

Anti-bacterial and anti-adherence activities of a probiotic strain of Lactobacillus paracasei subsp. paracasei against Listeria monocytogenes

F. Bendali, Michel Hébraud, D. Sadoun

▶ To cite this version:

F. Bendali, Michel Hébraud, D. Sadoun. Anti-bacterial and anti-adherence activities of a probiotic strain of Lactobacillus paracasei subsp. paracasei against Listeria monocytogenes. International Journal of Applied Microbiology and Biotechnology Research, 2014, 2, pp.52-63. hal-02629796

HAL Id: hal-02629796 https://hal.inrae.fr/hal-02629796v1

Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

International Journal of Applied Microbiology and Biotechnology Research

www.bluepenjournals.org/ijambr

Anti-bacterial and anti-adherence activities of a probiotic strain of *Lactobacillus paracasei* against *Listeria monocytogenes*

Bendali F.1*, Hebraud M.2 and Sadoun D.1

¹Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria. ²INRA de Clermont-Ferrand, site de Theix, UR 454 Microbiologie, 63 122 Saint-Genès Champanelle, France.

Article History

Received 23 July, 2014 Received in revised form 14 August, 2014 Accepted 20 August, 2014

Key words: Lactobacillus paracasei, Listeria monocytogenes, Antagonism, Caco-2 cells.

Article Type: Full Length Research Article

ABSTRACT

Lactobacilli are very ubiquitous, frequently associated to human microbial flora and foodstuffs; where they have being observed to accomplish various protective roles against adverse microorganisms. A human strain of Lactobacillus paracasei subsp. paracasei originally isolated from newborn faeces was investigated on its anti-listerial activities. Using intestinal Caco-2 cell line in an in vitro model and abiotic surfaces, stainless steel and Teflon (polytetrafluoroethylene) which are the most largely used materials in food industry, it was observed that this strain exhibited adherence and anti-adherence properties. The inhibitory effects of this strain on the adherence of Listeria monocytogenes were determined. A decrease in the number of adhering pathogen cells was observed, using either pre-incubation or co-incubation of the pathogen with Lb. paracasei. Moreover, the anti-listerial and anti-adherence activities of its cell-free supernatant were examined. An antibacterial activity related to the production of a bacteriocin-like substance and a displacement of the pathogen from all the surfaces (Caco-2 cell line, stainless steel and Teflon) were registered. Together, these findings suggest that this strain could be used to prevent colonization of the gastrointestinal tract and the food-contact surfaces by Listeria monocytogenes.

©2014 BluePen Journals Ltd. All rights reserved

INTRODUCTION

The term biofilm was created to describe the sessile form of microbial life, characterized by adhesion of microorganisms to biotic or abiotic surfaces, with consequent production of extracellular polymeric substances (Nikolaev and Plakunov, 2007). *Listeria monocytogenes* is a Gram-positive, facultatively intracellular, food-borne pathogen that has the capacity to cause severe infections, such as gastroenteritis, septicemia, abortion

and meningitis in humans and animals (Farber and Peterkin, 1991; Lecuit, 2007). The virulence of *L. monocytogenes* stems from its capacity to adhere, invade, and multiply within professional and non-professional phagocytes (Vazquez-Boland et al., 2001; Seveau et al., 2007). Since the invasion of the intestinal barrier is the first step in the infection process, maintenance of the intestinal ecological flora is important in preventing disease by controlling overgrowth of potentially pathogenic bacteria. Nowadays, there is growing consumers and scientific interests in probiotic bacteria, especially lactic acid bacteria. It is increasingly accepted that these bacteria might represent effective

^{*}Correspondence author. E-mail: kamelea03@hotmail.com. Tel: +213 (0) 34 21 47 62; Fax: +213 (0) 34 21 47 62.

tools for controlling overgrowth of pathogens and thereby control or prevent infections. Indeed, numerous in vitro and in vivo studies performed with different genera of probiotics bacteria have shown the capacities of these bacteria to interfere with both growth and virulence properties of various pathogens (Coconnier et al., 1997; Koga et al., 1998; Tejero-Sarinera et al., 2012). Since, inhibition of pathogen adhesion to the intestinal epithelium may prevent colonization and limit opportunity for systemic infection (Humphrey, 2004; Burkholder and Bhunia, 2009), this study investigated in the first part, the in vitro ability of a strain of Lactobacillus paracasei subparacasei to impair adherence of L. species monocytogenes to Caco-2 cells. In addition, since researchers have reported the occurrence of L. monocytogenes on the surface of equipments and utensils in meat and dairy processing industries (Chambel et al., 2007; Cruz et al., 2008), and that surface-adhered microbial cells contaminate food products during processing, the authors decided to test in the second part of this study, the anti-adherence properties of Lb. paracasei strain against this pathogen, stainless steel and Teflon (PTFE®, polytetrafluoroethylene) materials widely used in food industry.

MATERIALS AND METHODS

Bacterial strains and culture conditions

Lb. paracasei sub-species paracasei was isolated from 1year infant faeces. It was identified phenotypically by classical tests (temperature, pH, carbohydrate pattern) and genotypically by sequencing the 16S rDNA. The strain was previously demonstrated as active against Listeriae (L. monocytogenes EGDe and Listeria innocua 74915), enteropathogenic Escherichia Salmonella Typhimurium and Staphylococcus aureus (Bendali et al., 2008) and to fulfill probiotics criteria (Bendali et al., 2011). Culture of Lb. paracasei was carried out in de Man Rogosa and Sharp (MRS) broth (Fluka. Sweetzerland) and agar (Carl Sweetzerland) at 37°C under aerobic conditions. Brain Heart Infusion (BHI) broth (Difco, France) was used for culture of L. monocytogenes EGDe at 37°C in aerobiosis. Palcam agar (Merck, France) was used for Listeria strain counts.

Anti-listerial activity

The well diffusion assay

An overnight anaerobic MRS or Tryptic Soy Broth supplemented with 0.6% Yeast Extract (TSB-YE Merck),

culture of *Lb. paracasei* was centrifuged at 8000 × g for 20 min at 4°C (Jouan, thermoelectronic corporation) and the supernatant was filter sterilized through 0.22 µm pore-size Acrodisc® Syringe filters (Pall Gelman Laboratory, USA). Anti-listerial activity of the cell-free supernatant (CFS) was tested by the well diffusion assay as follows: 20 ml of MRS agar poured into a sterile Petri plate was overlaid with 5 ml of soft BHI agar (0.75%, w/v) seeded with *L. monocytogenes* (10⁶ CFU ml⁻¹). After solidification, the CFS was placed in duplicate into wells made in the agar. The plates were left at 4°C for 2 h to allow diffusion of tested supernatant and then incubated aerobically for 18 h at 37°C. The absence and presence of inhibitory zones around the wells was recorded.

