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Abstract
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projec-

tion neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation

(E2) in response to a pulse of the sex pheromone. To understand the mechanisms underly-

ing this stereotypical discharge, we developed a biophysical model of a PN receiving inputs

from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is

modeled as an inhomogeneous Poisson process whose firing rate is a function of time and

is fitted to extracellular data recorded in response to pheromone stimulations at various con-

centrations and durations. The PNmodel is based on the Hodgkin-Huxley formalism with re-

alistic ionic currents whose parameters were derived from previous studies. Simulations

revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small con-

ductance K+ current) and that the excitatory phase E2 can result from the long-lasting re-

sponse of the ORNs. Parameter analysis further revealed that the ending time of E1

depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly de-

pends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents

and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends

differentially on the interaction of various currents. Thus it is likely that the interplay between

PN intrinsic currents and feedforward synaptic currents are sufficient to generate the tripha-

sic firing patterns observed in the noctuid moth A. ipsilon.

Introduction
Odor coding by the olfactory system has been studied by various experimental and modeling
approaches. Natural odor stimuli can be characterized not only by their molecular features
but also by properties such as concentration, spatial and temporal change of chemical compo-
nents. Behavioral experiments on vertebrates [1], terrestrial [2–5] and aquatic invertebrates
[6–7] showed that the physical characteristics of odor stimuli condition the behavioral
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response to an odorant. In moths, for example, intermittent and continuous stimulation with
the same odor (the sex pheromone) evokes two distinct flight behaviors of upwind zig-zag-
ging flight towards the odor source and cast/counter turn across the wind line, respectively
[8]. The stimulation features are encoded and analyzed by individual neurons and neural net-
works of the olfactory system involving the antennae, the antennal lobes (ALs), the mush-
room bodies (MBs) and the lateral horn in insects. Odorants are first detected and encoded
by different types of olfactory receptor neurons (ORNs) situated in the antenna. Features of
odorant stimuli are further analyzed in the AL, the first-order processing center. ORNs of the
same type project to the same glomerulus [9] where they establish synaptic connections with
multiglomerular local neurons (LNs), intrinsic to the AL, and uniglomerular projection neu-
rons (PNs) [9]. The stimulation features/parameters influence the spatial and temporal activi-
ty patterns throughout the glomerular array and the response characteristics of individual
PNs [10]. However, the neural basis of the differential response to the different physical odor
stimulation features of the same odorant is poorly known. Neurons at different processing
stages show different response patterns in response to the same stimulus [11–13]. Recordings
in mitral/tufted cells in vertebrates and PNs in insects revealed that the odor-evoked re-
sponses of these second-order neurons are generally complex, consisting of both depolarizing
and hyperpolarizing phases [12–19]. Remarkably, the temporal patterns of spike activity ob-
served in some vertebrate mitral/tufted cells and insect PNs are very similar [12–20], suggest-
ing common principles of cellular and/or synaptic mechanisms. In the macroglomerular
complex (MGC) of the moth A. ipsilon, i.e. the specialist system processing pheromone infor-
mation in the insect AL, a large majority of pheromone-sensitive PNs exhibit a triphasic firing
pattern when the antenna is stimulated with pulses of the sex pheromone [12, 21]. Patch-
clamp experiments revealed that several types of Na+, Ca2+, and K+ ionic currents are express-
ed in PNs [22–25] suggesting that they may play roles in shaping the activity patterns of PNs.
Especially, it was recently found that SK channels are expressed in AL PNs both in Drosophila
[24] and in Agrotis [25].

A number of biophysical models of neuron and network have been developed to investigate
the cellular, synaptic, network structure and dynamical mechanisms underlying PN firing pat-
terns and odor coding in the MGC or the AL of insects. First, a simplified Hodgkin—Huxley
(HH) type neuron model and a neural network model with disinhibition mechanism were de-
veloped to simulate the low-frequency (< 10 Hz) background activity and the high-frequency
(> 100 Hz) bursting capacity of pheromone-sensitive PNs in moth MGC [26–27]. In the ab-
sence of stimulation, the modeled PN is inhibited by a LN (denoted LN2), the model exhibits
about 3Hz spontaneous oscillations. During odor stimulation, LN2 is inhibited by another LN
(denoted LN1), the PN is released from inhibition and exhibits a burst response at frequency
higher than 100 Hz. ICa and IK(Ca) are responsible for burst and quiescent period generation
whereas IA reduces the firing frequency. However, in this model the activation and inactivation
of the ionic channels of INa, IK, IA, ICa and IK(Ca) are simplified and not biophysically realistic.
Second, to simulate the temporal activity patterns induced by odor stimuli in the locust AL,
neural networks with randomly connected neurons based on HH type models of PNs and LNs
were developed [28–29]. In these models, ICa and IK(Ca) for slow patterning generation were in
non-spiking LNs, but not in PNs. The temporal patterns of PNs were generated through strong
GABAB-mediated slow inhibition. Third, in another small neural network model of AL con-
sisting of identical PNs and LNs of HH type, the INa, IK, ICa and IK(Ca) were located in both PNs
and LNs [30]. It was found that ICa and IK(Ca) in PNs are sufficient to account for the slow pat-
terning. The authors showed that the major effect of network inhibition is to redistribute the
action potentials of the PNs from bursting to one action potential per cycle of oscillation.
Fourth, based on morphological and physiological data from glomerular circuitry of insect AL
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and using models of PNs and LNs developed in [28–29], a cross-scale neurodynamical model
of the AL was developed [31]. This model demonstrates the effects of connectivity and complex
dynamics in amplifying weak odor signals, in discriminating signals, and in detecting odor sim-
ilarity, difference and specialty. Simulation results also showed that the spatiotemporal patterns
of the odor information emerging in the glomeruli of the AL rely on the glomerular morpholo-
gy, the connectivity and the complex dynamics of the AL circuits. Fifth, a model of the MGC in
the mothManduca sexta with HH type neuronal models and two types of inhibitory LNs, LNs-
IIa, and LNs-IIb was proposed [32]. It was shown that synaptic inhibition, intrinsic currents IA
and ISK in PNs can account for the first and second inhibitory phases and contribute to a rapid
encoding of pheromone information. Sixth, recently, using a model of AL with PNs and LNs
developed in [28–29], the relationship between a structural property of a network—its color-
ings, Ca2+ dynamics and the spatiotemporal activity and synchronization properties of PNs
were explored [33]. Seventh, an inhibitory neural network model of MGC, which was quantita-
tively reduced from a HH conductance-based model to a mean field one, was recently devel-
oped [34]. It was analytically shown that the network's ability to operate on signal amplitudes
across several orders of magnitude is optimal when a disinhibitory model is close to losing sta-
bility and the network dynamics are close to bifurcation.

