A. Abdul-razzak, T. Guiraud, M. Peypelut, J. Walter, M. C. Houvenaghel et al., Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus, Mol. Plant Pathol, vol.10, pp.109-113, 2009.

J. Acevedo-garcia, S. Kusch, and R. Panstruga, Magical mystery tour: MLO proteins in plant immunity and beyond, New Phytol, vol.204, pp.273-281, 2014.

J. Acevedo-garcia, D. Spencer, H. Thieron, A. Reinstadler, K. Hammond-kosack et al., Mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach, Plant Biotechnol. J, vol.15, pp.367-378, 2017.

Z. Ali, A. Abulfaraj, A. Idris, S. Ali, M. Tashkandi et al., , 2015.

, CRISPR/Cas9-mediated viral interference in plants, Genome Biol, vol.16, p.238

Z. Ali, S. Ali, M. Tashkandi, S. Shan, A. Zaidi et al., , 2016.

, CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion, Sci. Rep, vol.6, p.26912

F. Altpeter, N. M. Springer, L. E. Bartley, A. E. Blechl, T. P. Brutnell et al., Advancing crop transformation in the era of genome editing, Plant Cell, vol.28, pp.1510-1520, 2016.

R. Aman, Z. Ali, H. Butt, A. Mahas, F. Aljedaani et al., RNA virus interference via CRISPR/Cas13a system in plants, Genome Biol, vol.19, p.1, 2018.

L. Arora and A. Narula, Gene editing and crop improvement using CRISPR-Cas9 system, Front. Plant Sci, vol.8, p.1932, 2017.

Y. Bai, S. Pavan, Z. Zheng, N. F. Zappel, A. Reinstädler et al., Naturally occurring broad-spectrum powdery mildew resistance in a central american tomato accession is caused by loss of Mlo function, Mol. Plant Microbe Interact, vol.21, pp.30-39, 2008.

N. J. Baltes, A. W. Hummel, E. Konecna, R. Cegan, A. N. Bruns et al., Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system, Nat. Plants, vol.1, p.15145, 2015.

A. Bastet, B. Lederer, N. Giovinazzo, X. Arnoux, S. German-retana et al., Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants, Plant Biotechnol. J, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852177

A. Bastet, C. Robaglia, and J. L. Gallois, eIF4E resistance: natural variation should guide gene editing, Trends Plant Sci, vol.22, pp.411-419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595311

C. Baysal, L. Bortesi, C. Zhu, G. Farré, S. Schillberg et al., , 2016.

, CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa, Mol. Breed, vol.36, p.108

L. Bortesi, C. Zhu, J. Zischewski, L. Perez, L. Bassié et al., Patterns of CRISPR/Cas9 activity in plants, animals and microbes, Plant Biotechnol. J, vol.14, pp.2203-2216, 2016.

C. D. Boyd and G. A. Toole, Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems, Annu. Rev. Cell Dev. Biol, vol.28, pp.439-462, 2012.

E. Callaway, CRISPR plants now subject to tough GM laws in European Union, Nature, vol.560, p.16, 2018.

J. Chandrasekaran, M. Brumin, D. Wolf, D. Leibman, C. Klap et al., Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol, vol.17, pp.1140-1153, 2016.

S. N. Char, A. K. Neelakandan, H. Nahampun, B. Frame, M. Main et al., An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize, Plant Biotechnol. J, vol.15, pp.257-268, 2017.

M. Christopoulou, W. S. Reyes-chin, A. Kozik, L. K. Mchale, M. J. Truco et al., Genome-Wide architecture of disease resistance genes in lettuce, Bethesda), vol.3, pp.2655-2669, 2015.

C. Consonni, M. E. Humphry, H. A. Hartmann, M. Livaja, J. Durner et al., Conserved requirement for a plant host cell protein in powdery mildew pathogenesis, Nat. Genet, vol.38, pp.716-720, 2006.

T. Cermák, N. J. Baltes, R. ?egan, Y. Zhang, and D. F. Voytas, Highfrequency, precise modification of the tomato genome, Genome Biol, vol.16, p.32, 2015.

D. Ding, K. Chen, Y. Chen, H. Li, and K. Xie, Engineering introns to express rna guides for Cas9-and Cpf1-mediated multiplex genome editing, Mol. Plant, vol.11, pp.542-552, 2018.

