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Abstract: Dispersion of bacterivorous nematodes in soil is a crucial ecological process that
permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by
modifying soil structure, are likely to influence this process, they have so far been neglected.
In this study, using an original three-compartment microcosm experimental design and PVC
bars to mimic plant roots, we tested the ability of roots to improve the dispersion of
bacterivorous nematode populations through two wet, non-uniform granular (glass bead)
media imitating contrasting soil textures. We showed that artificial roots increased migration
time of bacterivorous nematode populations in the small bead medium, suggesting that plant
roots may play an important role in nematode dispersion in fine-textured soils or when soil

compaction is high.

Keywords: dispersion; ecology; glass-bead media; migration time; colonization time; plant

roots.
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Bacterivorous nematodes are widely distributed soil organisms involved in key
terrestrial ecosystem functions such as soil fertility and plant productivity (Djigal et al., 2004,
Irshad et al., 2011, Blanc et al., 2006, Anderson et al., 1978, Ferris et al., 1998, Bonkowski et
al., 2009). By releasing nutrients (nitrogen and phosphorus) immobilized in bacterial biomass
in the vicinity of plant roots, they largely contribute to soil nutrient availability (Ferris et al.,
1998, Anderson et al., 1983) and plant nutrition and growth (Irshad et al., 2012, Bonkowski
and Clarholm, 2012, Trap et al., 2015).

The positive effects of bacterivorous nematodes on soil and plant functions are
conditioned by their ability to move within heterogeneous soils (Griffiths and Caul, 1993).
Dispersion of nematodes from one bacterial site to new resource patches is a crucial
ecological process facilitating ecosystem functions (Horiuchi et al., 2005, Hassink et al.,
1993, Savin et al., 2001, Hassink et al., 1993, Rodger et al., 2004). It is strongly determined
by soil conditions such as bulk density (Hunt et al., 2001, Portillo-Aguilar et al., 1999), soil
water content (Young et al., 1998) or temperature (Hunt et al., 2001), soil texture and hence
porosity (Young et al., 1998, Portillo-Aguilar et al., 1999, Georgis and Poinar, 1983, Prot and
Van Gundy, 1981), bacterial species (Rodger et al., 2004, Young et al., 1998), salt gradients
(Le Saux and Queneherve, 2002), or soil water run-off (Chabrier et al., 2009).

In most experiments, bacteria-nematode effects on soil nutrient availability have been
studied in bulk soils and root exudates were mimicked by providing carbon as an energy
source for bacteria, usually as glucose (Anderson et al., 1983, Cole et al., 1978, Coleman et
al., 1978, Ferris et al., 1997, Ferris et al., 1998). Possible physical influences of roots on
nematode dispersal, and the subsequent effects on soil nutrient availability, have thus not been
represented. Moreover, in experiments with plants (Bjornlund et al., 2012, Djigal et al., 2004),
shifts in both energy supply and porosity induced by roots are confounded, limiting our ability

to decipher mechanisms by which roots impact nematode-driven ecological functions. In this
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study, using an original three-compartment microcosm experimental design, we tested the
ability of roots to improve the dispersion of nematodes and their associated bacteria through
two wet granular media made from glass beads of different sizes in order to mimic two

contrasting soil textures.

MATERIALS AND METHODS

The study was conducted in sterile three-compartment 90-mm Petri dishes
(compartments labeled A-C). We designed six treatments (Figure 1). The first two treatments
corresponded to negative (NC) and positive (PC) controls, respectively. In NC, compartments
were not connected (compartments were independent) while in PC and for the four other
treatments, short gates (~5 mm width) were opened between compartments A and B and
between compartments B and C by melting the plastic walls separating compartments (Figure
1). In all treatments, compartments A and C were filled with 10 ml TSB-A (3 g L Tryptic
Soy Broth Fluka 22092 and 1% agar w/v supplemented with cholesterol 5 mg L1). The
compartment B was filled with 10 ml TSB-A in NC and PC treatments, whereas in the other
four treatments, it was filled with 15 g of non-uniform (polydisperse) glass beads (Abralis,
France), either of small size (SB: mean diameter 130 pum, min-max diameters 60-260 pm,
porosity 40%), or large size (LB: mean diameter 600 pm, min-max diameters 300-1100 pm,
porosity 32%). Bead size was measured using a laser granulometer (Mastersizer APA2000,
Malvern Instruments Ltd., United Kingdom) while the distribution of pore size was
approximated using the Finney Model (Frost, 1978, Finney, 1970) for uniformly sized
(monodisperse) granular media with the average size of beads as the most representative bead