However, most of the previous modeling work oversimplified the ORN inputs as an input
current to PN. Moreover the ionic currents and parameters of the PN and LN models were not
taken from insect neurons. In this work, the ORN was modeled from the experimental data re-
corded in the noctuid moth A. ipsilon from our lab [12]. In light of the availability of patch-
clamp data of some ionic currents in PNs or other types of insect neurons [22, 36–38], we de-
veloped a biophysical model of PN. In a recent work, using a similar PN model with SK cur-
rents we reproduced the E1 phase and I phase [21]. In the present paper, we describe the PN
model and its parameters in detail and we consider a realistic ORN input modeled from experi-
mental data. Based on the convergence rate in the moth pheromone system [35], we connected
100 ORNs to 1 PN by fast nicotinic cholinergic synapses to form a simple model of the MGC.
Our model was built based on three types of experimental data: intracellular, extracellular and
patch-clamp data recorded from ORNs, PNs and other neurons in insects obtained from our
lab and other labs. Because ORNs do not show triphasic patterns we simply modeled each
ORN firing by an inhomogeneous Poisson process. The firing frequency of the ORNmodel is a
function of time and is fitted to the extracellular recorded data in response to pheromone stim-
ulations varying in concentration and duration [12]. In order to better understand the cellular
and synaptic mechanisms underlying the triphasic response patterns of PNs, we made a bio-
physical PN model taking into account the nicotinic cholinergic currents resulting from ORN
synapses onto PNs and various intrinsic ionic currents found in PNs. The parameters in the
voltage-dependent steady state and time-dependent functions were fitted to patch-clamp data
[22, 36]. When no data were available on PN currents we utilized data from other neuron types
in insects [37–38] or even vertebrates [39]. We hypothesize that the multiphasic firing patterns
of PNs may be generated by the ionic currents in PNs and ORN inputs, the cholinergic synaptic
currents from ORNs to PN may affect the PN response characteristics. Using this model we re-
produced the recorded triphasic response patterns of PNs. Then, we investigated the ionic cur-
rent mechanisms underlying these patterns. We further performed thorough analysis on how
the response characteristics change with stimulation parameters and how the ORN inputs, the
intrinsic and synaptic currents affect the response characteristics. In addition, we also recon-
structed a model of LN and explored possible influences of LNs on the PN response character-
istics through GABAA- and GABAB-mediated inhibition. Finally, we draw some conclusions
based on our modeling study.
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Results

Reproducing the triphasic pattern and frequency of PN responses
To understand the cellular mechanisms underlying the triphasic firing patterns (E1/I/E2) of
MGC neurons in A. ipsilon in response to pheromone stimuli, we developed a simple biophysi-
cal MGC network model. This model (see Methods) consists of 100 Poisson ORNs connected
to one PN through cholinergic synapses. The outline of the model is shown in S1 Fig and its pa-
rameter values are given in Tables 1–4. Using this model we reproduced the triphasic PN re-
sponse pattern to high concentration pheromone stimuli. Results are shown in Fig 1A–1D. In
the simulations, the stimulation onset is 5000ms and the ORN response latency is 140ms. The
pheromone stimulus duration and dose are 500ms and 10ng respectively. Since the parameter
values of various intrinsic currents were taken from different types of neurons, in order to pro-
duce the firing pattern shown in Fig 1A–1D we have modified the values of some parameters
from the experimental data. The modified values are also shown in Tables 2–4 (denoted by
modified value). Comparing Fig 1A and 1C shows that the spontaneous frequency of PN is
higher than that of ORN; the E1 phase in PN corresponds to the initial response of ORNs
where their firing frequency is the highest; the E2 phase in PN corresponds to the late response
of ORNs where their firing rate is lower. Since the PN receives convergent inputs from 100
ORNs, the frequency of the spontaneous activity and those of E1 and E2 phases are higher in
PN than in ORN. These results agree with the experimental findings in [12–13]. Fig 1B and 1D
indicate that the I phase corresponds to the falling phase of intracellular Ca2+ of PN (shown by
the green rectangle in Fig 1B and 1D). In order to see how the intrinsic current IA affects the
PN firing pattern in Fig 1E and 1F, we turned off IA. The frequency of the PN spontaneous ac-
tivity and that of the second excitatory phase E2 in Fig 1E and 1F are reduced compared with
Fig 1B and 1C. By contrast, in Fig 1G and 1H we reduced the half-activation voltage V0.5act of
IA from -32.7 to -40.0 mV. The frequency of the second excitatory phase E2 was significantly
increased, whereas the PN spontaneous activity was further reduced. This means that the A
current affects the PN firing frequency of various phases in a parameter-dependent way. We

Table 1. Parameter values of ORNmodel fitted to extracellular recorded data.

Dose (ng) Period (ms) fsp (Hz) fpe (Hz) fpl (Hz) Tlat (ms) Td2pe (ms) Tpl (ms) τrise (ms) τfall1 (ms) τfall2 (s) τfall3 (s) q

0.1 200 1.5 16 — 250 150 — 180 130 20 — 0.9

1.0 200 1.5 35 — 250 115 — 128.6 170 10 — 0.9

10.0 200 1.5 154 — 150 115 — 155 115 5 — 0.9

10.0 500 1.5 125 30 140 160 330 150 40 0.2 10.5 0.72

10.0 1000 1.5 130 30 170 110 870 140 70 0.3 11.791 0.72

doi:10.1371/journal.pone.0126305.t001

Table 2. Parameter values ofCa dynamics and passive parameters of the PNmodel.

Name Value Modified value Reference

Passive parameters Cm(pF) 22.9 – [22]

EL (mV) -61.4 – [22]

gL (nS) 11.16a – [22]

Parameters of Ca dynamics fCa 1.6 1.7 [39]

τCa (ms) 656 2000 [39]

Ca1(nM) 113.0 – [39]

aCalculated by gL = 1/RM = 1/(89.6 MΩ) = 11.16 nS.

doi:10.1371/journal.pone.0126305.t002
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further checked the influence of ICa on the firing pattern. We found that decreasing gCa, on the
one hand, enhances the firing frequency during spontaneous activity, as well as the E1 and E2
phases; on the other hand, it decreases the duration of the I phase. One of the results is shown
in Fig 1I and 1J. In the subsection “Effects of intrinsic PN parameters on the response charac-
teristics”, the influence of PN intrinsic currents is detailed.