P. M. Dracatos, R. Haghdoust, D. Singh, and P. Fraser, Exploring and exploiting the boundaries of host specificity using the cereal rust and mildew models, New Phytol, vol.218, pp.453-462, 2018.

A. Endo, M. Masafumi, H. Kayal, and S. Toki, Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida, Sci. Rep, vol.6, p.38169, 2016.

, The Future of Food and Agriculture -Trends and Challenges, 2017.

C. Feng, J. Yuan, R. Wang, Y. Liu, J. A. Birchler et al., Efficient targeted genome modification in maize using CRISPR/Cas9 system, J. Genet. Genomics, vol.43, pp.37-43, 2016.

A. S. Fister, L. Landherr, S. N. Maximova, and M. J. Guiltinan, Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao, Front. Plant Sci, vol.9, p.268, 2018.

V. N. Fondong, Geminivirus protein structure and function, Mol. Plant Pathol, vol.14, pp.635-649, 2013.

Z. Y. Gao, S. C. Zhao, W. M. He, L. B. Guo, Y. L. Peng et al., Dissecting yield-associated loci in super hybrid rice by re-sequencing recombinant inbred lines and improving parental genome sequences, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.14492-14497, 2013.

R. L. Gilbertson, O. Batuman, C. G. Webster, and S. Adkins, Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses, Annu. Rev. Virol, vol.2, pp.67-93, 2015.

N. Hakam, S. M. Vdupa, A. Robha, M. Ibriz, and D. Iraqi, Efficient callus induction and plantlets regeneration in bread wheat using immature and mature embryos, Int. J. Biotechnol. Res, vol.3, pp.1-9, 2015.

L. Hanley-bowdoin, E. R. Bejarano, D. Robertson, and S. Mansoor, Germiniviruses: masters at redirecting and reprogramming plant processes, Nat. Rev. Microbiol, vol.11, pp.777-788, 2013.

I. B. Holme, T. Wendt, J. G. Humanes, L. C. Deleuran, G. Colby et al., Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs, Plant Mol. Biol, vol.95, pp.111-121, 2017.

J. H. Hu, S. M. Miller, M. H. Geurts, W. Tang, L. Chen et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity, Nature, vol.556, pp.57-63, 2018.

K. Hua, X. Tao, F. Yuan, D. Wang, and J. K. Zhu, Precise A·T to G·C base editing in the rice genome, Mol. Plant, vol.11, pp.627-630, 2018.

Y. Ishida, Y. Hiei, and T. Komari, Agrobacterium-mediated transformation of maize, Nat. Protoc, vol.2, pp.16144-1621, 2007.

Y. Ishida, Y. Hiei, and T. Komari, High efficiency wheat transformation mediated by Agrobacterium tumefaciens, Advances in Wheat Genetics: From Genome to Field, 2015.

Y. Ishida, M. Tsunashima, Y. Hiei, and T. Komari, Wheat (Triticum aestivum L.) transformation using immature embryos, Methods Mol. Biol, vol.1223, pp.189-198, 2015.

T. B. Jacobs, P. R. Lafayette, R. J. Schmitz, and W. A. Parrott, Targeted genome modifications in soybean with CRISPR/Cas9, BMC Biotechnol, vol.15, p.16, 2015.

X. Ji, H. Zhang, Y. Zhang, Y. Wang, and C. Gao, Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants, Nat. Plants, vol.1, p.15144, 2015.

H. Jia, V. Orbovic, J. B. Jones, W. , and N. , Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating Xcc pthA4:dCsLOB1.3 infection, Plant Biotechnol. J, vol.14, pp.1291-1301, 2016.

L. Jiang, X. Yu, X. Qi, Q. Yu, S. Deng et al., Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose, Transgenic Res, vol.22, pp.1133-1142, 2013.

E. Kapusi, M. Corcuera-gómez, S. Melnik, and E. Stoger, Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley, Front. Plant Sci, vol.8, p.540, 2017.

A. Kerr, Biological control of Crown Gall, Australas. Plant Pathol, vol.45, pp.15-18, 2016.

M. H. Larson, L. A. Gilbert, X. Wang, W. A. Lim, J. S. Weissman et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc, vol.8, pp.2180-2196, 2013.

