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Abstract

A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both
challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have
been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to
measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine
accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the
host. We found a low overall frequency of cellular infection (,0.3), and few cells were coinfected by both virus variants
(,0.1). We then estimated the cellular contagion rate (R), the number of secondary infections per infected cell per day. R
ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular
multiplicity of infection (MOI), the number of virions infecting a cell, were low (,1.5). Variance of virus-genotype frequencies
increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the
ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection
patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation
that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the
between-cell level is restricted, probably due to the host environment and virus infection itself.
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Introduction

For obligate intra-cellular micro-parasites such as viruses, the

cell is the fundamental and minimal unit of infection. Important

macro-scale phenomena in viral infection – immunity, virulence,

transmission, and evolution – all depend on the infection outcome

in individual cells. The biochemical and molecular bases of virus

infection have received much scrutiny, and in the past decades

there also have been major advances in understanding the

dynamics at the host and host-population levels. The next great

challenge is a unified picture of virus infection dynamics and

evolution that integrates different spatiotemporal scales [1,2].

However, integration across different spatiotemporal scales

effectively has not occurred across the between-cell level due to

practical and methodological considerations.

At present, there simply is not a coherent picture of infection

dynamics at the between-cell level. A number of key issues have

not been addressed adequately to date. First, virus replication in

an individual cell can be extremely rapid [3,4], as can the advance

of infection and long-range movement [5]. However, little is

known about the rate at which infection spreads at the cellular

level [6]. What will be the number of newly infected cells per

infected cell per day, a value we refer to as the cellular contagion

rate (R)? Whereas a reproduction ratio estimates the number of

cells directly infected by one cell [6], the contagion rate estimates

the total number of newly infected cells occurring per infected cell

over a given time period. For Tobacco mosaic virus (TMV) infection

of Nicotiana benthamiana plants, a low R was estimated (0.5–0.6 cells/

cell/d), although why this R value was so low was not discussed

[7]. Given the rapid replication and spread of viruses, this result is

unexpected and it is not at all clear whether other viruses will

adhere to similar patterns. Furthermore, a constant R value was

assumed in the analysis described in ref. [7], whereas a time-

varying rate may provide more insights into the underlying

dynamics [6]. Another important issue is that individual cells can

be observed readily in cell culture systems, whereas gross infection

patterns in multi-cellular hosts can be observed by means of virus-

induced symptoms, molecular methods [8] or by monitoring

infection of tagged viruses [5]. However, these methods do not

render information on how the number of infected cells in

different tissues changes over time. Finally, variation in genotype

frequencies has been described only at higher levels of host

organization [9–11]. By variation in genotype frequencies, we

refer to the differences in the abundance of different virus variants,

after a cohort of hosts is initially inoculated with a virus population

containing two or more variants. How will this variation change

from the population to the individual to the organ, and finally, to

the cell? This variation is pivotal to studying the infection
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dynamics and evolution of viruses. Within-cell interactions

between virus genotypes, such as recombination and the

complementation of defective virus genotypes, will require that

the presence of two genotypes within a host also carry over to the

organ and individual cell levels. Whether genotypes carry over will

depend on the genetic bottlenecks a virus population passes

through when colonizing organs or infecting a cell, respectively.

Plant viruses are ideal model systems for studying virus infection

at the between-cell level, and therefore infection dynamics at this

level are probably best understood in these systems. The targets of

primary infection by mechanical inoculation – epidermal cells –

can be readily observed in situ [5,12–14], allowing for the tracking

of cell-to-cell movement [13]. Moreover, two approaches have

been developed to determine whether protoplasts – intact cells

extracted after degradation of the cell wall – are infected by

different plant virus variants, based on fluorophores [7] or nested

PCR [9]. Finally, there is an enviable characteristic of plants: their

leaves are natural, biologically relevant compartments that can be

removed cleanly (e.g. [15]) for further study.

The development of plant viruses as model systems to study

between-cell infection dynamics has led to important insights and

the estimation of some key infection parameters. First, as discussed

above, a low R has been estimated for TMV [7]. Second, estimates

of the cellular multiplicity of infection (MOI) have been made for

three plant viruses. For TMV, MOI was found to be low (MOI,2)

[7,16]. Moreover, in this particular case a substantial proportion of

cells (.0.1) remain uninfected [7]. However, a model-selection-

based analysis of the TMV data suggests MOI might in fact be

higher, whilst the number of coinfected cells is low due to spatial

segregation of the two virus variants [17]. For Cauliflower mosaic

virus (CaMV), MOI was reported to vary from 2 to 13 over time,

and most cells were infected [9]. Furthermore, for CaMV virion

concentrations in vascular tissue are correlated to MOI [18]. For

Soil-borne wheat mosaic virus, MOI was estimated during the first

rounds of cellular infection in the inoculated leaf, rendering an

estimated of 5–6 [12]. Additionally, low level of potyvirus cellular

coinfections suggest a low MOI for potyviruses [19]. Finally, for our

model system, Tobacco etch virus (TEV; genus Potyvirus, family

Potyviridae), the number of infected cells in systemic tissues early in

infection depends on the number of primary infection foci, and the

number of infected cells does not increase to a frequency greater

than 0.5 [15].