In order to further reveal the mechanisms underlying the generation of the E1/I/E2 pattern,
we analyzed the PN depolarizing and repolarizing currents in our simulation (Fig 1A–1D). Em-
ploying the low-pass (cut-off frequency: 5Hz) and high-pass (cut-off frequency: 5Hz) Butter-
worth filters (see Methods), we extracted the slow and fast components of the depolarizing
currents InACh, INa, ICa and the repolarizing currents ISK, IA and IKd (Fig 2). During E1 and I, the
kinetics of the slow component of the repolarizing Ca2+-dependent K+ current ISK are similar to
those of the depolarizing synaptic current InACh (Fig 2A). Similarly, during E1, the kinetics of the
slow components of IA and IKd are similar to those of the INa and ICa, respectively (Fig 2C and

Table 3. Parameter values of the ionic currents of the PNmodel given or calculated from data.

Steady-state functions of INa gNa(nS) V0.5act (mV) sm V0.5inact (mV) sh ENa(mV) Ref.

206 modified2500 -25.8 9.32 -41.1 modified43.0 9.75 +48.2(RP)+47.9(EP) [38]

Time constant functions of INa aτm,up Vτm,0.5up (mV) sτm,up aτm,dn Vτm,0.5dn sτm,dn Ref.

0.5 -30 3.7 0.5 -15 13.7 Fitted

aτh,up Vτh,0.5up sτh,up aτh,dn Vτh,0.5dn sτh,dn to

2.1 -55 5 0.7 -10 11 [38]

Steady-state functions of ICa gCa(nS) V0.5act (mV) sm V0.5inact (mV) sh ECa(mV) Ref.

16.1 modified45 -10.6 8.5 -29.6 8.4 160 [22]

Time constant functions of ICa aτm,up sτm,up aτm,dn Vτm,dn sτm,dn — Ref.

0.046 20.73 0.19 19.8 10 — [39]

Steady-state functions of Isk amsk bmsk smsk — — — Ref.

1.120 2.508 1000 — — — [39]

Steady-state functions of IKd gKd (nS) V0.5act (mV) sm EK (mV) — — Ref.

8.17a modified700 -18.5 22.5 modified 20.0 -91.6 — — [36]

Time constant functions of IKd aτm,up Vτm,0.5up sτm,up — — — Ref.

0.125 -40 11.0 — — — Fitted

aτm,dn Vτm,0.5dn sτm,dn — — — to

0.15 25 45.7 — — — [37]

Steady-state functions of IA gA(nS) V0.5act (mV) sm V0.5inact (mV) sh EK(mV) Ref.

17.35b modified 500 -32.69 17.5 -53.3 7.23 -91.6 [36]

Time constant functions of IA aτm,up Vτm,0.5up sτm,up aτm,dn Vτm,0.5dn sτm,dn Ref.

0.5 -30 13.7 0.42 -15 46 Fitted

aτh,up Vτh,0.5up sτh,up aτh,dn Vτh,0.5dn sτh,dn to

0.04 -55 25 0.045 40 55 [37]

a,bCalculated from Kloppenburg et al.,1999.

doi:10.1371/journal.pone.0126305.t003

Table 4. Parameter values of nACh synaptic current.

Name gnACh(μS) EnACh (mV) α (ms-1) β (ms-1) A tmax (ms)

Value 0.3 0.0 10 0.2 0.5 0.3

Reference [28] [28] [28] [28] [28] [28]

Modified value 0.017 – – 2.0 0.8 –

doi:10.1371/journal.pone.0126305.t004
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Fig 1. Triphasic response pattern reproduced by the MGCmodel in response to a pheromone stimulus (500ms, 10ng). In the results shown in A to D,
for most parameters in Eqs (4–14), we used the original values from literature given in Tables 2–4 except for some values that were modified (modified
values in Tables 2–4). A. Spikes of one ORN (blue lines) and mean firing frequency curve of ORNs (red line). B. Dynamics of the PNmembrane potential V.
C. Spikes of the PN (blue lines) and PN firing frequency (red line). D. Kinetics of intracellular Ca2+ concentration of the PN. E. Spikes of the PN (blue lines)
and PN firing frequency (red line) (gA = 0 μS, gCa = 0.045 μS). F. Dynamics of the PNmembrane potential V (gA = 0 μS, gCa = 0.045 μS). G. Spikes of the PN
(blue lines) and PN firing frequency (red line) (gA = 0.5 μS, V0.5actA = -40.0 mV, gCa = 0.045 μS). H. Dynamics of the PNmembrane potential V (gA = 0.5 μS,
V0.5actA = -40.0 mV, gCa = 0.045 μS). I. Spikes of the PN (blue lines) and PN firing frequency (red line) (gA = 0.5 μS, V0.5actA = -37.0 mV, gCa = 0.035 μS). J.
Dynamics of the PNmembrane potential V (gA = 0.5 μS, V0.5actA = -37.0 mV, gCa = 0.035 μS).

doi:10.1371/journal.pone.0126305.g001
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2E). In the beginning of E1 (from 5140 to 5520ms) the amplitudes of the slow and fast compo-
nents of the depolarizing synaptic current InACh from ORNs are higher than those of the repolar-
izing current ISK (insets in Fig 2A and 2B). With depolarization ISK increases because of the
accumulation of intracellular Ca2+. At 5520ms the amplitude of the slow component of ISK ex-
ceeds that of InACh (inset in Fig 2A). From 5520ms onwards ISK competes with InACh and slows
down the PN firing. At 5770ms the PN stops spiking and transits to the I phase. During I, ISK
flows out against InACh to create a hyperpolarization phase until the intracellular Ca

2+ concentra-
tion falls. During this hyperpolarization phase, the voltage-gated currents (IA, IKd, INa and ICa)

Fig 2. Synaptic and intrinsic currents in a PN from the simulation results shown in Fig 1. Left panel: the slow components of the repolarizing currents
(black lines) and depolarizing currents (magenta lines); ISK and-InACh (A), IA and—INa (C) and IKd and—ICa (E). Right panel: Fast components of the
repolarizing (black lines) and depolarizing currents (magenta lines); ISK and InACh (B), IA and INa (D) and IKd and ICa (F). Note that in the left panel we draw the
minus values of InACh, INa, ICa for comparing their amplitudes, while in the right panel we draw the values of InACh, INa, ICa directly for comparing their
depolarizing and repolarizing effects). The slow components of E1 (from 5140 to 5770ms) and I (from 5770 to 6700ms) are enlarged in the insets in A, C and
E; and the fast components of E1 and the period transiting from E1 to I (from 5770 to 6200ms) are enlarged in the insets in B, D and F.

doi:10.1371/journal.pone.0126305.g002
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cannot be activated due to the low membrane potential (Fig 2C–2F). Interestingly, both the slow
and fast components of IA have the same kinetics as INa and the amplitude of IA is slightly
smaller than that of INa, especially during E1 and E2 phases (Fig 2C and 2D and the insets).
Whenever INa depolarizes the membrane to make a spike, IA flows out and repolarizes the mem-
brane, so that the amplitude of each spike is reduced and the firing frequency is increased.