Characterization of the antibacterial substances in the CFS

Cell free supernatant was divided in three samples. Sample 1 was directly tested while sample 2 was adjusted to a pH of 6.5 with 1 N NaOH (Merck-eurolab, Briare Le Canal, France) to rule out acid inhibition. Inhibitory activity from the hydrogen peroxide was ruled out by the addition of catalase (300 U ml⁻¹) (C- 3515, Sigma-Aldrich Chemie, Steinheim, Germany) to sample 3. The antagonistic activities of the three samples were determined in duplicate by the well diffusion assay as described previously. The sensitivity to different proteolytic enzymes of antibacterial substances was tested as follows. The CFS was treated with several enzymes (all from Sigma-Aldrich Chemie, Steinheim, Germany): α -chymotrypsin, proteinase K, trypsin and papain at final concentration of 2 mg ml⁻¹. All samples were adjusted to a pH of 6.5 with 1.0 mol l⁻¹ NaOH (Merck), Filtered-sterilized (0.22 µm pore-size Acrodisc® syringe filters, Pall Gelman Laboratory; USA) and were held for 1 h at 30°C with the proteolytic enzymes. The treated and control samples (supernatant not treated with the enzymes and enzymes preparations) were heated at 100°C for 5 min and then immediately cooled at 4°C in order to inactivate the enzymes. The residual activity of treated and control samples was determined by measuring the diameter of the inhibition zones in the well diffusion assay as described previously.

Adherence to Caco-2 cells

Caco-2 cell culture

The Caco-2 human colon adenocarcinoma cell line was obtained from the American Type Culture Collection and frozen in liquid nitrogen. The cells used in this study were from passage 19. All chemicals used in preparing the cell culture medium were obtained from the GIBCO/BRL

Division of Life Technologies, Invitrogen. Cells were routinely grown at 37°C in a 95% air-5% CO₂ atmosphere in Dulbecco's modified Eagle medium (DMEM) containing 4,5 g l⁻¹ (+) D-glucose, 110 mg l⁻¹ sodium pyruvate, L-glutamate and red phenol. The medium was supplemented with 10% heat-inactivated (56°C, 30 min) fetal bovine serum (FBS), 1% (v/v) non-essential amino acids (100 x), 1% Pen-Strep solution 100 x (100 U of penicillin G per ml and 100 μ g of streptomycin sulfate per ml) before it was used.

Monolayers of Caco-2 cells, which were used in the adherence assays, were prepared by inoculating six-well tissue culture plates with 10⁶ cells per well in 4.0 ml of culture medium. Cells were grown in 75 cm² flasks until they were confluent before they were cultured in the plates. The concentration of the cells was determined under optical microscopy using a Malassez chamber and the number of cells inoculated in each well was found within the range of 1×10^6 to 2×10^6 / well. The plates used were covered with collagen before use. The culture medium was replaced every other day and the monolayers were used in the adherence and invasion assays after 7 days of incubation. The cell culture medium was changed to fresh medium without antibiotics prior to treatment of the cells with bacteria (Johnson-Henry et al., 2008).

Adherence of Lb. paracasei to Caco-2 cells

The study of the probiotic adhesion potential was performed as described by Bendali et al. (2011). Briefly, *Lactobacillus* cells were harvested from MRS cultures (18 h) and washed twice with 5 ml Phosphate Buffered Saline (PBS) solution of pH of 7.2. Cells were re-suspended in 1 ml of PBS and then properly diluted in non-supplemented DMEM (GIBCO) to achieve a concentration of 10⁸ CFU ml⁻¹. The growth medium in six-well tissue culture plates of Caco-2 monolayers (7 days old) was aspirated and the cells washed twice with PBS. Subsequently, 1 ml of bacterial DMEM suspension was transferred onto the Caco-2 monolayers.

The plates were incubated at 37°C in a 5% CO₂/95% air atmosphere for 1 and 2 h, and then the bacterial suspension was aspirated and the Caco-2 monolavers were washed twice with PBS before 1 ml of Tween 80 (0.04%, w/v; Sigma) was added to detach the adhered bacterial cells. The bacterial suspension was then enumerated as described previously. The adhesion of the strain of Lb. paracasei to Caco-2 cells was expressed as a percentage of the viable bacteria compared to their initial population in the DMEM suspension. Adhesion experiments were performed in triplicate. enumeration of the adhered Lactobacillus cells was performed in duplicate.

Adherence of L. monocytogenes to Caco-2 cells

Exponentially-phase bacteria (≈10⁷ CFU ml⁻¹) were added to tissue culture cells grown in six-well tissue culture plates at a multiplicity of infection (MOI) of 10, for 1 and 2 h at 37°C in antibiotic free tissue culture medium, containing 1 g l⁻¹ glucose. After being washed three times with PBS to remove non-adherent bacteria, Caco-2 cells with adherent bacteria were washed with 1 ml 0.04% (w/v) Tween 80 in PBS for 5 min at room temperature to detach the adhered bacterial cells. Bacteria were then serially diluted in PBS and plated onto Palcam agar, and CFU counts were calculated after overnight growth at 37°C to determine the number of viable bacteria adherent to the tissue culture cells. As for Lb. paracasei, the adhesion of the strain of L. monocytogenes to Caco-2 cells was expressed as a percentage of the viable bacteria compared to their initial population in the DMEM suspension.

