Genet, vol.104, pp.586-591, 2002.

J. Quenouille, E. Paulhiac, B. Moury, and A. Palloix, Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: A rational basis for sustainable resistance breeding in plants, Heredity, vol.112, pp.579-587, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02630950

L. Tamisier, E. Rousseau, S. Barraillé, G. Nemouchi, M. Szadkowski et al., Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation, J. Gen. Virol, vol.98, 1923.
URL : https://hal.archives-ouvertes.fr/hal-01571391

M. K. Grimmer, T. Kraft, S. A. Francis, and M. J. Asher, QTL mapping of BNYVV resistance from the WB258 source in sugar beet, Plant Breed, vol.127, pp.650-652, 2008.

C. Guiu-aragones, A. J. Monforte, M. Saladie, R. X. Correa, J. Garcia-mas et al., The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci, Mol. Breed, vol.34, pp.351-362, 2014.

, Int. J. Mol. Sci, vol.19, 2018.

M. W. Jones, M. G. Redinbaugh, R. J. Anderson, and R. Louie, Identification of quantitative trait loci controlling resistance to maize chlorotic dwarf virus, Theor. Appl. Genet, vol.110, pp.48-57, 2004.

P. Lambert, F. Dicenta, M. Rubio, and J. Audergon, QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) Polonais' x 'Stark Early Orange' F1 progeny, Tree Genet. Genomes, vol.3, pp.299-309, 2007.

R. C. Larsen and P. N. Miklas, Generation and molecular mapping of a sequence characterized amplified region marker linked with the Bct gene for resistance to Beet curly top virus in common bean, Phytopathology, vol.94, pp.320-325, 2004.

G. Pagny, P. S. Paulstephenraj, S. Poque, O. Sicard, P. Cosson et al., Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana, New Phytol, vol.196, pp.873-886, 2012.

C. Saez, C. Esteras, C. Martinez, M. Ferriol, N. P. Dhillon et al., Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11, Plant Cell Rep, vol.36, pp.1571-1584, 2017.

X. C. Xia, A. E. Melchinger, L. Kuntze, and T. Lubberstedt, Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize, Phytopathology, vol.89, pp.660-667, 1999.

S. Zhu, F. L. Kolb, and H. F. Kaeppler, Molecular mapping of genomic regions underlying barley yellow dwarf tolerance in cultivated oat (Avena sativa L.), Theor. Appl. Genet, vol.106, pp.1300-1306, 2003.

X. B. Zhu, H. Y. Wang, J. Guo, Z. Z. Wu, A. Z. Cao et al., Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat, Theor. Appl. Genet, vol.124, pp.177-188, 2012.

S. Ruffel, M. H. Dussault, A. Palloix, B. Moury, A. Bendahmane et al., A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E), Plant J, vol.32, pp.1067-1075, 2002.

S. Ruffel, J. L. Gallois, B. Moury, C. Robaglia, A. Palloix et al., Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper, J. Gen. Virol, vol.87, pp.2089-2098, 2006.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

D. De-ronde, P. Butterbach, and R. Kormelink, Dominant resistance against plant viruses. Front, Plant Sci, vol.5, p.307, 2014.

A. J. Maule, C. Caranta, and M. I. Boulton, Sources of natural resistance to plant viruses: Status and prospects, Mol. Plant Pathol, vol.8, pp.223-231, 2007.

I. Baures, T. Candresse, A. Leveau, A. Bendahmane, and B. Sturbois, The Rx Gene Confers Resistance to a Range of Potexviruses in Transgenic Nicotiana Plants, Mol. Plant Microbe Interact, vol.21, pp.1154-1164, 2008.

P. Moffett, Transfer and modification of NLR proteins for virus resistance in plants, Curr. Opin. Virol, vol.26, pp.43-48, 2017.

S. H. Spoel and X. Dong, How do plants achieve immunity? Defence without specialized immune cells, Nat. Rev. Immunol, vol.12, pp.89-100, 2012.

M. R. Hajimorad, R. H. Wen, A. L. Eggenberger, J. H. Hill, and M. A. Maroof, Experimental adaptation of an RNA virus mimics natural evolution, J. Virol, vol.85, pp.2557-2564, 2011.