Important omissions in our understanding of infection dynamics

at the between-cell level remain, however. In particular, a

comprehensive view of the between-cell level of infection is

missing and the tracking of cell-level infection in multiple host

organs or compartments has not been reported. We therefore

opted to study these dynamics in TEV and devised an

experimental setup in which we could measure infection at the

cellular level, which was both sensitive and high-throughput. We

opted to analyze the presence of viral variants in individual cells

using a flow-cytometry-based method [15,20]. This approach

allows for quantitative measurements of the number of cellular

infections for two virus variants in a large number of mesophyll

cells, allowing for an analysis of infection dynamics in different

host compartments and at different times. This large dataset

allowed us to describe the dynamic pattern of the number of

infected cells over time, estimate MOI, quantify R, and consider

the variation in genotype frequencies at different levels of host

organization as a consequence of bottlenecks.

Results

Low levels of cellular infection and coinfection
We generated two TEV variants, TEV-BFP and TEV-Venus,

which express blue or yellow fluorescent proteins, respectively.

Fluorescent markers inserted in the TEV genome can be stable

over multiple short rounds of infection [14,21], and we confirmed

the integrity of the marker sequences throughout the experiment

(see Materials and Methods). Furthermore, the insertion of eGFP –

a variant of the fluorescent protein from which BFP and Venus are

derived – in the TEV genome has no effect on virus accumulation

after 7 days post-inoculation (dpi) (see Materials and Methods).

Therefore, these marked viruses have biological properties similar

to the wild-type virus from which they are derived. We rub-

inoculated the third true leaf of Nicotiana tabacum L. cv. Xanthi

plants with a 1:1 mixture of infectious saps (ground tissue in

inoculation buffer) of the two variants. We then isolated

protoplasts [15,20] from the third, fifth, sixth, and seventh true

leaves at 3, 5, 7, and 10 dpi, with five replicate plants for each time

point. We did not analyze the fourth true leaf because under the

current experimental conditions this leaf does not show any

infection. Flow cytometry was used to determine which cells were

uninfected, infected by one or by both virus variants. Using this

approach we could quantitatively measure the distribution of

cellular infection over space and time, for the two virus variants.

The frequency of virus-infected cells was low (mean 6 1 SD:

0.07260.099), with the highest level of infection observed in any

one sample being 0.424 (Leaf 7 at 10 dpi) (Figure 1A–D). The

frequency of cells infected by both virus variants was also low

(mean 6 1 SD: 0.01260.023), with the highest level of coinfection

observed in any sample being 0.112 (Leaf 6 at 7 dpi) (Figure 1A–

D). These low levels of coinfection are in agreement with previous

studies on plant RNA viruses [7,13,19], and suggest that MOI is

low. Few cells were infected in any leaf at 3 dpi, with the greatest

number of infections being found in Leaves 3 and 6. This

surprising observation can be explained by the occurrence of

limited, relatively slow TEV expansion at the macroscopic level in

the inoculated leaf [8], combined with fast egress (,2 dpi) from

Leaf 3 to Leaf 6 at high viral doses [15]. Both infection and

coinfection appear to increase over time in the different leaves,

although Leaf 5 shows very low levels of infection. Infection

progresses slower in Leaf 3 than in Leaves 6 and 7. Leaf 6 becomes

infected before Leaf 7, but the dynamics in these two leaves are

otherwise very similar. The frequency of TEV-Venus infected cells

was significantly higher than expected for a 1:1 inoculum (one-

sample t-test: t79 = 4.141, P,0.001), although the magnitude of the

deviation was small (mean Laplace point estimator for the

frequency of TEV-Venus infected cells 6 1 SD = 0.59160.196).

Author Summary

A great deal is understood about how a virus infects an
individual cell and manages to replicate. Patterns of
disease progression in plant and animal hosts, such as
virus titers and the appearance of symptoms, have also
been described in great detail. On other hand, very little is
known about what is happening at the intermediate levels
during virus infection. Here, we use flow cytometry, a
technique to rapidly measure large numbers of individual
cells, to quantify the number of cells infected by a plant
virus, in different leaves and at different times. We found
that few cells become infected, and only one or two virus
particles typically initiated cellular infection. Moreover,
viruses from an infected cell will infect only one or two
other cells. Therefore, although viruses replicate at
astronomical rates within a cell, their rate of spread
between individual cells can be much slower.

Viral Within-Host Spatiotemporal Dynamics
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This deviation could occur because of a small discrepancy in the

inoculum ratio, or a small difference in infectivity or in within-host

competitive fitness of the two variants. To confirm that infection

levels in Leaf 7 had saturated at 10 dpi, in a separate experiment

we also analyzed infection in Leaf 7 at 13 dpi. The observed

frequency of virus-infected cells was slightly lower than at 10 dpi,

although the difference was not statistically significant (two-sample

t-test: t8 = 1.251, P = 0.246). The data therefore suggest that

infection levels had saturated in all analyzed leaves by 10 dpi.

To visually illustrate patterns of infection, we infected plants

with TEV-eGFP and TEV-mCherry [14] under identical condi-

tions. These viruses were used here, instead of TEV-BFP and

TEV-Venus, because their fluorescent proteins are more suitable

for microscopy. Even when infection appears to have saturated at

both the cell and visible fluorescence level, we could see

heterogeneities in the distribution of virus infection over the leaf

at different spatial levels (Figure 1E–G).