Cell invasion assay

To study invasion by *L. monocytogenes*, gentamicin protection assay was performed as described by Werbouck et al. (2006) with the following modifications: Caco-2 cells were infected with 1 ml of bacterial cell suspension containing ≈10⁷ L. monocytogenes cells (MOI 10) grown or treated as described previously for 1, 2 and 3 h. After two washings with PBS, the Caco-2 cells were re-incubated for 90 min in fresh DMEM containing gentamicin (Sigma Chemical Co.) at a concentration of 5 mg l⁻¹. However, to determine total counts of bacteria associated with the cell (counts of adhered bacteria plus counts of intracellular bacteria), duplicate wells with Caco-2 cells were analyzed without gentamicin treatment. The cell monolayers with or without gentamicin treatments were then washed with PBS and lysed with 1% Triton X-100 (Sigma). Appropriate dilutions were plated on Palcam plates and the CFU were enumerated. The invasion efficiency (invasion index) was calculated according to Jaradat and Bhunia (2003) by dividing the number of CFU that invaded the cells (with gentamicin) by the total number of CFU obtained without gentamicin treatment (both the invasion and the adhesion counts).

L. monocytogenes adherence and invasion inhibition assays

Three different procedures were used in order to differentiate exclusion, competition and displacement of *L. monocytogenes* by *Lb. paracasei* and its CFS. For exclusion tests, Caco-2 cell monolayers were cultured and washed as previously described and incubated with *Lactobacillus* (10⁸ CFU ml⁻¹, MOI 100) for 1 and 2 h.

Afterwards, non-adhering lactobacilli were removed by two washes with PBS solution, L. monocytogenes (10⁷ CFU ml⁻¹, MOI 10) was added and incubation was continued for further 1 and 2 h. Regarding competition tests, Lb. paracasei (108 CFU ml-1, MOI 100) and the pathogen (10⁷ CFU ml⁻¹, MOI 10) were mixed and added to the intestinal cells and then incubated for 2 h. For displacement assays, L. monocytogenes was first added to Caco-2 cells and then incubated for 2 h before the addition of Lb. paracasei CFS, and left for 30 min. The number of bacteria detached from the intestinal cells was determined by plating serial dilutions on Palcam agar plates. Each assay was conducted at least twice with two determinations per assay (Forestier et al., 2001). For invasion inhibition assay, the same experiments (pre- and co-incubation) were performed but the bacterial enumeration was realised after re-incubation of the Caco-2 cells in the presence of gentamicin (5 mg l⁻¹).

Microbial adherence to stainless steel and PTFE®

Stainless steel and PTFE® treatment

The two surfaces used for biofilm experiments were AISI 304 stainless steel and PTFE® (polytetrafluoroethylene, Teflon). Each surface was cut into rectangular coupons (3 by 1.5 cm) and washed using the procedure described by Bellon-Fontaine and Cerf (1990) with some modifications before adhesion assays. The coupons were washed by immersion for 10 min with agitation in 200 ml of an alkaline detergent of 2% (v/v) RBS 35 (Société des Traitements Chimiques de Surface, France) solution (initial temperature 50°C), and then were rinsed by immersion in 200 ml of tap water (initial temperature 50°C) with agitation for 25 min. Five further 1 min immersions with agitation in 200 ml of distilled water at ambient temperature were performed. The coupons were then autoclaved at 120°C for 20 min and were dried in a laminar air flow hood.

Adhesion experiments

Adhesion tests were conducted using the procedure of Chavant et al. (2002) with slight modifications. Bacterial cells (*Lb. paracasei* and *L. monocytogenes*) were harvested by centrifugation (8,000 x g at 4°C, 20 min), washed with sterile PBS (pH 7.2) solution and resuspended in the same solution to give 10⁸ CFU.ml⁻¹. Ten (10) ml of the bacterial suspension was poured into a Petri plate (55 mm diameter) containing a stainless steel or a PTFE[®] coupon and was incubated at 30°C for 3 h. Next, coupons were washed twice with PBS and the remaining cells detached from the inert surfaces by vortexing the coupons in 20 ml of sterile PBS in the

presence of sterile glass beads for 2 min. Cells detachment was also done after a prolonged incubation of the adhered cells for 18 h as follows. The washed coupons were placed in another Petri plate containing 10 ml of sterile TSB-YE and were incubated for 18 h. Next, the coupons were washed twice again with PBS and the cells were detached as described previously. After tenfold serial dilutions, viable adherent bacteria were counted after cultivation on Palcam agar (Merck). Each experiment was performed in triplicate using independently grown cultures.

Inhibition of *L. monocytogenes* adhesion to abiotic surfaces

Using Lb. paracasei cells

Lb. paracasei (108 CFU ml-1) and L. monocytogenes (108 CFU ml⁻¹) strains were grown in TSB-YE and incubated at 30°C then a pre-incubation procedure was used as follows. 10 ml of Lb. paracasei culture at 108 CFU ml-1 were poured in a Petri plate containing the stainless steel or the PTFE® coupon and incubated for 3 h at 30°C. The culture broth was then aspirated and the coupon rinsed twice with PBS solution. Ten (10) ml of a listerial culture at 108 CFU ml-1 were used to inoculate the Petri plate and then incubated at 30°C for additional 3 and 18 h as described for adhesion assays. The same experiment was performed in a co-incubation procedure: 5 ml of each culture (108 CFU ml-1 for Lb. paracasei and for L. monocytogenes) were mixed together and poured into the Petri plate containing the stainless steel or the PTFE® coupon and incubated at 30°C for 3 and 18 h. At the end of the two procedures, the coupons were rinsed twice with PBS and the adherent *L. monocytogenes* cells were detached and enumerated as described previously. Each experiment was performed in triplicate independently grown cultures. Lb. paracasei (108 CFU ml-1) was used for the displacement of mature L. monocytogenes biofilms (7 days) produced on the same surfaces (stainless steel and PTFE®) using postincubation for 1 h. The mature biofilms were obtained as described by Bellon-Fontaine et al. (1996). The number of detached cells from the two surfaces was determined by plating appropriate dilutions on Palcam agar plates.

Using the Lb. paracasei culture supernatant

In the pre-incubation procedure, TSB-YE culture supernatant of the *Lactobacillus* strain was recovered after 18 h culture (10⁸ CFU ml⁻¹) by centrifugation at 8,000 x g for 20 min, at 4°C. Ten (10) ml of the CFS were poured in a Petri plate containing the stainless steel or the PTFE[®] coupon and was left for 1 h at 30°C, then the

Table 1. Anti-listerial activity of Lb. paracasei culture supernatant (mm).