Y. Wang, B. Khatabi, and M. R. Hajimorad, Amino acid substitution in P3 of Soybean mosaic virus to convert avirulence to virulence on Rsv4-genotype soybean is influenced by the genetic composition of P3, Mol. Plant Pathol, vol.16, pp.301-307, 2015.

R. H. Wen, B. Khatabi, T. Ashfield, M. A. Saghai-maroof, and M. R. Hajimorad, The HC-Pro and P3 cistrons of an avirulent Soybean mosaic virus are recognized by different resistance genes at the complex Rsv1 locus, Mol. Plant Microbe Interact, vol.26, pp.203-215, 2013.

P. Gomez, R. N. Sempere, S. F. Elena, and M. A. Aranda, Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus, J. Virol, vol.83, pp.12378-12387, 2009.

Y. Miyashita, G. Atsumi, and K. S. Nakahara, Trade-Offs for Viruses in Overcoming Innate Immunities in Plants, Mol. Plant Microbe Interact, vol.29, pp.595-598, 2016.

S. F. Elena and A. Fraile, García-Arenal, F. Evolution and Emergence of Plant Viruses, Adv. Virus Res, vol.88, pp.161-191, 2014.

, Int. J. Mol. Sci, vol.19, 2018.

F. Garcia-arenal and B. A. Mcdonald, An analysis of the durability of resistance to plant viruses, Phytopathology, vol.93, pp.941-952, 2003.

B. D. Harrison, Virus variation in relation to resistance-breaking in plants, Euphytica, vol.124, pp.181-192, 2002.

H. Lecoq, B. Moury, C. Desbiez, A. Palloix, and M. Pitrat, Durable virus resistance in plants through conventional approaches: A challenge, Virus Res, vol.100, pp.31-39, 2004.

A. Fraile and F. García-arenal, The Coevolution of Plants and Viruses, Adv. Virus Res, vol.76, pp.1-32, 2010.

K. Ishibashi, S. Miyashita, E. Katoh, and M. Ishikawa, Host membrane proteins involved in the replication of tobamovirus RNA, Curr. Opin. Virol, vol.2, pp.699-704, 2012.

C. E. Jenner, X. Wang, F. Ponz, and J. A. Walsh, A fitness cost for Turnip mosaic virus to overcome host resistance, Virus Res, vol.86, pp.1-6, 2002.

B. Janzac, F. Fabre, A. Palloix, and B. Moury, Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances, Mol. Plant Pathol, vol.10, pp.599-610, 2009.

C. R. Duff-farrier, T. Candresse, A. M. Bailey, N. Boonham, and G. D. Foster, Evidence for different, host-dependent functioning of Rx against both wild-type and recombinant Pepino mosaic virus: Rx-mediated resistance against PepMV, Mol. Plant Pathol, vol.17, pp.120-126, 2016.

Y. Deng, H. Liu, Y. Zhou, Q. Zhang, X. Li et al., Exploring the mechanism and efficient use of a durable gene-mediated resistance to bacterial blight disease in rice, Mol. Breed, vol.38, 2018.

Y. Zhou, Y. Cao, Y. Huang, W. Xie, C. Xu et al., Multiple gene loci affecting genetic background-controlled disease resistance conferred by R gene Xa3/Xa26 in rice, Theor. Appl. Genet, vol.120, pp.127-138, 2009.

A. Barbary, A. Palloix, A. Fazari, N. Marteu, P. Castagnone-sereno et al., The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3, Theor. Appl. Genet, vol.127, pp.499-507, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02630683

Z. Wu, S. Huang, X. Zhang, D. Wu, S. Xia et al., Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein, vol.6, 2017.

C. Copeland, V. Woloshen, Y. Huang, and X. Li, AtCDC48A is involved in the turnover of an NLR immune receptor, Plant J, vol.88, pp.294-305, 2016.

Y. T. Cheng and X. Li, Ubiquitination in NB-LRR-mediated immunity, Curr. Opin. Plant Biol, vol.15, pp.392-399, 2012.

R. A. Hillmer, K. Tsuda, G. Rallapalli, S. Asai, W. Truman et al., The highly buffered Arabidopsis immune signaling network conceals the functions of its components, PLoS Genet, vol.13, 2017.