T. Lawrenson, O. Shorinola, N. Stacey, C. Li, L. Østergaard et al., Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol, vol.16, p.258, 2015.

Q. Li, D. Zhang, M. Chen, W. Liang, J. Wei et al., Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9, J. Genet. Genomics, vol.43, pp.415-419, 2016.

T. Li, B. Liu, M. H. Spalding, D. P. Weeks, Y. et al., High-efficiency TALEN-based gene editing produces disease-resistant rice, Nat. Biotechnol, vol.30, pp.390-392, 2012.

Z. Liang, K. Chen, T. Li, Y. Zhang, Y. Wang et al., Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun, vol.8, p.14261, 2017.

C. Liu and P. N. Moschou, Phenotypic novelty by CRISPR in plants, Dev. Biol, vol.435, pp.170-175, 2018.

L. G. Lowder, D. Zhang, N. J. Baltes, J. W. Paul, and X. Tang, A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation, Plant Physiol, vol.169, pp.971-985, 2015.

K. Lowe, E. Wu, N. Wang, G. Hoerster, C. Hastings et al., Morphogenic regulators Baby boom and Wuschel improve monocot transformation, Plant Cell, vol.28, 1998.

M. Luo, B. Gilbert, A. , and M. , Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants, Plant Cell Rep, vol.35, pp.1439-1450, 2016.

J. Ma, J. Chen, M. Wang, Y. Ren, S. Wang et al., Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice, J. Exp. Bot, vol.69, pp.1051-1064, 2018.

Y. Ma, L. Zhang, and X. Huang, Genome modification by CRISPR/Cas9, FEBS J, vol.281, pp.5186-5193, 2014.

A. Macovei, N. R. Sevilla, C. Cantos, G. B. Jonson, I. Slamet-loedin et al., Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus, Plant Biotechnol. J, 2018.

M. Malnoy, R. Viola, M. H. Jung, O. J. Koo, S. Kim et al., DNAfree genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins, Front. Plant Sci, vol.7, p.1904, 2016.

M. Miklis, C. Consonni, A. B. Riyaz, L. Volker, P. Schulze-lefert et al., Barley MLO modulates actin-dependent and actinindependent antifungal defense pathways at the cell periphery, Plant Physiol, vol.144, pp.1132-1143, 2007.

B. Minkenberg, K. Xie, Y. , and Y. , Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes, Plant J, vol.89, pp.636-648, 2017.

T. K. Mohanta, T. Bashir, A. Hashem, E. Allah, and H. Bae, Genome editing tools in plants, Genes, vol.8, p.399, 2017.

V. J. Nalam, S. Alam, J. Keereetaweep, B. Venables, D. Burdan et al., Facilitation of Fusarium graminearum infection by 9-Lipoxygenases in Arabidopsis and Wheat, Mol. Plant Microbe Interact, vol.28, pp.1142-1152, 2015.

V. Nekrasov, C. Wang, J. Win, C. Lanz, D. Weigel et al., Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion, Sci. Rep, vol.7, p.482, 2017.

R. Nelson, T. Wiesner-hanks, R. Wisser, and P. Balint-kurti, Navigating complexity to breed disease-resistant crops, Nat. Rev. Genet, vol.19, pp.21-33, 2018.

C. Pan, L. Ye, L. Qin, X. Liu, Y. He et al., CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations, Sci. Rep, vol.6, p.24765, 2016.

R. Panstruga and P. Schulze-lefert, Live and let live: insights into powdery mildew disease and resistance, Mol. Plant Pathol, vol.3, pp.495-502, 2002.

A. Peng, S. Chen, T. Lei, L. Xu, Y. He et al., Engineering cankerresistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus, Plant Biotechnol. J, vol.15, pp.1509-1519, 2017.

S. Pessina, L. Lenzi, M. Perazzolli, M. Campa, L. Dalla-costa et al., Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine, Hortic. Res, vol.3, p.160616, 2016.

B. A. Peterson, D. C. Haak, M. T. Nishimura, P. J. Teixeira, S. R. James et al., Genome-Wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis, PLoS One, vol.11, 2016.