Effects of the pheromone stimulus parameters on the response
characteristics
To see how the stimulation parameters affect the PN response characteristics (such as duration
and frequency) whose calculation is described in Methods section, we varied the concentration
and duration of the pheromone pulses. For each parameter value, the computer simulation was
repeated ten times and the mean and standard deviation of the response characteristics were
calculated over the ten trials. The results are shown in Fig 3. The parameter values are the same
as those in Fig 1A–1D). The duration of E1 nearly linearly increases with the stimulus duration
and the duration of I for 200ms stimulus duration is slightly lower than that for 500 and
1000ms stimulus duration (Fig 3A). The mean response frequency of E1 decreases with stimulus
duration (this is due to frequency adaptation during E1) (Fig 3B). E1 and I durations are inde-
pendent of stimulation doses (Fig 3C). These relationships between E1 duration and stimulation
duration and dose agree with the experimental findings described in [12]. The mean response
frequency of E1 increases with stimulus concentration while that of E2 does not (Fig 3D).

Effects of intrinsic PN parameters on the response characteristics
We examined how the intracellular Ca2+ dynamics and intrinsic currents in the PN affect its
dynamic response characteristics. To this end we varied the value of each parameter from low
to high in a range while keeping the values of other parameters the same as in Fig 1A–1D. At a
given value of each parameter the computer simulation was repeated ten times and the mean
and standard deviation of each response characteristics were calculated over the ten trials.

Effects of Ca2+ dynamics, ICa and ISK. The simulation results indicate that the inhibitory
phase following E1 is generated by the slow component of the repolarizing current ISK that ex-
ceeds the slow component of the depolarizing synaptic current InACh. ISK depends on Ca2+ con-
centration which in turn depends on ICa. In addition, ICa also affects the triphasic response
pattern (Fig 1I–1J). Therefore we further analyzed the effects of the parameters of the Ca2+ dy-
namics, ICa and ISK on the PN response characteristics. Fig 4 shows that the duration of the E1
phase exponentially decreases with gSK (A) while the duration of the I phase linearly increases
with gCa (C) and τCa (E). The mean frequency of the E1 phase linearly decreases with gCa (D)
and that of the E2 phase exponentially decreases with gCa (D) and τCa (F). Some parameters for
the steady-state activationm1, the time constant τm of ICa and for the steady-state function of
the gating variable msk1 of ISK have also clear influences on the PN response duration, espe-
cially the duration of the I phase. These effects are illustrated in S2 Fig. The I duration decreases
with aτm,up and Smsk, while it increases with Sτm,up and amsk.

Effects of INa, IA and Ikd. In this section, by varying the parameter values of INa, Ikd and
IA, we quantitatively investigated how the PN response characteristics depend on these parame-
ters. The major influences of INa on the response characteristics are illustrated in Fig 5. The maxi-
mal conductance and parameters for steady-state activation and inactivation function of INa
strongly affect the response frequency of E1 phase: E1 frequency increases with the half-activation
parameter V0.5act (Fig 5D) and decreases with gNa (Fig 5B) and the slope factor Sh (Fig 5H); both
E1 and E2 frequencies increase with the slope factor Sm (Fig 5F). Parameters V0.5act, Sm and Sh of
INa have also some influences on E1 and I duration (Fig 5C, 5E and 5G). Other parameters of INa
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affect one or two PN response characteristics as shown in S3 Fig. IKd has also some influences on
the PN response characteristics as shown in S4 Fig. As illustrated in Fig 1 the transient potassium
current IA affects the firing frequency of E1, E2. Here we further investigated the influences of IA.
We found that the mean maximal conductance, the half activation, and the slope factor Sm of IA
have strong effects on PN response frequency. Increasing the maximal mean conductance gA
and decreasing the voltage of half activationV0.5act and the slope factor Sm increase the mean fir-
ing frequency of both E1 and E2 phases (Fig 6B, 6D and 6F). The increased frequency of sponta-
neous activity of the PN is also due to the higher conductance and lower voltage of half
activation and smaller slope factor sm of this current (data not shown). In addition, increasing gA
has a small effect of decreasing the duration of the I phase at low gA values (Fig 6A); increasing
V0.5act clearly decreases the duration of the I phase and increases the duration of the E1 phase
(Fig 6C). Moreover, decreasing Sm clearly decreases I duration whereas increases E1 duation.
Some parameters in time constant functions of IA have slight influences on PN reponse charac-
teristics (data not shown): I duration increases with aτm,up, aτh,dn and Vτm,0.5dn when it is less
than -10 mV while decreases with Sτm,up, aτh,up and Vτh,0.5dn when it is less than -40 mV; E1 du-
ration decreases with aτm,up and E1 frequency decreases with Vτm,0.5up, Sτm,dn, aτh,up, Sτh,up and
aτh,dn; E2 frequency increases with Sτm,up and aτm,dn when it is less than 0.7.

Fig 3. Effects of stimulation parameters on PN response characteristics. Top panel: effects of stimulus
duration on E1 and I duration (A) and mean firing frequency of E1 and E2 (B). Bottom panel: effects of stimulus
concentration on E1 and I durations (C) and mean firing frequency of E1 and E2 phases (D).

doi:10.1371/journal.pone.0126305.g003
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Effect of nACh synaptic parameters on PN firing patterns
In the presence or absence of pheromone stimulation, PN dendrites receive feedforward cho-
linergic synaptic inputs from ORNs through nicotinic receptors. Hence, the nACh synaptic
currents are the stimulation inputs of PNs. We studied how the parameters of InACh affect the
PN response characteristics.