size for each medium.
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Before use, glass beads were acid-washed using HCI 1M, rinsed with sterile deionized
water and saturated at 100% of their holding capacity. In two of the glass-bead treatments (5
and 6), a flexible PVC bar (2 mm diameter, 4 cm length), previously sterilized in bleach and
washed with sterilized deionized water, was used to mimic roots and placed in compartment B
(Figure 1). The ends of the PVC bar were inserted through the gates, thus linking
compartment A with C (Figure 1). In compartment B, the PVVC bar was placed inside the bead
medium. This PVC bar was used to test physical effects of roots on nematode dispersion
without interfering with carbon supply by rhizodeposition. Each treatment was replicated 5
times (30 microcosms).

For all microcosms, compartment A was inoculated with 100 pl of fresh gram-positive
Bacillus subtilis (strain 111b) culture and 15 adult bacterial-feeding nematodes belonging to
Rhabditis sp., together as a spot dropped from the corner of the compartment at the center of
the Petri dish (Figure 1). Bacteria and nematodes for experiments were isolated from an
ectomycorrhizal root tip and the soil collected in a maritime pine forest, respectively (Irshad
et al., 2011). Nematodes were maintained in our laboratory by transferring individuals onto
new TSB-A plates containing B. subtilis (Irshad et al., 2011). Nematodes multiplied in the
dark at 20 °C. Nematodes used in the inoculation experiments were prepared by removing
them from the breeding TSB-A plates by washing the surface with a sterile NaCl solution
(1%). They were washed from most B. subtilis by centrifugation (1000 rpm, 5 min) and re-
suspended in sterile deionized water.

Every morning for three weeks, microcosms were carefully inspected using a
binocular microscope and the number of individuals in compartment C was counted. We
defined the “migration time” as the number of days required to observe one individual
(juvenile or adult) in compartment C. We also assessed the “colonization time” as the number

of days required for nematodes to exploit the whole compartment C and reach the maximal
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carrying capacity set at 400 individuals (corresponding to a homogeneous distribution of
nematodes in compartment). Means and standard deviation were calculated for each treatment
and significant differences were tested using one-way ANOVA and Tukey HSD tests.
Normality of residuals was checked using Shapiro test. All tests were computed with the R

freeware (R, 2008) and statistical significance was set at P < 0.05.

RESULTS AND DISCUSSION

After three weeks of incubation, no nematode was observed in compartment C in the
negative control (Figure 2.A), confirming that nematodes were not able to cross the walls
separating compartments. In the positive control (PC), around 8 days were required to observe
individuals in C while 10 days were required in both large- and small-bead treatments. Our
findings are in agreement with those obtained by Wallace (1958) that showed that the pore
size in a saturated 75- to 150-pm soil fraction (similar to our small-bead medium) approaches
that through which Heterodera schachtii larvae are unable to pass. In his study, a maximum
of 10% of the nematodes migrated farther than 5 cm from the inoculation site for this soil
fraction while ~35% of the population migrated farther than 5 cm in the 150-200 um fraction.

When an artificial root was added across compartment B, the mean migration time
decreased to 9 days and 8 days for large and small beads, respectively. The effect of the
artificial root on nematode migration time was thus observed for both bead sizes, but the
effect was significant for small beads only. By creating macropores (Angers and Caron,
1998), roots increased soil porosity for these free organisms and their dispersal rate.
Nematodes can also move in the water film formed around the root as a “highway” towards a
new site. Here, we did not provide glucose to mimic root exudates because our aim was to

discriminate energy supply from physical effects of roots on nematodes. In natural
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rhizospheres, the presence of root exudates is known to improve soil structure and increase
aggregation, especially in clay soils (Angers and Caron, 1998, Bertin et al., 2003). It is
possible that in natural conditions, the improving effect of roots on nematode dispersion could
be modified by rhizodeposition rate and soil clay content (Hassink et al., 1993).