Cellular contagion rate
We estimated the time-varying cellular contagion rate (R) from

the data using a simple maximum likelihood method. This analysis

was carried out on the total number of infected cells, regardless the

virus variants present. For R.0 the number of infected cells

increases, whereas for R,0 it decreases. Our estimates of R for

individual leaves (Figure 2A–D) ranged from 2.43 cells/cell/d

(95% CI: 1.80–3.39) (Leaf 6, 3 dpi;) to values not significantly

different from zero (e.g., 20.327 cells/cell/d (95% CI: 20.539–

0.271) for Leaf 5, 7 dpi). We do not expect R,0 in this system,

since infection is not cleared and the number of infected cells can

therefore not decrease. Our approach might slightly overestimate

R in individual leaves because of between-leaf transmission, and

we therefore also estimated R for pooled data from different leaves

(Figure 2E). One disadvantage of this approach is that tissues with

high infection levels will most strongly affect R estimates. These

estimates of R (mean [95% CI]) ranged from 1.342 cells/cell/d

[0.247–1.371], 3 dpi, to 0.196 cells/cell/d [0.041–0.244], 7 dpi,

and were always significantly greater than zero. Overall, values of

R appear to be surprisingly low given estimates of the rapid rate of

cell-to-cell movement for TEV during initial infection, whilst they

are similar to estimates of R for TMV (0.5–0.6 cells/cell/d) [7].

Low R values may therefore be commonplace in plant RNA

viruses, although data from more pathosystems will be needed to

confirm this idea.

Dolja et al. [5] observed that a primary infection focus starts

with a single infected cell and grows to formation with a

diameter of ten infected cells within 24 h, and hence

R~ p 10=2ð Þ2{1
� �.

1&78 cells/cell/d. This calculation is con-

servative and underestimates R because infection in the first

infected cell cannot be observed at t = 0, and because it only takes

into account infection in the epidermal cells. Note that such a high

value – which probably far exceeds the number of other cells to

which each cell is plasmodesmally connected [7] – is possible

because of multiple rounds of replication can occur within a single

day [5]. The R values we have measured are therefore extremely

low compared to R values found in the inoculated leaf during early

infection.

Within-host viral spread
We wanted to test whether our understanding of the process

that is likely to govern cell-level infection patterns was congruent

with our empirical data. Specifically, we wanted to test whether

there were leaf-dependent differences in key infection parameters,

and whether there was evidence for aggregation of virus-infected

cells limiting infection spread. We therefore developed a simple

susceptible-infectious (SI) model of within-host infection dynamics.

Each leaf in a plant represents a physically separated compartment

- with its own physiological state - that a virus must colonize [22].

We therefore developed a simple meta-population dynamics

model with between-leaf transmission from lower leaves to upper

leaves. For the kth leaf, the rate of change of the fraction of infected

cells (Ik) is:

dIk

dt
~bIkSkzxkSk

Xk{1

j~1

Ij ð1Þ

where b is the within-leaf transmission coefficient (from cell to cell),

x is the between-leaf transmission coefficient and S is the fraction

of susceptible cells. Between-leaf transmission depends on the total

fraction of infected cells in the leaves below the kth leaf, given that

systemic-movement for phloem-transported viruses is towards the

apical sink leaves [5,22]. Potyvirus infection appears to be marked

by the aggregation of infected cells [19], and given that plant cells

will largely retain their respective positions in developed leaves, the

perfect mixing assumptions of the SI model will not be met. We

therefore included a spatial aggregation factor of infectious units

(i.e., infected cells) yk in the model, such that

Sk

1{Ik=ykð Þ if Ikvyk

0 otherwise

�
:

By spatial aggregation of infected cells, we mean that infected cells

are likely to be found together and are therefore not randomly

distributed in the leaf. The mechanism resulting in the spatial

aggregation of infected cells is probably the dependence of plant

viruses on cell-to-cell movement for local infection to spread: the

spread of virions, or in some cases unencapsidated genomes, from

an infected cell to its direct neighbors [5,13]. When yk = 1 there is

perfect mixing, whereas when yk approaches 0 there is maximum

aggregation of infected cells [23,24]. The model was fitted using

maximum likelihood methods, and model selection was performed

to ensure the data supported the inclusion of all model parameters

(see Materials and Methods). As with the estimates of R, this

analysis was carried out on the total number of infected cells and

does not distinguish between the two virus variants.

The SI meta-population model could describe the data well,

clearly capturing the main trends in the data (Figure 2F). Spatial

aggregation of infected cells (yk) was indispensable to the model

(Table S2), and parameter estimates varied over leaves; yk was

most pronounced in Leaves 3 and 5, and much lower in Leaves 6

and 7 (Figure 2G). The between-leaf transmission coefficients (xk)

for Leaves 5 and 6 were similar, although infection never reaches

even moderate levels in Leaf 5. x7 was significantly lower than x6

(non-overlapping 95% CIs of parameter estimates), although the

number of infected cells in both leaves reached moderate levels

eventually. Parameter estimates therefore suggest that infection

dynamics vary for each leaf, even though the overall pattern

(Figure 1A–B) is similar for Leaves 6 and 7.