Culture broth	pH values of the culture supernatant		
	4.0	5.6	6.5
MRS	18	12	12
TSB-YE	24	15	15

MRS: de Man, Rogosa and Sharp medium; TSB-YE: Tryptic Soy Broth-Yeast Extract.

supernatant was aspirated and the coupon rinsed twice with PBS solution. Ten (10) ml of a listerial culture in TSB-YE broth (108 CFU ml⁻¹) were used to inoculate the Petri plate and then incubated at 30°C for additional 3 and 18 h, as described previously. The coupons were rinsed twice with PBS and the adherent monocytogenes cells were detached and enumerated as aforementioned. Each experiment was performed in triplicate using indepen-dently grown cultures. The same experiment was performed in co-incubation procedure, using 5 ml Lactobacillus CFS and 5 ml of L. monocytogenes culture (108 CFU ml⁻¹) in TSB-YE as an adhesion medium. As for Lb. paracasei cells, Lb. paracasei (108 CFU ml-1) CFS was used for the displacement of mature L. monocytogenes biofilms (7 days) produced on the same surfaces (stainless steel and PTFE®) using post-incubation for 1 h.

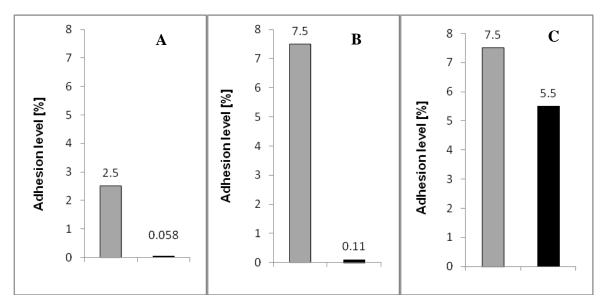
Statistical analyses

All the results were expressed as mean ± standard deviation. Statistical analyses was performed using ANOVA test and paired Student's test to compare the concentration of *L. monocytogenes* at different times and conditions of the trials. Probability values of P<0.05 were considered statistically significant.

RESULTS AND DISCUSSION

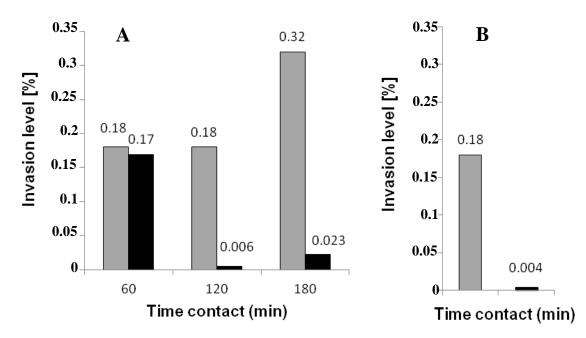
Anti-listerial activity

Using MRS or TSB-YE broths as growth media, large differences were observed regarding the anti-listerial activity. The *Lb. paracasei* CFS recovered from MRS broth had a pH of 4.0 whereas that obtained from TSB-YE was just 5.6. This difference in pH value could be attributed to the low carbohydrate content of the TSB-YE compared to MRS (2% glucose). The CFS whether at pH 6.5, 5.6 or 4.0 inhibited the growth of the pathogenic strain tested at different degrees as revealed by the disparity of diameters of inhibition zones (Table 1). If pH neutralization reduced the anti-listerial activity of the MRS supernatant, no reducing effect was registered in the


case of the TSB-YE supernatant (pH 5.6) which demonstrated the involvement of the acidic pH in the MRS supernatant anti-listerial activity but not in the TSB-YE one. Since inhibition was observed when the pathogen was grown in the presence of near-neutral supernatant (pH 6.5) or with the appropriate control medium (MRS and TSB-YE at pH 5.6 and 6.5), inhibition effects cannot be explained by only organic acids production (along with the low pH in MRS broth). They are most probably due to other substances (most probably due to a bacteriocin) since proteases treatment abolished completely the anti-listerial activity and no effect on the anti-listerial activity was noted after catalase treatment of either MRS or TSB-YE culture supernatant.

Adherence of *Lb. paracasei* and *L. monocytogenes* to Caco-2 cells

Since bacterial adhesion to intestinal cells is considered one of the most crucial selection criteria for probiotic strains (Dunne et al., 2001), we determined the adherence capacities of the Lb. paracasei strain on Caco-2 cells. As already reported by Bendali et al. (2011), the probiotic strain was able to adhere to the cell surface monolayer with an average of 6.0 x 10⁶ CFU ml⁻¹ after 1 and 2 h incubation at levels ranging from 1.33 to 1.71%, respectively. Adhesion of Lb. paracasei to intestinal epithelial cells would allow colonization of the intestinal mucosa and therefore could limit the overgrowth of pathogens. Previous studies indicated that Lactobacillus species are able to adhere to the surface of intestinal epithelial cells in tissue culture (Granato et al., 1990; Greene and Klaenhammer, 1994; Kaushik et al., 2009). Similarly, L. monocytogenes was able to adhere to Caco-2 cells within different time contact (1 and 2 h). 2.5% of the cells population adhered to Caco-cells within 1 h contact time; this level reached a value of 7.5% after further 1 h incubation (Figure 1).


Inhibiton of *L. monocytogenes* adherence to Caco-2 cells

Lb. paracasei inhibited L. monocytogenes adhesion. This

Figure 1. Adhesion level (%) of *L. monocytogenes* to Caco-2 cells in the absence (■) and in the presence of *Lb. paracasei* cells (■). In the case of post-incubation procedure, the remaining attached cells after *Lb. paracasei* culture supernatant treatment was indicated (■). A, Pre-incubation [contact 60 min, multiplicity of infection (MOI) 10]; B, co-incubation (contact 120 min, MOI 10).