Fig 4. Effects of ICa, ISK and dynamics of intracellular Ca2+ on PN response characteristics. Top panel:
effects of the mean maximal conductance gSK of ISK on E1 and I durations (A) and mean firing frequency of E1

and E2 (B). Intermediate panel: effects of the mean maximal conductance gCa of ICa on E1 and I duration (C)
and mean firing frequency of E1 and E2 (D). Bottom panel: effects of time constant τCa of Ca

2+ dynamics on
E1 and I duration (E) and mean firing frequency of E1 and E2 phases (F).

doi:10.1371/journal.pone.0126305.g004

Modeling Pheromone-Sensitive Neurons

PLOS ONE | DOI:10.1371/journal.pone.0126305 May 11, 2015 10 / 22



Fig 5. Major effects of INa on PN response characteristics. Effects of gNa, V0.5act, Sm and Sh on E1 and I
duration (left panel) and mean firing frequency of E1 and E2 (right panel).

doi:10.1371/journal.pone.0126305.g005
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First, the effects of presynaptic ACh transmitter delivered as square pulses of duration tmax

and concentration A were investigated (S5 Fig). E1 duration increases while I duration de-

creases with Ach pulse duration tmax (S5A Fig). The mean frequency of the E2 phase f E2 signif-
icantly increases with tmax, whereas the influence of this parameter on the average frequency of

the E1 phase f E1 is not monotonic (S5B Fig). This result is interesting because this parameter

has a different effect on the average frequency of the E1 and E2 phases. The f E1 increases at val-
ues of tmax smaller than 0.3ms then decreases with tmax. This is due to the fact that the firing
frequency adaptation induced by SK currents takes effect when the E1 duration increases with

Fig 6. Major effects of IA on PN response characteristics. Top panel: effects of gA on E1 and I duration (A)
and mean firing frequency of E1 and E2 (B). Intermediate panel: effects of V0.5act on E1 and I duration (C) and
mean firing frequency of E1 and E2 phases (D). Bottom panel: effects of Sm on E1 and I duration (E) and mean
firing frequency of E1 and E2 phases (F).

doi:10.1371/journal.pone.0126305.g006
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tmax. The ACh concentration parameter A has a very different effect on the duration of E1 and I

phase and the average frequency of E1 phase f E1. The duration of E1 phase increases and that of
I phase decreases with A when A is less than 1, then the duration of E1 and I phases reaches sat-
uration (S5C Fig). The clearest effect of A is that it can significantly increase the average fre-

quency of E1 phase f E1 (S5D Fig).
Second, we investigated the effects of the opening and closing rates of nACh postsynaptic

channels on PN response characteristics (S6A–S6D Fig). Increasing the opening rate α slightly
increases E1 duration and decreases I duration (S6A Fig) and significantly increases the mean
frequency of E2 phase (S6B Fig purple line). Increasing the closing rate β has exactly opposite
effects (S6C and S6D Fig purple line). Interestingly, increasing α and β has the same clear effect
of increasing the average frequency of the E1 phase (S6B and S6D Fig red lines). The increasing

effect of β on f E1 can be explained by its decreasing effect on E1 duration. When the value of β
is small, the E1 duration is quite long (S6C Fig). Thus the frequency adaptation mediated by SK
currents is strong. As a result of frequency adaptation, the mean frequency of E1 phase is low.

Finally, the effects of the mean maximal conductance gnACh on PN response characteristics
were studied. Increasing gnACh clearly increases the duration of the E1 phase and strongly de-
creases that of the I phase (S6E Fig) and significantly increases the mean frequency of both
phases (S6F Fig).

Exploring possible effects of LNs on PN response patterns
In order to investigate possible network mechanisms, particularly the influences from LNs we
have developed a model of type I LNs (LNIs), that generate Na+-driven action potentials [22–
23]. The mathematical description of the LNI model and its parameter values are given in S1
Text. We have done some exploratory simulations by connecting 80 ORNs and 20 LNI with one
PN. The LNIs receive inputs from ORNs and PN through fast nicotinic cholinergic synapses,
while the PN receives fast nicotinic cholinergic synaptic inputs from ORNs and fast GABAergic
inhibitory inputs from LNIs mediated by GABAA receptors or slow GABAergic inhibitory inputs
from LNIs mediated by metabotropic GABAB receptors. Preliminary results revealed that the
synaptic interactions between PN and LNIs affect the synchronization among the PN and LNIs,
PN response pattern and PN response characteristics. Synchronization and I duration changes
with fast GABAergic inhibition. S7 Fig qualitatively shows how the closing rate β of the GABAA

synaptic currents from LNI to PN affects the response characteristics and synchronization. De-
creasing β decreases the synchronization of PN and LNIs and also decreases the duration of I
phase. As for the influence of slow GABAergic inhibition, we found that in the parameter range
of the slow GABAergic inhibition given in S1 Text (Eq S3) the PNmaintained the triphasic re-
sponse pattern (S8A Fig). Decreasing the rate parameter r3 in Eq S3 prolonged the I duration
(S8E Fig). In these cases the rising kinetics of G protein concentration is close to that of the intra-
cellular Ca2+ concentration in PN (S8C and S8F Fig). The LNIs showed synchronized triphasic
response pattern (S8B and S8D Fig). When increasing r3 and decreasing r4 in Eq S3 the rising ki-
netics of GABAB receptor-coupled G protein concentration became faster than that of the intra-
cellular Ca2+ concentration in PN. In this case the E1 phase of PN may become an I phase (data
not shown) or terminate early due to the GABAergic inhibition (S8G Fig). The shortened or dis-
appeared E1 is at odds with the experimental findings in [12] and S9 Fig showing that the E1 du-
ration lasts approximately as long as the stimulus and increases with the duration of pheromone
stimuli. After an I phase, another excitatory phase appeared (S8G Fig) which corresponds to the
rising period of intracellular Ca2+ concentration (S8H Fig). The second excitatory phase in turn
is followed by another short I phase corresponding to the early falling phase of Ca2+ concentra-
tion. After the short I phase, the late excitatory phase of PN appeared.
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Discussion
In this work, using a simple MGCmodel with ORNs based on the recorded frequency curves
under different pheromone stimuli, PN based on patch-clamp data from PN and other neurons
and a biophysical model of nACh synapses, we reproduced the triphasic response pattern of
PNs at high pheromone stimulation concentrations. We investigated mechanisms generating
this triphasic response pattern. Our results show that it can be shaped by intrinsic mechanisms
in ORNs and PNs: in our model Ca2+-dependent SK current in PN is responsible for the I
phase following the E1 phase and the E2 phase is due to the long-lasting excitatory response of
ORNs. We further investigated how the external stimulation parameters and the parameters of
the internal ionic currents in PN and the nACh synaptic currents from ORNs to PN affect the
duration of E1 and I, the firing frequency of E1 and E2 and other response characteristics of PN.
In our model E1 duration significantly increases with stimulation duration. The ending time of
E1 clearly depends on parameters: g SK ; gCa; V0.5act, Sm and Sh of INa; tmax, A, β and gnACh of
InACh. The external stimulation parameters have no significant influence on I duration. This im-
plies that I phase is an intrinsic property of the network. Our results revealed that I duration lin-
early increases with the time constant of intracellular Ca2+ (τCa) and gCa, decreases with tmax