Cellular MOI
The cellular MOI can be estimated from our data, as has been

previously done for two plant viruses with a similar experimental

setup [7,9]. However, estimates of MOI can be influenced by the

estimation method [17]. Model selection was therefore performed

on a set of nine MOI-predicting models (see Materials and

Methods), by testing which Poisson-based model best predicted the

Viral Within-Host Spatiotemporal Dynamics
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Figure 1. The number of cells infected by each of the two virus variants over space and time. In Panels A–D, the observed frequencies of
cellular infection in Leafs 7, 6, 5, and 3 are given for all cells infected by TEV-Venus (finely dotted green line with circles), TEV-BFP (coarsely dotted blue
line with squares) and those infected by both variants (continuous red line with diamonds). The abscissae represents days post inoculation (dpi),
whilst the ordinate is the frequency at which a particular infected-cell type was observed. Error bars for all panels represent 6 1 SD, and each data
point represents the mean of 5 plants, with 50,000 cells measured per individual leaf. Leaf 4 was not included in this analysis because it does not
become infected, probably because the host vasculature does not transport virions to this leaf (see Discussion). The leaves analyzed in this study have
been given different colors in the schematic representation of the plant for the sake of easy identification in the top and side views. Note that for the
side of view of the tobacco plant, stem length has not been drawn to scale – being shorter than depicted here – for the sake of clarity. In panels E–F,
stereomicroscopic images of Leaf 6 at 7 dpi of a plant inoculated with TEV-eGFP (green fluorescence) and TEV-mCherry (red fluorescence) are shown.
Entire regions of leaf remain uninfected even though cell infection has saturated, probably because a phloem-transported virus cannot traverse the
sink-source boundary. However, even prior to the boundary (panel F) there remain uninfected regions. Panel G shows confocal microscopy of a
region that appears to be completely infected at higher scales (panels E and F), being a merge of the trans, eGFP and mCherry images.
doi:10.1371/journal.pgen.1004186.g001
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relationship between the fractions of uninfected and coinfected

cells (i.e., those cells infected by both virus variants) [17]. The

models incorporated spatial segregation of virus genotypes, spatial

aggregation of infected cells, superinfection exclusion at the

cellular level and combinations of all these effects. We could

thereby identify the best model to generate MOI estimates (Tables

S3 and S4). The best-supported model incorporated only a leaf-

dependent aggregation factor y (Table S4). The MOI and SI

model selection results are therefore in good agreement with each

other, although estimated y values were higher than those

obtained from the SI model (Figure 2G), indicating less

aggregation (Figure 3A). These two separate model selection

procedures therefore confirm the importance of the spatial

aggregation of infected cells for understanding TEV infection

dynamics at the between-cell level, as might be expected for a virus

that spreads by cell-to-cell movement. On the other hand, in a

similar model-selection-based analysis for TMV and CaMV MOI,

two viruses that also move by cell-to-cell movement, spatial

aggregation only marginally improved model fit for both datasets

[17]. These two different model-selection results suggest that

whether cell-to-cell movement really has an impact on MOI

estimation will depend not only on the mechanism of movement.

Other factors, such as the number and distribution of initially

infected cells, and the frequency of infected cells, also may play an

important role.

We then derived predictions of MOI using the best-supported

model (Figure 3B). As could be expected from the low frequencies

of cellular infection and coinfection (Figure 1A–D), the predicted

MOIs were low, ranging from 1.001 (Leaf 5, 3 dpi) to 1.432 (Leaf

6, 7 dpi). Note that we report the estimated MOI value in infected

cells only (i.e., mI in Materials and Methods), which has a

minimum value of 1. The corresponding range of MOI values

calculated over the whole population of infected and uninfected

cells (mT) is 0.002 (Leaf 5, 3 dpi) to 0.735 (Leaf 6, 7 dpi). Although

these estimates may seem low intuitively, MOI is assumed to follow

a Poisson distribution over cells and some cells can still be infected

by two or more virions, even when the mean of the distribution is

low (Figure 3C–E). Our estimates of MOI are similar to the low

estimates for TMV [7,16], although model-selection-based

estimates for the TMV data result in MOI values ranging to

somewhat higher values (up to 2.1), due to the predicted

occurrence of spatial segregation of virus genotypes [17]. For

CaMV much higher MOI values were observed later in infection

[9], but in our system infection levels remain low even then.

Variation in genotype frequencies at the host, leaf and
individual-cell levels

The experimental data also allow us to consider variation in the

frequencies of viral genotypes at different levels of the host: leaf

(Figure 4A–D), cells coinfected by both virus variants (Figure 4E–

H), all infected cells (Figure 4I–L), but also at the level of the host-

plant population (Figure 4M). Variance of TEV-Venus frequen-

cies appears to increase strongly from the plant and leaf levels to

the individual cell level (Figure 4A–M). The log-transformed

genotype ratios (TEV-Venus:TEV-BFP) in individual cells appear

to be independent of the frequency of TEV-Venus in the leaf

(Figure 5A), indicating a decoupling of processes occurring at the

leaf and coinfected-cell levels. Low estimates of MOI (Figure 3B)

imply that the virus population entering each cell is subject to a

narrow genetic bottleneck. A decoupling of the infection processes

at the leaf and cell levels is predicted to occur because very few

cells are infected by more than 2 virions (Figure 3E). Hence, for

the vast majority of coinfected cells the frequency of virus variants,

as represented by the infecting virions, is limited to 1/3, 1/2 and

2/3. If our MOI estimates are correct, than stochasticity in the

replication process within the cell accounts for high levels of

variation. In line with these expectations, we observed high levels

of variation in virus variants at the cellular level (Figure 4E–H) and

a distribution of variants in coinfected cells that is independent of

the frequency of virus variants in the leaf (Figure 5A). Note that

there are couplings between the leaf and cell-level dynamics (i.e.,

MOI depends on the overall level of infection for the best-

supported MOI models; see Materials and Methods), but our

observations show that not all leaf-level characteristics of the virus

population carry over to individual cells.