inhibition was dependent on the time of contact, the inhibition agent (live Lb. paracasei cells or its cell-free culture supernatant) and on the mode of contact (preincubation, co-incubation or post-incubation). inhibition level varied from 99.37% (2 h) to 99.77% (1 h) in the pre-incubation experiments and from 98.26% (2 h) to 99.47% (1 h) in the co-incubation experiments. The best inhibition was registered in the pre-incubation procedure than the co-incubation while the best inhibition rates were obtained within 1 h than after 2 h. Whereas in the post-incubation procedure with the use of the Lb. paracasei CFS, the detached cells level was 2% as determined by the enumeration of the remaining adhered cells after 30 min CFS treatment and no viable detached cell was detected. In the pre-incubation experiments, Lb. paracasei (≈ 108 CFU ml⁻¹) was maintained in contact to the Caco-2 cells for 2 h. After elimination of the nonadherent bacteria, L. monocytogenes cells (≈10⁷ CFU ml⁻ 1) were added and the plates were further incubated for 1 and 2 h, respectively. At the end of the incubation periods, very low adhesion levels (0.058 and 0.006 %) were recorded for L. monocytogenes after 1 and 2 h (Figure 1). In the co-incubation experiments, adhesion levels of 6.0×10⁶ and 9.2×10⁴ CFU ml⁻¹ were obtained for L. monocytogenes (initial level 8×10⁷ CFU ml⁻¹) in the absence (control) and in the presence of Lb. paracasei (7.2×10⁸ CFU ml⁻¹) which represents an inhibition percentage of 98.47% compared to the control (Figure 1). This indicates that the probiotic strain adhered more easily and quickly to the Caco-2 cells than the pathogen. Whereas in the post-incubation procedure, the Lb. paracasei culture supernatant was also examined for its ability to impair the adherence of *L. monocytogenes* to Caco-2 cells. Using a MOI of 10, the level of adhesion of this pathogen (in the absence of the active supernatant) was 6.0×10^6 CFU ml⁻¹ and in the presence of Lb. paracasei culture supernatant, the adhesion of the pathogen was reduced. As shown in Figure 1, incubation with the Lb. paracasei culture supernatant for 30 min resulted in displacement levels of 2.0% of the adhered L. population monocytogenes using post-incubation procedure. Previous reports (Jankowska et al., 2008; Baneriee et al., 2009) have showed that Lactobacilli inhibit binding and cytotoxic effect of pathogens with a Caco-2 cell model. The pre-installation of Lb. paracasei was shown to be the best procedure in impairing the pathogen adhesion. This can be the result of several factors. Indeed, it has been demonstrated that probiotics increased expression of mucins (Mack et al., 1999; Mack et al., 2003) and as expected for Lactobacillus Lcr35, Lb. paracasei could interact with the level of mucins produced by Caco-2 cells and thus impair the adhesion of L. monocytogenes. The presence of Lb. paracasei may impede the access of pathogen to cell surface by steric hinderance and that may explain the decrease of adhesion of the pathogen in the presence of Lb. paracasei. However, this hypothesis could not account for the whole inhibition process. It is also possible that Lb. paracasei-specific products inhibit the adhesion of Listeriae since it has been previously shown that

Figure 2. Invasion of Caco-2 cells by *L. monocytogenes* in the absence (■) and in the presence of *Lb. paracasei* (■). A, Pre-incubation [contact 60 min, 120 and 180 min, multiplicity of infection (MOI) 10]; B, coincubation (contact 120 min, MOI 10).

production of biosurfactants by some strains of *Lactobacillus* can prevent adhesion of pathogens to intestinal cells (Vignolo et al., 1993; Gudina et al., 2010). Probiotics were also reported to exert their beneficial effects by producing bacteriostatic or bactericidal agents (Takahashi et al., 2004; Corr et al., 2007), competitively excluding pathogenic bacteria such as bacteriocins, proteinases, peroxides, and exopolysaccharides (Bernet-Camard et al., 1997; Lebeer et al., 2008).

L. monocytogenes invasion of human Caco-2 cells

To study the invasion potential of *L. monocytogenes* in specific Caco-2 cells, gentamicin protection assay was performed. The strain was able to invade with low capacity ($\approx 10^4$ CFU ml⁻¹) into Caco-2 cells after 1 and 2 h (1.8×10^4 CFU ml⁻¹), and 3 h (3.2×10^4 CFU ml⁻¹) of contact with an invasion index of 5.8×10^{-4} .

Inhibition of *L. monocytogenes* invasion of human Caco-2 cells

Using *Lb. paracasei*, Caco-2 cells invasion by *L. monocytogenes* was inhibited. This inhibition was dependent on the time of contact, the inhibition agent (live *Lb. paracasei* cells or its cell-free supernatant) and the mode of contact (pre-incubation, co-incubation or

post-incubation procedure) (Figure 2). The inhibition levels of L. monocytogenes varied from 99.26 to 99.77% (with the Lb. paracasei bacterial cells) and from 92.90 to 99.33% (with the sole Lb. paracasei culture supernatant). However, no effect was observed using the postincubation procedure (Figure 2). Very little is known about the mechanism of inhibition of adhesion/invasion of pathogens by Lactobacilli. In a study by Jaradat and Bhunia (2003), using the Caco-2 cell line, they found significant variation in efficiencies of invasion among L. monocytogenes strains, ranging from 1.8 to 31.4% of the initial inoculum. Similarly, Chaterjee et al. (2006) reported large variability in invasiveness among monocytogenes serotypes. Roberts et al. (2009) found that *L. monocytogenes* outbreak strains showed variation in invasion efficiencies in Caco-2 human intestinal epithelial cells. The mean invasion efficiency ranged from 0.01 to 3.17%.

Bacterial adhesion to stainless steel and PTFE®

Bacterial cells adhesion to stainless steel and PTFE[®] surfaces is presented on Figure 3. *Lb. paracasei* showed maximum adherence levels of 2×10³ CFU cm⁻² on AISI 304 and 3.5×10⁴ CFU cm⁻² on PTFE[®] after 3 h incubation (Figure 3A). After prolonged incubation period (18 h), the maximum adherence levels of 6.2×10⁵ and 6.6×10⁷ CFU cm⁻² were obtained on AISI 304 and PTFE[®] respectively