and gnACh of InACh. I duration is also influenced by some other parameters such as Sm, Sτm,up of
INa; aτm,up, Sτm,up of ICa; amsk and Smsk of ISK; gA and V0.5act of IA; and the concentration of the

pulse of ACh transmitter delivered. The mean firing frequency of E1 phase f E1 increases with

stimulation concentration and decreases with stimulation duration. f E1 and f E2 are also strongly

affected by some intrinsic parameters. Both of f E1 and f E2 increase with Sm of INa. f E1 increases
with V0.5act of INa; gA; g nACh, A, α and β of InACh; while decreases with gNa, Sh and V0.5inact of
INa; V0.5act and Sm of IKd; gCa; and V0.5act of IA. Besides, g SK and tmax have non monotonic effects

on f E1: f E2 increases with gA, tmax, A, α and gnACh, while it decreases with gCa, τCa and β.
The aim of this study is to show that it is possible to explain the triphasic PN responses with

intrinsic mechanisms only (and realistic parameter values) without denying the possible impli-
cation of extrinsic mechanisms and influences. We have also explored possible network effects
on the PN response characteristics, particularly the influences from LNs. Preliminary results
show that I duration and synchronization between PN and LNs change with GABAergic inhi-
bition. Slow GABAergic inhibition does not affect the triphasic PN response pattern in the pa-
rameter range given in S1 and S2 Texts. When the rising kinetics of GABAB receptor-coupled
G protein concentration became faster than that of the intracellular Ca2+ concentration in PN,
GABAB mediated inhibition may change the triphasic pattern and result in a much reduced E1
duration which is at odds with the experimental data. This might indicate that in the MGC of
A. ipsilonmoths if GABAB receptor mediated slow inhibitory synapses exist GABAB receptor
may couple to Ca2+ activated SK channel via G protein as reviewed in [41]. Previously we have
found that applying bicuculline (BIC), an antagonist of GABAA and a SK channel blocker, to
A. ipsilonmoths abolished the inhibitory phase in all tested neurons [21]. However, applying
picrotoxin (PTX), another GABAA antagonist, to A. ipsilon led to different effects. This experi-
mental result together with our modeling results indicate that the Ca2+-activated SK channel is
likely responsible for the generation of I phase while interactions between LNs and PNs might
affect the PN response characteristics. These are very preliminary qualitative results showing
the influences of LNs on PN response pattern. The network structure of MGC may also affect
the PN response characteristics. Further experimental and modeling investigations are needed
to study how the intrinsic property of LNs, various synaptic mechanisms and network struc-
ture of MGC affect PN response. Besides, the functional roles of PN response patterns in the
dynamical representation, classification and discrimination of pheromone stimuli and in guid-
ing the moths tracking in turbulent and intermittent pheromone plumes to be elucidated.
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In conclusion, our modeling study revealed that ISK and the long-lasting excitatory response
of ORNs can be intrinsic mechanisms for the generation of triphasic response patterns of pher-
omone-sensitive PN. The parameters of Ca2+, nACh synaptic, Na+ and A currents have strong
influence on the response patterns and the response characteristics. Preliminary results show
that network interactions between PN and LNIs can also affect the PN response. Although SK
channels can be responsible for the generations of I phase, parameters of ICa, INa and IA, as well
as the synaptic currents can also affect the I phase. Therefore, experimentally blockers that af-
fect any of these parameters might block the I phase.

Methods
Based on various experimental findings (see S2 text, Experimental findings in ORNs and PNs),
we developed models of ORN and PN and of the MGC neural network. The model parameters
were fitted to the experimental data.

The Poisson model of ORNs
To construct the Poissonmodel of ORNs, we fitted the extracellular recorded data [12] about the rise and
fall of themean instantaneous response frequency as a function of time following different concentrations
and durations of the pheromone stimulus. At any concentration the rising phase of the frequency curve
can be fitted by a single exponential function. However, the dynamics of the falling phase depend on the
stimulation parameters. For short stimulation periods of 100 and 200ms at any concentration, the falling
phase can be fitted by the sumof two exponential functions, one fast with a small time constant τfall1 and
one slowwith a larger time constant τfall2 as shown in Fig 7A. The fitting function used in this case is given
by Eq 1. The fitted curves are shown in Fig 7B and the blue (stimulation period: 100ms, stimulation dose:
10 ng) and purple curves (stimulation period: 200ms, stimulation dose: 10 ng) in Fig 7D. The fitted falling
time constants decrease with pheromone concentration (Table 1). For stimulation concentration at 10 ng
with long stimulation periods of 500ms and 1000ms, the falling phase of frequency undergoes two stages:
a rapid falling stage to a plateau and a slow falling stage. The rapid falling stage can be fitted by one expo-
nential function with a small time constant τfall1 and the slow falling stage can be fitted by two exponential
functions with one intermediate time constant τfall2 and one larger time constant τfall3 as shown in Fig 7C.
The fitting function used in this case is given by Eq 2. The fitted curves are shown by the green and red
curves in Fig 7D. The fitted parameter values of Eqs 1 and 2 are given in Table 1.
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fsp; if t � tsti þ Tlat

fsp þ ðfpe � fspÞ � 1� e
�
t � tsti � Tlat

trise

0
B@

1
CA; else if ðtsti þ TlatÞ � t � tsti þ Tlat þ Td2pe

fsp þ ðfpe � fspÞ � 1� e
�
Td2pe

trise

0
B@

1
CA � qe

�
t � ðtsti þ Tlat þ Td2peÞ

tfall1 þ ð1� qÞe
�
t � ðtsti þ Tlat þ Td2peÞ

tfall2

0
BB@

1
CCA; otherwise

ð1Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Modeling Pheromone-Sensitive Neurons