Finally, we estimated the effective population size, Ne, for

individual leaves and the whole plant [25] (see Materials and

Methods). For the inoculated leaf we obtained a Ne estimate of

approximately 100 (Figure 5B), corresponding well to the

approximate number of primary infection foci observed. For Leaf

6, Ne was also estimated to be approximately 100, although the

confidence interval extends to ‘ and there is no evidence for a

genetic bottleneck in this leaf. For Leaves 5 and 7, much lower

estimates of Ne were obtained, suggesting that fewer virions infect

these leaves and that it is more difficult for the virus to invade these

compartments. A wide range of within-host effective population

sizes at the leaf level has been reported for different viruses

[10,11,18,26]. Here we show a similar range of effective

population sizes can occur with a single virus-host combination,

probably due to the combined effects of host physiology, anatomy

and immunity.

Discussion

To link infection dynamics at the cell and host levels, we have

measured the number of cells infected by two virus variants within

individual plants over time and space. We have estimated R (the

cellular contagion rate, expressed as newly infected cells per

infected cell per day) over time for systemic virus infection. A

conservative estimate of the maximum value for R is 1.4 cells/cell/

d on day 3 (Figure 2E), and it falls to just under 0.2 cells/cell/d by

day seven. These values are comparable to estimates of R for

TMV infection of N. benthamiana of 0.5–0.6 cells/cell/day,

although in this instance a constant R was estimated [7]. We

can therefore conclude that for our model system, and perhaps

more generally for plant RNA viruses, R is very low during

systemic infection, suggesting that most cells will transmit virus to

one or possibly even zero other cells during infection.

Here we have estimated the cellular contagion rate over a

period of one day. Given that TEV infection has been reported to

expand at a rate of one row of cells every 2 h [5], it is entirely

Figure 2. The estimated time-varying cellular contagion rate (R) and results for the model of within-host spread. In panels A–D,
estimates of R (ordinate) are shown for different days (abscissae) and leaves, with error bars representing the 95% CI. Note that although the
estimates for Leaf 5 vary appreciably over time, the 95% CIs overlap with each other and with zero, meaning there is no evidence for the appreciable
spread of cellular infection in this leaf. For all panels each data point represents 5 plants. Panel E shows R estimates for the pooled data. In panel F, the
frequency of infected cells at different times in Leaves 3 (inoculated leaf), 5, 6 and 7 is shown. The lines are the fitted Susceptible-Infectious (SI) meta-
population model, whilst the circles are the data points and error bars 6 1 SD. In Panel G, we provide estimated model parameters for the SI model
and their 95% CI.
doi:10.1371/journal.pgen.1004186.g002
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Figure 3. Cellular MOI. The results of MOI model fitting and MOI estimates are given. In panel A, we provide estimates of y, the leaf-dependent
infection aggregation parameter, for the best-supported model. In panel B, estimates of cellular MOI, for different times post-inoculation and in
different leaves are given. Error bars represent the 95% confidence interval. Note that the reported MOI value is mI, the MOI in infected cells only,
which has a minimum value of 1. MOI is initially very low and gradually increases, never reaching 1.5. MOI values for the final time point (10 dpi) are
similar for Leaves 3, 6 and 7, whilst it remains very low for Leaf 5, which hardly becomes infected. Panels C–E show model predictions for the
frequency at which cells are infected by a certain number of virions. The blue section of the bar indicates the frequency of infection by only one virus
variant, whereas striped area indicates coinfection by both virus variants, assuming a 1:1 ratio of virus variants. Panel C gives this prediction for the
lowest MOI (mI = 1.001), panel D for the mean MOI (mI = 1.137), and panel E for the highest MOI (mI = 1.432). Estimated MOI values are low, but the
number of infecting virions is assumed to follow a Poisson distribution. Hence even at the low mean MOI some cells will be infected by 2 or more
virions, allowing for cellular coinfection.
doi:10.1371/journal.pgen.1004186.g003
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possible that multiple rounds of infection will occur during one

day. Therefore, the reproduction ratio at the cellular level (i.e., the

number of cells to which one infected cell spreads infection over its

lifetime) is probably similar to, or even lower than our estimates for

the cellular contagion rate. These estimates are in principle the

aggregated effect of local cell-to-cell movement and long-range

systemic movement. What then accounts for these surprisingly low

values of R, and are they reconcilable with high replication rates at

the molecular level [3,4] and fast virus expansion throughout the

plant [5,15]?

Decreases in cellular replication because the carrying capacity

for infection has been reached do not explain these observations:

low R values were estimated when infection levels were very low

(e.g., compare Figures 2C and 2F). However, contagion rates at

the cellular level can be much higher than those we have observed

here: based on other results [5] we also estimate that during

expansion in primary infection foci R<78 cells/cell/d. We have

observed early infection in systemically infected leaves that

eventually reached high levels (i.e., Leaves 6 and 7), and especially

in the case of Leaf 7 these infections appears to be initiated by a

small number of virions. Hence, ceteris paribus we would have

expected high R levels in these leaves as well, and moreover in

Leaf 7 R does not reach the same levels as Leaf 6. These

observations implicate two processes in slowing the observed rate

of virus expansion at the between-cell level. First, host immune

responses, particularly RNA silencing [27], is very likely to play a

role. Moreover, since a specific RNA silencing signal progresses

systemically to sink leaves [27,28], we speculate that this may

explain why there appear to be lower R levels in Leaf 7 than in

Leaf 6. Second, our experimental approach limits us to analyzing

the cells in a leaf as a whole, whereas the analysis of cells in the

infection front would result in higher R values.