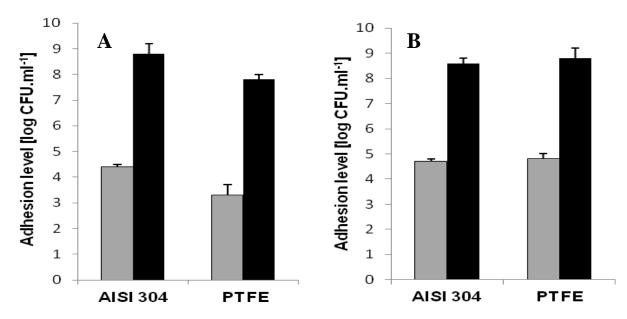
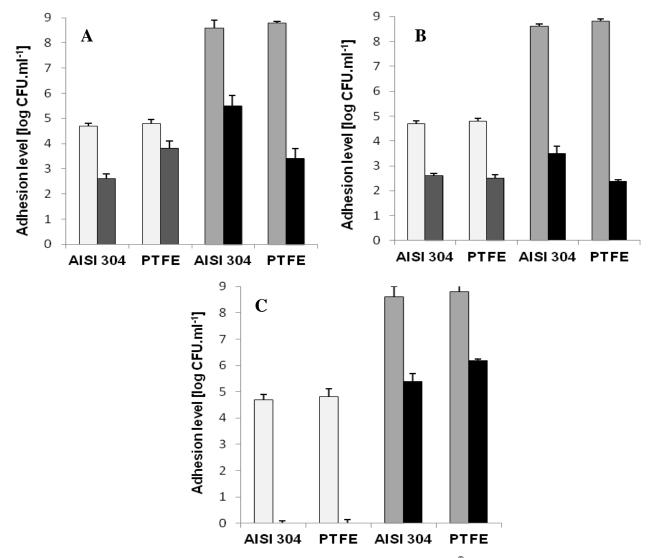


Figure 3. Adhesion levels *Lb. paracasei*. A, adhesion level of *Lb. paracasei*; B, *L. monocytogenes* on AISI 304 and PTFE[®] after 3 (■) and 18 h (■) contact times.

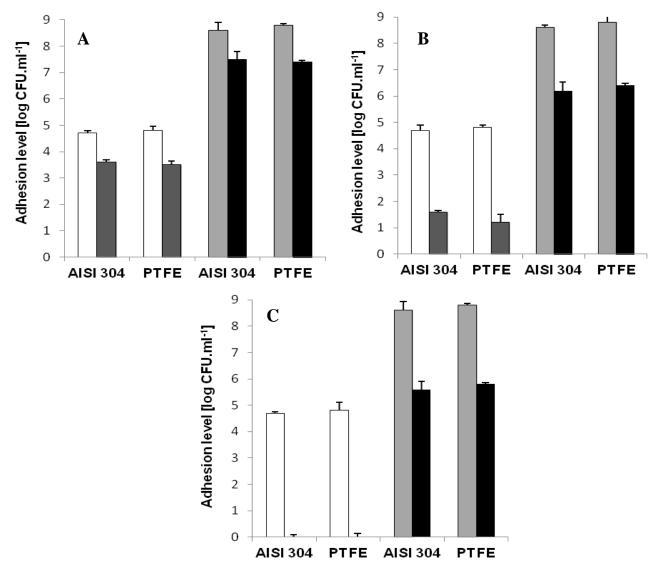

(Figure 3C). We observed that Lb. paracasei adheres strongly to PTFE® surfaces than to stainless steel 304. On the contrary, L. monocytogenes strain adhered strongly to both surfaces. The adhesion level was a function of the contact time (3 and 18 h). Stainless steel and PTFE® were selected because of their common use in food-processing plants and because they have different physic-chemical characteristics (Blackman and Frank, 1996; Arnold and Bailey, 2000). Several authors (Mafu et al., 1990; Blackman and Frank, 1996; Chavant et al., 2002) have reported the capacity of different strains of L. monocytogenes to colonize such surfaces. Results from analysis of variance showed that the nature of the surface and the contact time were the main factors which statistically affected adhesion and colonization (P< 0.05). Thus, better adhesion and colonization were observed on the stainless steel, confirming the hydrophilic character of L. monocytogenes EGDe and the importance of this property in these processes (Van Loosdrecht et al., 1987; Chavant et al., 2002). This results are close to that obtained by de Oliveira et al. (2010), who reported that L. monocytogenes adhered to the stainless steel surface and presented a count of 4.89 Log CFU.cm⁻² after 3 h of contact. In their study, initial adhesion capacity measured during 58.75±0.90% and this corresponded to an inoculum of $8.26\pm0.18 \text{ Log CFU mI}^{-1} (OD_{600nm} = 0.873\pm0.04)$. Chavant et al. (2002) observed that the colonization of stainless steel coupons by L. monocytogenes LO28 was fast; and at least 80% of the coupon surface was covered by the biofilm after 2 h at 37 and 20°C. For both surfaces (AISI

304 and PTFE[®]), the colonization reached 100% after 24 h at 37°C, and under their experimental conditions, a minimum of 10⁷ CFU cm⁻² were observed after 2 h of contact with the substrata.

Inhibition of L. monocytogenes adhesion

Using the Lb. paracasei cells

Lb. paracasei showed an inhibition effect on adhesion consequently the biofilm formation monocytogenes on AISI 304 and on PTFE®. Significant differences (P<0.05) were recorded between the adhesion levels in the absence and in the presence of the strain following either the pre-incubation or the coincubation procedure. The highest efficiency displayed by Lb. paracasei was in the pre-incubation procedure with a total inhibition of the adhesion of L. monocytogenes to AISI 304 and an inhibition of 98.6% on PTFE®. However, using the co-incubation procedure, the adhesion of the pathogen was inhibited only by a mean of 95% (Figure 4). Yet, the application of Lb. paracasei post-installation of L. monocytogenes onto the abiotic surfaces did not influence the adhesion level. The presence of Lb. paracasei may impede the access of pathogen to material surface by steric hindrance and that may explain the decrease of adhesion of the pathogen in the presence of Lb. paracasei. However when tested individually, the level of adhesion of the pathogen was at least 10 times higher than those of Lb. paracasei at the


Figure 4. Adhesion level of *L. monocytogenes* on stainless steel AISI 304 and PTFE[®] in the absence (\square , \blacksquare) and in the presence (\blacksquare , \blacksquare) of *Lb. paracasei* after 3 h contact (\square , \blacksquare) and prolonged period 18 h (\blacksquare , \blacksquare) contact time following the preincubation (A), co-incubation (B) and post-incubation (C) procedures. In the later case, the detachment level in the presence of the culture supernatant rather than the adhesion level was indicated.

same contact time. Therefore, this hypothesis could not account for the whole inhibition process.