B. M. Tyler, The fog of war: How network buffering protects plants' defense secrets from pathogens, PLoS Genet, vol.13, 2017.

Q. Zhu, W. Shan, M. A. Ayliffe, and M. Wang, Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions, Mol. Plant Microbe Interact, vol.29, pp.187-196, 2016.

D. Marone, M. Russo, G. Laidò, A. De-leonardis, and A. Mastrangelo, Plant Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses, Int. J. Mol. Sci, vol.14, pp.7302-7326, 2013.

K. Palma, S. Thorgrimsen, F. G. Malinovsky, B. K. Fiil, H. B. Nielsen et al., Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor, PLoS Pathog, vol.6, 2010.

H. Yi and E. J. Richards, A Cluster of Disease Resistance Genes in Arabidopsis Is Coordinately Regulated by Transcriptional Activation and RNA Silencing, Plant Cell, vol.19, pp.2929-2939, 2007.

D. C. Baulcombe and C. Dean, Epigenetic Regulation in Plant Responses to the Environment, Cold Spring Harb. Perspect. Biol, 2014.

N. Sharma, P. P. Sahu, S. Puranik, and M. Prasad, Recent Advances in Plant-Virus Interaction with Emphasis on Small Interfering RNAs (siRNAs), Mol. Biotechnol, vol.55, pp.63-77, 2013.

R. K. Yadav and D. Chattopadhyay, Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a Geminivirus, Mol. Plant Microbe Interact, vol.24, pp.1189-1197, 2011.

, Int. J. Mol. Sci, 2018.

J. Zhao, J. Zhang, Y. Wang, R. Wang, C. Wu et al., DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance, J. Zhejiang Univ. Sci. B, vol.12, pp.935-942, 2011.

V. Fanelli, C. De-giovanni, M. Saponari, P. Leonetti, L. Ricciardi et al., A possible role of CTV.20 gene methylation in response to Citrus tristeza virus infection, Eur. J. Plant Pathol, vol.150, pp.527-532, 2018.

C. C. Van-schie and F. L. Takken, Susceptibility genes 101: How to be a good host, Annu. Rev. Phytopathol, vol.52, pp.551-581, 2014.

V. Nicaise, The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus, Plant Physiol, vol.132, pp.1272-1282, 2003.

A. Wang and S. Krishnaswamy, Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement: eIF4E-mediated resistance to plant viruses, Mol. Plant Pathol, vol.13, pp.795-803, 2012.

H. Sanfaçon, Plant Translation Factors and Virus Resistance, Viruses, vol.7, pp.3392-3419, 2015.

M. Hashimoto, Y. Neriya, Y. Yamaji, and S. Namba, Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors, Front. Microbiol, vol.7, 2016.

M. A. Gomez, Z. D. Lin, T. Moll, R. D. Chauhan, L. Hayden et al., Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence, Plant Biotechnol. J, 2018.

A. Macovei, N. R. Sevilla, C. Cantos, G. B. Jonson, I. Slamet-loedin et al., Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus, Plant Biotechnol. J, 2018.

J. Chandrasekaran, M. Brumin, D. Wolf, D. Leibman, C. Klap et al., Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol, vol.17, pp.1140-1153, 2016.

A. Bastet, B. Lederer, N. Giovinazzo, X. Arnoux, S. German-retana et al., Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants, Plant Biotechnol. J, vol.16, pp.1569-1581, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852177

C. F. Nellist, W. Qian, C. E. Jenner, J. D. Moore, S. Zhang et al., Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance, Plant J, vol.77, pp.261-268, 2014.

C. Charron, M. Nicolai, J. L. Gallois, C. Robaglia, B. Moury et al., Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg, Plant J, vol.54, pp.56-68, 2008.

Y. Takakura, H. Udagawa, A. Shinjo, and K. Koga, Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus ?, Mol. Plant Pathol, vol.19, pp.2124-2133, 2018.

J. L. Gallois, C. Charron, F. Sanchez, G. Pagny, M. C. Houvenaghel et al., Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G, J. Gen. Virol, vol.91, pp.288-293, 2010.

A. Bastet, C. Robaglia, J. L. Gallois, and . Resistance, Natural Variation Should Guide Gene Editing, Trends Plant Sci, vol.22, pp.411-419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595311

A. Duprat, C. Caranta, F. Revers, B. Menand, K. S. Browning et al., The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses, Plant J, vol.32, pp.927-934, 2002.