We found striking differences in infection dynamics in different

leaves (Figure 1A–D). These differences were also reflected in

estimates of parameters for the different models fitted to the data

(Figures 2B, 3A and 5B). What can account for the infection

dynamics in different leaves? First, sink-source transitions will play

a major role in determining if and to what extent leaves can be

colonized, because phloem-transported viruses cannot cross the

sink-source boundary in any leaf [22]. This functional boundary

separates the basal part of a developing leaf, which is importing

photo assimilates, from the distal part that is already exporting

them. Furthermore, sink-source transitions may further impact the

spatial aggregation of infected cells on a smaller spatial level: sink-

source transitions will determine from which classes of phloem the

virus can unload, with much less restriction in smaller veins prior

to the transition [22]. Hence the distribution of initially infected

cells is likely to be more homogeneous – also on small spatial scale

– in sink leaves, leading to less spatial aggregation of infected cells.

We saw infection only in the basipetal region of Leaf 5, whereas

about half of the surface of Leaf 6 became infected (Figure 1E).

Therefore, we think that Leaf 4 has probably completed the sink-

source transition, and is almost exclusively exporting photo

assimilates, whereas it has not affected much of Leaf 7. These

assertions on the physiological state of these different leafs are

strongly supported by measurements of polyamine levels [29],

Figure 4. The variation in genotypic frequencies at the host, organ and individual-cell levels. In Histograms of TEV-Venus frequency at
the level of leaves (A–D), cells coinfected by both virus variants (E–H), all infected cells (I–L) and finally for the whole plant (M) are given. For the leaf
and whole-plant data (A–D and M), all the data from days 5, 7 and 10 were pooled and the variance (s2) is given. For the cellular data (E–L), one leaf
from a given leaf level was randomly selected (from all replicates at days 5, 7 and 10) for display in the histogram, and the mean variance (s2) over all
replicates is given. The data demonstrate that although the variation in genotype frequencies at the level of the whole plant and leaves is limited, the
variation at the individual cell level is much higher.
doi:10.1371/journal.pgen.1004186.g004
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which are molecular markers of proliferating source tissues.

Putrescine and spermidine levels show that for N. tabacum cv.

Xanthi of the same development stage as our plants at inoculation,

the sink-source transition is virtually complete in Leaf 4, almost

complete in Leaf 5, and has not yet commenced in Leaf 6. Note

that whereas sink-source transitions probably account for virus

aggregation on a large and intermediate scale (Figure 1E–1F),

RNA silencing probably impedes infection at all scales, also

resulting in aggregation of infected cells on the smallest scales

(Figure 1G) [27]. Second, crossing from leaves at one side of the

plant to the opposite can be hindered by the phloem connections

between leaves [22]. Third, as aggregation of infected cells is

increased, the rate of virus spread decreases [23] and the plant will

have more time to mount an effective response [27]. Consequent-

ly, we hypothesize that large effective population sizes can only be

achieved if (i) the virus can be readily transmitted between two

particular leaves, and (ii) the subsequent aggregation of infected

cells is moderate to low (e.g., the virus is not restricted to the basal

part of the leaf by the sink-source transition), allowing infection to

expand beyond the initial point of entry.

Based on these other studies, we therefore speculate on what

processes can account for the leaf-dependent differences we have

observed. Infection progresses relatively slow in Leaf 3, probably

because under the conditions used the virus only expands locally

and egresses from this source leaf [8]. Leaf 4 probably never shows

any infection in our setup because it has completed the sink-source

transition, and is moreover located opposite Leaf 3 (for leaf

positions see Figure 1). Leaf 5 has a relatively high between-leaf

transmission, strong aggregation, and a small bottleneck size

(Figures 2, 3 and 5). Its position directly above the inoculated leaf

explains high between-leaves transmission, whilst the nearly

complete sink-source transition results in high aggregation, low

levels of infection and therefore a de facto genetic bottleneck. In line

with this explanation, the highest levels of aggregation were

observed in Leaf 5, suggesting the virus expansion is very

constrained in this leaf. Leaf 6 has a high between-leaf

transmission due to its position above the inoculated leaf.

Moreover, because the sink-source transition is far from complete

there are high levels of infection, moderate aggregation and no

genetic bottleneck. Finally, Leaf 7 is positioned on the far side of

the plant, with respect to the inoculated leaf, and the increasing

intensity of host immune responses results in low between-leaf

transmission, and hence a genetic bottleneck occurs. However,

since the sink-source transition is far from complete, those viruses

that do enter the leaf can expand prolifically, resulting in lower

estimated levels of aggregation and high infection levels. In

summary, we think that plant anatomy and physiology may largely

explain the leaf-dependent differences in infection patterns we

have observed, although our explanation will require further

testing.