Using the cell-free supernatant

Cell-free culture supernatant of *Lb. paracasei* showed an inhibition effect on adhesion and consequently on biofilm formation of *L. monocytogenes*. Similar to the use of the bacterial cells, significant differences (P<0.05) were recorded between the adhesion levels in the absence and in the presence of the culture supernatant. Similar efficiency was displayed by the *Lb. paracasei* cell-free supernatant in the co-incubation and in the pre-incubation

procedures (P<0.05), indicating that adsorption of the supernatant constituents to the inert surfaces was substantial (Figure 5). Interestingly, significant detachment levels of the installed biofilms (7 days) were registered when treated with the cell-free supernatant compared to the non-treated ones. Adherence of bacteria to the material surface is an important prerequisite for colonization by microorganisms and biofilm formation. Inhibiting the adhesion of pathogenic bacteria to the material surfaces could decrease the surface colonization and in consequence block the process of biofilm formation. In this study, we showed that *Lb. paracasei* interfered with the adhesion process to stainless steel and PTFE® surfaces of *L. monocytogenes*. The

Figure 5. Adhesion level of *L. monocytogenes* on stainless steel AISI 304 and PTFE in the absence (\square, \blacksquare) and in the presence $(\blacksquare,\blacksquare)$ of *Lb. paracasei* culture supernatant after 3 contact (\square,\blacksquare) and 18-h $(\blacksquare,\blacksquare)$ contact time following the preincubation (A), co-incubation (B) and post-incubation (C) procedures. In the later case, the detachment level in the presence of the culture supernatant rather than the adhesion level was indicated.

adherence of the pathogen was decreased by addition of *Lb. paracasei* or its cell-free supernatant regardless of whether the *Lb. paracasei* or its supernatant was added before or during the incubation with the pathogen. Zhao et al. (2004) have already reported the inhibition of *L. monocytogenes* settlement on stainless steel by competitive exclusion *Enterococcus* and *Lactococcus* strains.

Conclusion

Adherence of bacteria to biotic and abiotic surfaces is an

important prerequisite for colonization by microorganisms, biofilm formation and invasion (mucosa). Inhibiting the adhesion of pathogenic bacteria to the surfaces could decrease the surface colonization and in consequence block the process of biofilm formation and propagation. In this study, we showed that Lb. paracasei interfered with the adhesion process monocytogenes to Caco-2 cells, stainless steel and PTFE® surfaces. The adherence of the pathogen was decreased by addition of Lb. paracasei or its cell-free supernatant regardless of whether the Lb. paracasei or its supernatant was added before or during the incubation with the pathogen. Therefore, the Lactobacillus strain

used in this study may be an excellent candidate for eventual use as prophylactic and therapeutic agent. The protective role of lactic acid bacteria against biotic and abiotic surfaces colonization by pathogenic microorganisms has gained more credibility and may represent a new effective tool to control pathogen overgrowth inside the gastrointestinal tract of patients and onto food contact surfaces.

ACKNOWLEDGEMENT

We thank A. Durand, INRA of Clermont-Ferrand (France) for her expert technical assistance in the realization of experiments with Caco-2 cells.

REFERENCES

- Arnold J. W. & Bailey G. W. (2000). Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: Scanning electron and atomic force microscopy study. Poultry Sci. 79:1839-1845.
- Banerjee P., Merkel G. & Bhunia A. K. (2009). *Lactobacillus delbrueckii* ssp. *bulgaricus* B-30892 can inhibit cytotoxic effects and adhesion of pathogenic *Clostridium difficile* to Caco-2 cells. Gut Pathol. 1:1-8.
- Bellon-Fontaine M. N. & Cerf O. (1990). Experimental determination of spreading pressure in solid and liquid vapor systems. J Adhes. Sci Technol. 4:475–480.
- Bellon-Fontaine M. N., Rault J. & van Oss C. J. (1996). Microbial adhesion to solvents: A novel method to determine the electron donor/electron acceptor or Lewis acid-base properties of microbial cells. Colloids Surf. B 7:47-53.
- Bendali F., Durand A., Hébraud M. & Sadoun D. (2011). *Lactobacillus paracasei* subsp. *paracasei*: An Algerian isolate with antibacterial activity against enteric pathogens and probiotic fitness. J. Food Nutr. Res. 50:139-149.
- Bendali F., Gaillard-Martinie B., Hébraud M. & Sadoun D. (2008). Kinetic of production and mode of action of the *Lactobacillus* paracasei subsp. paracasei antilisterial bacteriocin, an Algerian isolate. LWT Food Sci. Technol. 41:1784-1792.
- Bernet-Camard M. F., Liévin V., Brassart D., Neeser J. R., Servin A. L. & Hudault S. (1997). The human *Lactobacillus acidophilus s*train LA1 secretes a non-bacteriocin antibacterial substance(s) active *in vitro* and *in vivo*. Appl. Environ. Microbiol. 63:2747-2753.
- Blackman I. C. & Frank J. F. (1996). Growth of *Listeria monocytogenes* as a biofilm on various food-processing surfaces. J. Food Prot. 59:827-831
- Burkholder K. M. & Bhunia A. K. (2009). Salmonella enterica serovar *Typhimurium* adhesion and cytotoxicity during epithelial cell stress is reduced by *Lactobacillus rhamnosus* GG. Gut Pathol. 3:1-14.
- Chambel L., Sol M., Fernandes I., Barbosa M., Zilhão I., Barata B., Jordan S., Perni S., Shama G., Adrião A., Faleiro L., Requena T., Peláez C., Andrew P. W. & Tenreiro R. (2007). Occurrence and persistence of *Listeria* spp. in the environment of ewe and cow's milk cheese dairies in Portugal unveiled by an integrated analysis of identification, typing and spatial–temporal mapping along production cycle. Int. J. Food Microbiol. 116:52-63.
- Chaterjee S. S., Hossaim H., Kluenne C., Kuchmina K., Machata S., Domann E., Chakraborty T. & Hain T. (2006). Intracellular gene expression profile of *Listeria monocytogenes*. Infect. Immun. 74:1323-1338.
- Chavant P., Martinie B., Meylheuc T., Bellon–Fontaine M. & Hébraud M. (2002). *Listeria monocytogenes* LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 68:728-737.