M. J. Castello, J. L. Carrasco, and P. Vera, DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis, Plant Physiol, vol.153, pp.1521-1525, 2010.

, Int. J. Mol. Sci, vol.19, 2018.

C. Gauffier, C. Lebaron, A. Moretti, C. Constant, F. Moquet et al., A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy, Plant J, vol.85, pp.717-729, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314164

M. Hashimoto, Y. Neriya, T. Keima, N. Iwabuchi, H. Koinuma et al., EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in iArabidopsis thaliana, Plant J, vol.88, pp.120-131, 2016.

A. Palloix, V. Ayme, and B. Moury, Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies, New Phytol, vol.183, pp.190-199, 2009.

S. Fournet, M. C. Kerlan, L. Renault, J. P. Dantec, C. Rouaux et al., Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence, Plant Pathol, vol.62, pp.184-193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01208639

H. Brun, A. M. Chevre, B. D. Fitt, S. Powers, A. L. Besnard et al., Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus, New Phytol, vol.185, pp.285-299, 2010.

J. Quenouille, J. Montarry, A. Palloix, and B. Moury, Farther, slower, stronger: How the plant genetic background protects a major resistance gene from breakdown: Mechanisms of polygenic resistance durability, Mol. Plant Pathol, vol.14, pp.109-118, 2013.

J. Quenouille, L. Saint-felix, B. Moury, and A. Palloix, Analysis of a core collection of pepper landraces resistant to Potato virus Y: Genetic backgrounds shape R-gene durability, Mol. Plant Pathol, vol.17, pp.296-302, 2016.

R. Acosta-leal and Z. Xiong, Complementary functions of two recessive R-genes determine resistance durability of tobacco 'Virgin A Mutant' (VAM) to Potato virus Y, Virology, vol.379, pp.275-283, 2008.

E. Rousseau, L. Tamisier, F. Fabre, V. Simon, E. Szadkowski et al., Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants, Mol. Plant Pathol
URL : https://hal.archives-ouvertes.fr/hal-01953902

F. Garcia-arenal, A. Fraile, and J. M. Malpica, Variability and genetic structure of plant virus populations, Annu. Rev. Phytopathol, vol.39, pp.157-186, 2001.

S. F. Elena, S. Bedhomme, P. Carrasco, J. M. Cuevas, F. De-la-iglesia et al., The evolutionary genetics of emerging plant RNA viruses, Mol. Plant Microbe Interact, vol.24, pp.287-293, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644252

G. Atsumi, H. Suzuki, Y. Miyashita, S. H. Choi, Y. Hisa et al., P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas, J. Virol, vol.90, pp.7388-7404, 2016.

W. L. Schneider and M. J. Roossinck, Genetic diversity in RNA Virus quasispecies is controlled by Host-Virus interactions, J. Virol, vol.75, pp.6566-6571, 2001.

S. Chiba, H. Kondo, M. Miyanishi, I. B. Andika, C. Han et al., The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance, Mol. Plant Microbe Interact, vol.24, pp.207-218, 2011.

S. García-andrés, F. Monci, J. Navas-castillo, and E. Moriones, Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature, Virology, vol.350, pp.433-442, 2006.

H. M. Jaag and P. D. Nagy, The Combined Effect of Environmental and Host Factors on the Emergence of Viral RNA Recombinants, PLoS Pathog, vol.6, 2010.

Y. Maayan, E. P. Pandaranayaka, D. A. Srivastava, M. Lapidot, I. Levin et al., Using genomic analysis to identify tomato Tm-2 resistance-breaking mutations and their underlying evolutionary path in a new and emerging tobamovirus, Arch. Virol, vol.163, pp.1863-1875, 2018.

, Int. J. Mol. Sci, vol.19, 2018.

M. G. Moreno-pérez, I. García-luque, and A. Fraile, García-Arenal, F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection, J. Virol, vol.90, pp.9128-9137, 2016.

E. Rousseau, B. Moury, L. Mailleret, R. Senoussi, A. Palloix et al., Estimating virus effective population size and selection without neutral markers, PLoS Pathog, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658535

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2018 by the authors. Licensee MDPI