Our analyses of infection spread and MOI support the idea that

aggregation of virus-infected cells is also important for under-

standing dynamical patterns and therefore low R values. If there is

aggregation of virus-infected cells, which is concurrent with

potyviruses achieving local spread by cell-to-cell movement, only

those cells on the edge of an aggregate can contribute to virus

expansion, and even fortuitously situated cells may not actually

infect those susceptible cells they are in contact with before

neighboring cells do. The limitations on virus spread from an

individual cell to its neighboring cells due to the overall rapid

spatial spread of the virus is an effect we refer to as ‘‘self-shading’’.

The importance of self-shading in limiting between-hosts spread

Figure 5. The distribution of genotypic frequencies within cells and estimates of effective population size (Ne). In panel A, the
distribution of the log-transformed TEV-Venus:TEV-TagBFP ratio in cells infected by both variants is shown, using the combined data from days 3–10.
On the abscissae is frequency of TEV-Venus in the whole leaf and on the ordinate is the value for parameters describing the distribution of the log-
transformed virus ratio, with individual points representing the data and lines representing ordinary least squares regression lines. Red squares and
solid line correspond to the mean, orange circles and the coarse dotted line are the variance, blue diamonds and the intermediate-grain dotted line
are the kurtosis, and green triangles and fine dotted line are the skewness. There was not a significant relationship between TEV-Venus frequency and
any of the distribution parameters (Model 2 regression), suggesting that the virus genotype ratio in individual coinfected cells is largely independent
of infection events at the leaf level. In Panel B, we estimated Ne for each leaf and the whole plant, and the estimates with 95% confidence intervals
from the pooled data of days 5, 7 and 10 are given (each data point represents 15 plants). Ne for the inoculated leaf was about 100, which
corresponds well with the approximate number of primary infection foci. There were considerably smaller Ne values for Leaves 5 and 7. For Leaf 6, the
estimated bottleneck size was about the same for the inoculated leaf, although the 95% extends to ‘ (marked by an *). Ne estimates therefore
suggest the virus populations infecting different leaves vary in size, although Ne estimates are not entirely congruent with estimates of between-leaf
transmission (Figure 2B) at first glance.
doi:10.1371/journal.pgen.1004186.g005
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[23,30], and its implications for virulence evolution [31,32], have

been recognized on larger spatial scales. Our results stress the

importance of extending these concepts to within-host dynamics,

although we anticipate that there will be differences in the

between-host and within-host levels. For example, we hypothesize

that a high cellular contagion rate may not incur a major cost in

our model system; host cells are static and once a tissue has been

infected there are no possibilities for further within-host spread,

except for phloem loading in a minority of cells. Therefore, we

speculate that aggregation and self-shading will, in this case,

impose selection for fast viral replication and spread at the within-

host level.

Our experimental approach consisted of the isolation of

protoplasts, followed by measurements on individual cells by

flow-cytometry. Advantages of this approach are its amenability to

high-throughput, the high sensitivity of the flow-cytometer, and

the fact that mesophyll cells – the primary targets of virus

replication – can be analyzed. Disadvantages are the fact that

sampling is destructive, and hence a time course cannot be

analyzed, and the spatial information is lost during protoplast

extraction. Compared to other techniques available for analyzing

protoplasts [7,9], the approach used here has a much higher

throughput. Our approach may have a higher sensitivity than

microscopy [7], although PCR-based methods are probably more

sensitive [9]. Another alternative approach to analyze virus

infection dynamics would have been microscopy on whole leaves,

which renders spatial information and allows for longitudinal

analyses [13]. Although this approach works very well in the

inoculated leaf [13], it is not clear how well it would function in

systemic leaves, and this is also a lower-throughput method. For a

comprehensive analysis such as we have presented, the high-

throughput nature of the assay is essential and dictated our choice

of experimental approach.

For many other virus-host pathosystems, including those that

result in disease in animals such as humans, important spatial

characteristics of virus-plant pathosystems may be absent. Short-

range virus infections can typically be achieved by diffusion of

virions instead of cell-to-cell movement, and most host organs will

not have the planar anatomy of leaves. However, there are general

characteristics of virus-host interactions that suggest infection

aggregation may be a very commonplace phenomenon. First,

there are many physical barriers to virus expansion, structuring

the host environment and naturally favoring aggregation of

infected cells. Second, many viruses replicate in a limited number

of cell types or tissues, thus leading to spatial aggregation. Third,

epithelia are often targets of viral entry and one of the sites of

replication, and consist of highly planar structures. Finally, even

for free virions, diffusion and virion removal rates will determine at

what distance infection tends to spread. Based on our results and

these general considerations, we therefore speculate that aggrega-

tion of virus-infected cells and self-shading are likely to be key

ingredients for cell-level infection dynamics in a broad range of

intra-cellular pathogens infecting complex, multi-cellular hosts.

Materials and Methods

Experimental procedures
Construction of TEV-Venus and TEV-BFP. An infectious

plasmid containing the TEV genome (GenBank DQ986288) [33]

was used to construct the TEV-Venus and TEV-BFP genotypes

in which these two fluorescent marker genes were inserted

between TEV P1 and HC-Pro cistrons. Venus [34] or

TagBFP [35] cDNA was amplified by PCR using primers

forward 59-ATGGTGAGCAAGGGCGAGGAG-39 and reverse

59-TTGGAAGTACAAGTTTTCTCCGCCCTTGTACAGCT-

CGTCCATGC-39 (Venus), or forward 59-ATGAGCGAGCT-

GATTAAGGAG -39 and reverse 59-TTGGAAGTACAAGTTT-

TCTCCGCCATTAAGCTTGTGCCCCAGTTTG-39 (TagBFP).