- Coconnier M. H., Liévin V., Bernet-Camard M. F., Hudault S. & Servin A. L. (1997). Antibacterial effect of the adhering human *Lactobacillus acidophilus* strain LB. Antimicrob Agents Chemother. 41:1046-1052.
- Corr S. C., Li Y., Riedel C. U., O'Toole P. W., Hill C. & Gahan C. G. M. (2007). Bacteriocin production as a mechanism for the anti-infective activity of *Lactobacillus salivarius* UCC118. Proc. Nat. Ac Sci. USA. 104:7617-7621.
- Cruz C. D., Silvestre F. A., Kinoshita E. M., Landgraf M., Franco B. D. G. M. & Destro M. T. (2008). Epidemiological survey of *Listeria monocytogenes* in a gravlax salmon processing line. Braz. J. Microbiol. 39:375-383.
- de Oliveira M. M. M., Brugnera D. F., Alves E. & Hilsdorf P. R. (2010). Biofilm formation by *Listeria monocytogenes* on stainless steel surface and biotransfer potential. Braz. J. Microbiol. 41:97-106.
- Dunne C., O'Mahony L., Murphy L., Thornton G., Morrissey D., O'Halloran S., Feeney M., Flynn S., Fitzgerald G., Daly C., Kiely B., O'Sullivan G. C., Shanahan F. & Collins J. K. (2001). *In vitro* selection criteria for probiotic bacteria of human origin: Correlation *in vivo* findings. Am. J. Clin. Nutr. 73:386-392.
- Farber J. M. & Peterkin P. I. (1991). *Listeria monocytogenes*, a foodborne pathogen. Microbiol. Rev. 55:133-158.
- Forestier Ch, De Champs Ch, Vatoux C. & Joly B. (2001). Probiotic activities of *Lactobacillus casei rhamnosus: In vitro* adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173.
- Granato D., Perotti F., Masserey I., Rouvet M., Golliard M., Servin A. & Brassard D. (1999). Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of *Lactobacillus johnsonii* La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65:1071-1077.
- Greene J. D. & Klaenhammer T. R. (1994). Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60:4487-4494.
- Gudina E. J., Rocha V., Teixeira J. A. & Rodrigues L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from *Lactobacillus paracasei* ssp. *paracasei* A20. Lett Appl Microbiol. 50: 419-424.
- Humphrey T. (2004). Science and society–Salmonella, stress responses and food safety. Nat. Rev. Microbiol. 2:504-509.
- Jankowska A., Laubitz D., Antushevich H., Zabielski R. & Grzesiuk E. (2008). Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells. J. Biomed. Biotechnol. doi:10.1155/2008/357964.
- Jaradat ZW and Bhuinia AK (2003). Adhesion, invasion, and translocation characteristics of *Listeria monocytogenes* serotypes in Caco-2 Cell and mouse models. Appl. Environ. Microbiol. 69:3640-3645.
- Johnson-Henry K. C., Donato K. A., Shen-Tu G., Gordanpour M. & Sherman P. M. (2008). *Lactobacillus rhamnosus* strain GG prevents enterohemorrhagic *Escherichia coli* O157:H7-induced changes in epithelial barrier function. Infect. Immun. 76:1340-1348.
- Kaushik J. K., Kumar A., Duary R. K., Mohanty A. K., Grover S. & Batish V. K. (2009). Functional and probiotic attributes of an indigenous isolate of *Lactobacillus plantarum*. PLoS ONE. 4(12):e8099.
- Koga T., Mizobe T. & Takumi K. (1998). Antibacterial activity of Lactobacillus species against Vibrio species. Microbiol. Res. 153:271-275.
- Lebeer S., Vanderleyden J. & De Keersmaecker S. C. J. (2008). Genes and molecules of *Lactobacilli* supporting probiotic action. Microbiol. Mole. Biol. Rev. 72:728-764.
- Lecuit M. (2007). Human listeriosis and animal models. Microbes Infect. 9:1216-1225
- Mack D. R., Ahrne S., Hyde L., Wei S. & Hollingsworth M. A. (2003).
 Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827-833
- Mack D. R., Michail S., Wei S., McDougall L. & Hollingsworth M. A. (1999). Probiotics inhibit enteropathogenic *E. coli* adherence *in vitro* by inducing intestinal mucin gene expression. Am. J. Physiol.

- 276:941-950.
- Mafu A. A., Roy D., Goulet J. & Magny P. (1990). Attachment of *Listeria monocytogenes* to stainless steel, glass, polypropylene and rubber surfaces after short contact times. J. Food Prot. 53:742-746.
- Nikolaev Y. A. & Plakunov V. K. (2007). Biofilm -city of microbes or an analogue of multicellular organisms? Microbiology 76:125-138.
- Roberts A. J., Williams S. K., Wiedmann M. & Nightingale K. K. (2009). Swarming motility *in vitro* invasion, *inlA* transcript levels and strains demonstrate significantly reduced some *Listeria monocytogenes* outbreak. Appl. Environ. Microbiol. 75:5647-5658.
- Seveau S., Pizarro-Cerda J. & Cossart P. (2007). Molecular mechanisms exploited by *Listeria monocytogenes* during host cell invasion. Microbes Infect. 9:1167-1175.
- Takahashi M., Taguchi H., Yamaguchi H., Osaki T., Komatsu A. & Kamiya S. (2004). The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol. 41:219-226.
- Tejero-Sarinera S., Barlow J., Costabile A., Gibson G. R. & Rowland I. (2012). *In vitro* evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe 18:530-538.
- Van Loosdrecht M. C., Lyklema J., Norde W., Schraa G. & Zehnder A. J. (1987). Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53:1898-1901.
- Vazquez-Boland J. A., Kuhn M., Berche P., Chacraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B., Wehland J. & Kreft J. (2001). *Listeria* pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:584-640.

- Vignolo G. M., Suriani F., Holdago A. P. D. R. & Oliver G. (1993). Antibacterial activity of *Lactobacillus* strains isolated from dry fermented sausages. J. Appl. Bacteriol. 75:344-349.
- Werbouck H., Grijspeerdt K., Botteldoorn N., Van Pamel E., Rijpens N., Van Damme J., Uyttendaele M., Herman L. & Van Coillie E. (2006). Differential *inlA* and *inlB* expression and interaction with human intestinal and liver cells by *Listeria monocytogenes* strains of different origins. Appl. Environ. Microbiol. 72:3862-3871.
- Zhao T., Doyle M. P. & Zhao P. (2004). Control of *Listeria monocytogenes* in a biofilm by competitive Exclusion Microorganisms. Appl. Environ. Microbiol. 70:3996-4003.