P. Piffanelli, L. Ramsay, R. Waugh, A. Benabdelmouna, A. D'hont et al., A barley cultivation-associated polymorphism conveys resistance to powdery mildew, Nature, vol.430, pp.887-891, 2004.

D. E. Pyott, E. Sheehan, and A. Molnar, Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants, Mol. Plant Pathol, vol.4, pp.1-13, 2016.

M. J. Roossinck, D. P. Martin, and P. Roumagnac, Plant virus metagenomics: advances in virus discovery, Phytopathology, vol.105, pp.716-727, 2015.

S. Saito, R. Maeda, A. , and N. , Dual loss of human POLQ and LIG4 abolishes random integration, Nature Commun, vol.8, p.16112, 2017.

H. Sanfacon, Plant translation factors and virus resistance, Viruses, vol.7, pp.3392-3419, 2015.

S. Savary, A. Ficke, J. N. Aubertot, and C. Hollier, Crop losses due to diseases and their implications for global food production losses and food security. Food Secur, vol.4, pp.519-537, 2012.

P. D. Schloss and J. Handelsman, Status of the microbial census. Microbiol, Mol. Biol. Rev, vol.68, pp.686-691, 2004.

S. A. Shah, S. Erdmann, F. J. Mojica, A. Roger, and R. A. Garrett, Protospacer recognition motifs mixed identities and functional diversity, RNA Biol, vol.10, pp.891-899, 2013.

J. Shi, H. Gao, H. Wang, H. R. Lafitte, R. L. Archibald et al., ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions, Plant Biotechnol. J, vol.15, pp.207-216, 2017.

S. Svitashev, C. Schwartz, B. Lenderts, J. K. Young, and A. M. Cigan, Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes, Nature Commun, vol.7, p.13274, 2016.

S. Svitashev, J. K. Young, C. Schwartz, H. Gao, S. C. Falco et al., Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA, Plant Physiol, vol.169, pp.931-945, 2015.

M. Tsai, Y. Lu, Y. Liu, H. Lien, C. Huang et al., Modulation of p53 and met expression by krüppel-like factor 8 regulates zebrafish cerebellar development, Dev. Neurobiol, vol.75, pp.908-926, 2015.

F. Wang, C. Wang, P. Liu, C. Lei, W. Hao et al., Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922, PLoS One, vol.11, 2016.

W. Wang, Q. Pan, F. He, A. Akhunova, S. Chao et al., Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat, CRISPR J, vol.1, pp.65-74, 2018.

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol, vol.32, pp.947-952, 2014.

K. Xie, Y. , and Y. , RNA-guided genome editing in plants using a CRISPR-Cas system, Mol. Plant, vol.6, 1975.

H. L. Xing, L. Dong, Z. P. Wang, H. Y. Zhang, C. Y. Han et al., , 2014.

, A CRISPR/Cas9 toolkit for multiplex genome editing in plants, BMC Plant Biol, vol.14, p.327

R. Xu, Y. Yang, R. Qin, H. Li, C. Qiu et al., Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice, J. Genet. Genomics, vol.43, pp.529-532, 2016.

S. S. Zaidi, M. Tashkandi, S. Mansoor, and M. M. Mahfouz, Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance, Front. Plant Sci, vol.7, p.1673, 2016.

F. Zhang, Y. Wen, and X. Guo, CRISPR/Cas9 for genome editing: progress, implications and challenges, Hum. Mol. Genet, vol.23, pp.40-46, 2014.

Y. Zhang, Y. Bai, G. Wu, S. Zou, Y. Chen et al., Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat, Plant J, vol.91, pp.714-724, 2017.

Y. Zhang, Z. Liang, Y. Zong, Y. Wang, J. Liu et al., Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Commun, vol.7, p.12617, 2016.

Y. Z. Zhang, M. Shi, and E. C. Holmes, Using metagenomics to characterize an expanding virosphere, Cell, vol.172, pp.1168-1172, 2018.

H. Zhou, B. Liu, D. P. Weeks, M. H. Spalding, Y. et al., Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice, Nucleic Acids Res, vol.42, pp.10903-10914, 2014.

J. Zhou, Z. Peng, J. Long, D. Sosso, B. Liu et al., Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice, Plant J, vol.82, pp.632-643, 2015.