PLOS ONE | DOI:10.1371/journal.pone.0126305 May 11, 2015 15 / 22



f ðtÞ ¼

fsp; if t � tsti þ Tlat

fsp þ ðfpe � fspÞ � 1� e
�
t � tsti � Tlat

trise

0
B@

1
CA; else if ðtsti þ TlatÞ � t � tpe

fpl þ fsp þ ðfpe � fspÞ � 1� e
�
Td2pe

trise

0
B@

1
CA� fpl

0
B@

1
CAe

�
t � ðtsti þ Tlat þ Td2peÞ

tfall1 ;

else if ðtsti þ Tlat þ Td2peÞ � t � ðtsti þ Tlat þ Td2pe þ TplÞ

fsp þ ðfpl � fspÞ � qe
�
t � ðtsti þ Tlat þ Td2pe þ TplÞ

tfall2 þ ð1� qÞe
�
t � ðtsti þ Tlat þ Td2pe þ TplÞ

tfall3

0
BB@

1
CCA; otherwise

ð2Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Fig 7. Mean frequency response curves of the ORN population in response to different concentrations and durations of the pheromone
stimulation. A. Response data curve (blue) and fitted curve (red) to stimulus: 10 ng and 200 ms. B. Fitted response curves to the same stimulation period
200 ms and different stimulation doses from 0.1 to 10 ng. C. Response data curve (blue) and fitted curve (red) to stimulus: 10 ng and 1000 ms. D. Fitted
response curves to the same stimulation dose 10 ng and different stimulation periods from 100 to 1000 ms.

doi:10.1371/journal.pone.0126305.g007
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where, fsp, fpe and fpl are the mean spontaneous frequency of the ORN, peak frequency and
plateau frequency in response to stimulation; tsti the time of stimulation onset; Tlat, Td2pe and
Tpl the response latency of the ORN population, the duration to peak frequency from tsti + Tlat

and duration of the plateau; τrise, τfall1, τfall2 and τfall3 the rising and falling time constants re-
spectively; q coefficient of the fast falling component.

We modelled the ORN spike train by a Poisson process characterized by a single parameter,

the mean firing rate f ðtÞ given by Eqs (1) and (2). For sufficiently short interval δt, and a mean

frequency f ðtÞ varying slowly with respect to δt, the probability of a spike occurring during δt
is equal to the value of the instantaneous firing frequency during this time interval times the
length of the interval

Pf1 spike during dtg � f ðtÞ � dt: ð3Þ

At iteration time t, a random number R[t]], uniformly distributed between 0 and 1 is generated.

If R½t� � f ðtÞ � dt where δt is the time step used in simulations, the membrane potential of
ORNs is set to VORNS = 50mV. Otherwise, VORNS = -62mV (resting potential).

The biophysical model of PN
The model is mathematically described by Hodgkin—Huxley type equations (Eqs (4–14)). The
membrane activity of PN satisfies the following differential equation:

Cm

dV
dt

¼ �INa � ICa � IKd � gLðV � ELÞ � IA � ISK � InAch; ð4Þ

where V is the membrane potential, Cm the membrane capacitance, gL and EL the conductance
and reversal potential of the leak current, respectively. The values of these passive parameters
are given in Table 2.

The intrinsic currents of PN. The intrinsic inward (INa and ICa) and outward (IA, IKd and
ISK) ionic currents in PN are described by

Ij ¼ g jm
MhNðV � EjÞ; ð5Þ

where g j and Ej are the maximal mean conductance and reversal potential for the ionic current

j. The values of these two parameters of each current are given in Table 3.M = 3, N = 1 for INa
and IA;M = 1, N = 1 for ICa;M = 3, N = 0 for IKd;M = 2, N = 0 for ISK. The gating variablesm
and h in Eq (5) satisfy Eqs (6) and (7) except that h = h1 for ICa.

_m ¼ ðm1 �mÞ=tm; ð6Þ

_h ¼ ðh1 � hÞ=th; ð7Þ

where the steady-state activationm1 and inactivation h1 of the voltage-activated currents are
described by Boltzmann equations as Eqs (8) and (9)

m1 ¼ 1=f1þ exp½ðV0:5act � VÞ=Sm�g; ð8Þ

h1 ¼ 1=f1þ exp½ðV � V0:5inactÞ=Sh�g ð9Þ

The voltage dependency of the time constants ofm and h of the voltage-activated currents is
described by functions as Eqs (10) and (11) except that the τm of Ca2+ current takes the form of
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Eq (10’)

tmðVÞ ¼
1

atm;upe
ðVtm;0:5up�V Þ=Stm;up þ atm;dne

ðV�Vtm;0:5dnÞ=Stm;dn
; ð10Þ

tmCaðVÞ ¼ ðaðtm;upÞexpð
�V
Stm;up

Þ þ aðtm;dnÞ
�V þ Vtm;dn

exp �VþVtm;dn

Stm;dn
� 1

� �
0
@

1
AþÞ�1

; ð10Þ

thðVÞ ¼
1

ath;upeðVth;0:5up�VÞ=Sth;up þ ath;dneðV�Vth;0:5dnÞ=Sth;dn ; ð11Þ

For Na+ currents INa, value of parameter V0.5act in Eq (8) was taken from [38] (DUM cells of
the cockroach Periplaneta americana), values of parameter Sm, V0.5inact and Sh were modified
from [38] and values of parameters in Eqs (10) and (11) were fitted to the data given in [38].
For Ca2+ currents ICa, values of parameters in Eqs (8) and (9) were taken from [22] (PN in P.
americana), time constant for activation takes the form of Eq (10’) described in [39], h = h1.
For the sustained and transient voltage-gated K+ currents Ikd and IA, values of parameters in
Eqs (8) and (9) were taken from [36] (MGC PN in male sphinx mothManduca sexta), and val-
ues of parameters in Eqs (10) and (11) were fitted to the data given in [37] (inM. sexta). The
values of various parameters in the voltage dependent steady-state and time constant function
of INa, ICa, IKd and IA are given in Table 3.