Interestingly, the colonization time of nematode populations growing in C varied
according to treatments (Figure 2.B). The lowest values were observed for PC and for small
beads with an artificial root (mean ~2.5 days of colonization time) while the highest values
were observed for small beads without an artificial root (mean ~4.2 days). Intermediate values
were found in large beads, with or without artificial roots. In PC and beads with an artificial
root, adults moved easily from A to C. In contrast, for the treatment with small beads and
without AR, the first individuals observed in C were juveniles. This pattern can be explained
by the diameter of adult nematodes after 14 days of growth oscillating around 35 um (n = 30).
Individuals with a diameter superior to ~30 pum were highly constrained by the beads (Figure
3). In consequence, in treatments with small beads, only juveniles could move easily from A
to C. Several hours and days were thus needed for juveniles to grow in C before becoming
adults and reproducing, explaining why colonization was slower.

It is important to note that we did not inoculate compartments B and C with Bacillus
subtilis cells. The colonization time of nematode populations was thus based on their ability
to transport bacteria (or spores) from compartment A to C. Several studies observed phoretic
transport of bacteria by nematodes (Hallmann et al., 1998, Knox et al., 2004, Knox et al.,
2003) or defecation of living bacterial cells or spores after their passage through the nematode
gut (Laaberki and Dworkin, 2008, Rae et al., 2012). For instance, Laaberki and Dworkin
(2008) showed that ingested B. subtilis spores were resistant to Caenorhabditis elegans
digestion. Some studies showed that nematodes can act as vectors of rhizobium (Jatala et al.,

1974, Sitaramaiah and Singh, 1975, Horiuchi et al., 2005) or plant pathogenic bacteria
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(Kroupitski et al., 2015). Once in C, living B. subtilis cells or spores attached on nematode
cuticles or excreted by nematodes can proliferate rapidly on TSB-A before nematode
population growth.

In conclusion, this microcosm experiment showed that the presence of small beads
severely constrained adult but not juvenile dispersion. An artificial root increased
bacterivorous nematode populations and associated-bacterial food dispersion in wet
polydisperse media, especially in small-bead media. These results suggested that plant roots
can play an important role in assisting nematode dispersion in fine-textured soils or when
roots penetrate in compacted soils (Queneherve and Chotte, 1996, lijima et al., 1991).
Nematode effects on nutrient cycling are known to vary according to soil texture (Hassink et
al., 1993), but our study suggests that the presence of roots may alleviate the effect of small
soil pore size, enhancing local population connection and probably soil nutrient cycling
(Clarholm, 1985). Our results also suggested that besides root exudates and active attraction,
differences in root architecture among plant species can also explain why nematode
population abundance or biomass in plant rhizospheres vary according to plant species
(Griffiths, 1990, Horiuchi et al., 2005). Further studies using similar designs could be used to
disentangle physical and nutritional impacts of roots on nematode-driven transport of

nutrients or organic compounds such as enzymes or pollutants.
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Figure 1. Experimental setup with three-compartment Petri dishes used to assess the effect of
roots and medium porosity on nematode dispersal and colonization. In all treatments but the
negative control (treatment 1), compartments A and C were connected by gates opened
through the wall, with or without an artificial root “AR” (2 mm diameter PVC bar) added to
cross the compartment B. Compartments A and C were filled with TSB-A (see text for
composition). Depending on the treatment, B was filled with TSB-A (treatments 1 and 2) or
with small beads (SB) (treatments 3 and 5), or large beads (LB) (treatments 4 and 6) in sterile
deionized water. Only compartment A was inoculated with Bacillus subtilis and 15 bacterial-
feeding adult nematodes belonging to the Rhabditis sp., as a spot dropped from the corner of

the compartment at the center of the Petri dish (closed circle).

Figure 2. Migration time (A) and colonization time (B) in days according to treatments. NC:
negative control; PC: positive control (white); LB: large beads (light grey); SB: small beads
(dark grey); -AR: without artificial root (solid line); +AR: with artificial root (dotted line).
Different letters (a and b) indicate significance among treatments according to one-way

ANOVA and Tukey HSD post hoc tests (P < 0.05, n =5).

Figure 3. Size distribution of beads (A) and approximation of pore size distribution (B) for

small (dotted line) or large (solid line) beads. P(k) is the frequency of the radius (k) of pores.

The blue solid line indicates mean nematode diameter size of adults (n = 30).
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