The mathematical description ofm1 and current of the Ca2+-dependent K+ currents ISK
and that of the Ca2+ dynamics were borrowed directly from [39] as Eqs (12–14)

dCa
dt

¼ �fCaICa � ðCa� Ca1Þ=tCa; ð12Þ

mSK1 ¼ 1=ð1þ e�amsk�bmsklog
Ca�Ca1

Smsk Þ; ð13Þ

ISK ¼ g SK �m2
SK1ðV � EKÞ; ð14Þ

where the values of parameters of Ca2+ dynamics are given in Table 2 and those of ISK are
given in Table 3.

The cholinergic synaptic current from ORNs to PN. The fast nicotinic cholinergic synaptic
currents calculated according to

InACh ¼
XN

i¼1
g nACh � ½O�iðtÞ � ðV � EnAChÞ; ð15Þ

where N is the number of ORNs, g nACh the mean peak conductance, and EnAch = 0mV the re-
versal potential of the current respectively. The fraction of open channels [O]i is modeled by
first-order activation scheme (see review in [40])

d½O�i
dt

¼ að1� ½O�iÞ½T�i � b½O�i ð16Þ

The release of cholinergic transmitter [T]i from ith ORN was modeled by a square pulse

½T�i ¼ Ayðt0 þ tmax � tÞyðt � t0Þ ð17Þ

Parameter values of the nACh synaptic current are given in Table 4.
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The MGC network model
We constructed a MGC network model by connecting 100 ORNs to one PN as shown in S1
Fig. No LNs were included in the MGC model in order to test the hypothesis that the triphasic
firing patterns of PN can be generated by the ionic currents in PN and ORN inputs. Computer
simulations of the model were performed in Microsoft visual studio 2008. The simulation re-
sults were analyzed with Matlab 7.5. The total computer simulation time is 25s and the phero-
mone stimulation started at 5s.

Low-pass and high-pass Butterworth filters
In order to better understand how different ionic currents contribute to the generation of the
PN firing pattern we separated the slow and fast components of the depolarizing and repolariz-
ing currents in PN. We designed 10th-order lowpass and highpass Butterworth filters with cut-
off frequency 5 Hz using the Matlab function "butter". By applying the designed lowpass and
highpass filters the slow and fast components of each ionic currents were extracted.

Analysis of the PN response characteristics
The PN response pattern is quantitatively characterized by duration of E1 and I phases and fre-
quency of E1 and E2 phases. These features were defined in S9 Fig and were calculated as fol-
lows and expressed as means ± standard error of the mean.

Duration. The E1 durations were measured from the first spike of the PN response to the
spike just preceding the inhibitory phase. The I durations were measured from the last spike of
E1 to the first spike of E2.

Frequency. We first calculated the interspike intervals (ISIs) between successive spikes.
Then the ISIs were averaged in 10 spikes around each spike using Matlab function smooth.
The frequencies are the inverse of the ISIs.

Supporting Information
S1 Fig. Simplified model of moth MGC. The model is composed of 100 Poisson ORNs and
one biophysical PN. ORNs receive pheromone stimuli and the PN receive Ach synaptic inputs
from ORNs through nicotinic receptors at the dendrites.
(TIF)

S2 Fig. Effects of parameters form1, τm function of ICa and for msk1 function of ISK on
PN response duration.
(TIF)

S3 Fig. Effects of parameters for τm, τh and h1 function of INa on PN response characteris-
tics. I duration clearly increases with Sτm,up (A) and Vτh,0.5dn (G), while it decreases with aτh,dn
(C). E1 frequency linearly decreases with V0.5inact (F); E2 frequency increases with aτh,dn (D),
Sτh,dn (B) and Vτh,0.5up (E) while it decreases with V0.5inact (F) and Vτh,0.5dn (H).
(TIF)

S4 Fig. Effects of parameters of IKd on PN response characteristics. IKd clearly affects E1 fre-
quency which increases with gKd when gKd is below 0.7 μS then decreases (B) while it decreases
with V0.5act (E) and Sm of IKd (H).
(TIF)

S5 Fig. Effects of Ach pulse duration tmax and concentration A on PN response characteris-
tics. Top panel: effects of tmax on E1 and I duration (A) and mean firing frequency of E1 and E2
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(B). Bottom panel: effects of A on E1 and I duration (C) and mean firing frequency of E1 and E2
phases (D).
(TIF)

S6 Fig. Effects of nAch postsynaptic channel opening rate α, closing rate β and gnACh on
PN response characteristics. Top panel: effects of α on E1 and I duration (A) and mean firing
frequency of E1 and E2 (B). Middle panel: effects of β on E1 and I duration (C) and mean firing
frequency of E1 and E2 phases (D). Bottom panel: effects of gnACh on E1 and I duration (E) and
mean firing frequency of E1 and E2 (F).
(TIF)

S7 Fig. Effects of inhibition mediated by fast GABAA receptors on the activity patterns of
PN and three LNIs in a network with 80 ORNs, 1 PN and 20 LNIs. The postsynaptic channel
closing rate β of the GABA synapses from LNI to PN is 0.1 (left panel), 2.0 (middle panel) and
3.0 (right panel) respectively.
(TIF)

S8 Fig. Effects of slow inhibition mediated by metabotropic GABAB receptors on the re-
sponse activity of PN and three LNIs in a network with 80 ORNs, 1 PN and 20 LNIs. Panel
A-D show that the GABAB mediated synaptic inhibition did not alter the triphasic response
pattern of PN in the normal parameter range: A. PN potential, spikes and frequency; B. poten-
tials of LNI8; C. normalized concentration of intracellular Ca in PN and of GABAB receptor-
coupled G protein; D. potentials of LNI17. Panel E-F show that the I duration is prolonged
when r3 is decreased: E. PN potential, spikes and frequency; F. normalized concentration of in-
tracellular Ca in PN and of GABAB receptor-coupled G protein. Panel G-H show that the
GABAB mediated synaptic inhibition changed the triphasic response pattern when r3 is in-
creased and r4 is decreased: G. PN potential, spikes and frequency; H. normalized concentra-
tion of intracellular Ca in PN and of GABAB receptor-coupled G protein.
(TIF)

S9 Fig. Extracellularly recorded response patterns of the moth pheromone sensitive PN in
MGC. Left panel: top trace, response pattern to low dose pheromone stimulus; bottom trace,
response pattern to high dose pheromone stimulus. Right panel: from top to bottom trace the
duration of pheromone stimuli were increased at a given stimulation concentration.
(TIF)

S1 Text. Model of type I LNs with sodium spikes.
(PDF)

S2 Text. Experimental findings in ORNs, PNs and type I LNs.
(PDF)
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