The reverse primers inserted two glycines, as spacers, and a

partial NIa-Pro proteolytic site downstream of Venus or

TagBFP sequences. This partial proteolytic site (ENLYFQ) is

complemented by the first contiguous serine in HC-Pro cistron

to mediate marker release from the viral polyprotein. The

pTV1a vector, which contains the first 3221 nt of the TEV

genome including the complete P1 to HC-Pro cistrons, was

amplified using the forward primer 59-AGCGACAAAT-

CAATCTCTGAGGC-39 and reverse primer 59-TTTGTC-

GCTATAATGTGTCATTGAG-39. The PCR-amplified Venus

and TagBFP sequences were then ligated into the amplified

vector sequence, and transformed into electrocompetent Esche-

richia coli DH5a. The identity of the resulting pTV1a-Venus and

pTV1a-BFP plasmids was checked by restriction digests and

sequencing. Finally, PauI-AatII restriction fragments from

pTV1a-Venus and pTV1a-BFP were ligated into PauI-AatII

digested pMTEV to construct pTEV-Venus and pTEV-BFP. All

PCR reactions were performed with high fidelity Phusion DNA

polymerase (Finnzymes).

In vitro RNA transcription and inoculation. TEV-Venus

and TEV-BFP infectious plasmids were linearized with BglII

(TaKaRa) and transcribed into 59-capped RNAs using the SP6

mMESSAGE mMACHINE kit (Ambion Inc). Transcripts were

precipitated (1.5 vol of DEPC-treated water, 1.5 vol of 7.5 M LiCl,

50 mM EDTA), collected and resuspended in DEPC-treated

water [36]. Four-week-old N. tabacum plants were mechanically

inoculated on the third true leaf with RNA TEV transcripts mixes

(10 mg). Plants were maintained in the green house at 25uC and

16 h light for one week. Infected tissues were collected 7 dpi.

Stocks of infectious virions obtained from freshly TEV-Venus and

TEV-BFP infected N. tabacum were used as source of TEV

inoculum for our experiments.

Concentrated saps of TEV-Venus and TEV-BFP were then

obtained by grinding 500 mg of infected tissue in a mortar with

800 ml of inoculation buffer (50 mM potassium phosphate, 3%

PEG6000, pH 7.0). Viruses were inoculated separately, or by a 1:1

mixture of infectious saps on five-weeks-old N. tabacum plants.

Inoculation was performed by abrasion of the third true leaf with

15 ml of each infectious sap.

Test of marker sequence integrity. To test whether the

marker sequences were stable throughout the experiment, we

performed a test similar to that described in [14]. RNA was

extracted 12 dpi from plants infected with TEV-Venus and TEV-

BFP, RT was performed (primer: 59-CGCACTACATAGGA-

GAATTAG-39), and finally PCR with primers flanking the marker

gene (primers: 59- CAATTGTTCGCAAGTGTGC-39 and 59-

ATGGTATGAAGAATGCCTC-39). Only PCR products corre-

sponding to the virus with the intact marker sequence were found,

and not shorter PCR products associated with deletions in the

marker gene.

Microscopy. To verify the equal proportion of both geno-

types in the mix of TEV-Venus and TEV-BFP, fluorescence was

observed 3 dpi with a Leica MZ16F stereomicroscope, using a 16
objective lens, GFP2 filter (Leica Microsystems Heidelberg

GmbH) for TEV-Venus and Violet filter (Leica) for TEV-BFP

to count foci of primary infection on the inoculated leaf. Plants

showed equal levels of primary infection for both viruses. To

observe TEV-eGFP and TEV-mCherry, using a 0.56 objective

lens and GFP2 and dsRed filters (Leica), respectively. Infected

plant tissues were observed with a Leica TCS SL spectral confocal
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microscope using an oil immersed HCX PL APO 640/1.25-0.75

CS objective (Leica). eGFP-derived fluorescence was observed by

excitation at 488 nm from an argon laser and emission at 500–

520 nm, whereas mCherry was observed by excitation at 543 nm

from a green-neon laser and emission at 600–620 nm. Fluores-

cence profiles were analyzed and merged using the Leica Confocal

Software (version 2.61 build 1537; Leica).

Accumulation of TEV and TEV-eGFP. To test whether

eGFP-based marker genes had an important effect on the

biological characteristics of the virus, N. tabacum plants were

infected with and equivalent doses of virions of TEV or TEV-

eGFP [14]. Virions were quantified by means of a quantitative

real-time RT-PCR (RT-qPCR), using PrimeScript RT-PCR kit II

(TaKaRa), on the coat protein (CP) (primers: 59-TTGG-

TCTTGATGGCAACGTG-39 and 59-TGTGCCGTTCAGTG-

TCTTCCT-39). A Prism 7500 sequence analyzer (Applied

Biosystems) was used, as well as Prism 7500 software, version

2.0.4 (Applied Biosystems), to analyze the data. All aerial plant

tissue except the inoculated leaf were collected 7 dpi, RNA was

extracted, and a second RT-qPCR using CP primers was

performed to determine accumulation. There was not a significant

difference in accumulation levels between TEV and TEV-eGFP (t-

test on log10-transformed data: t14 = 0.754, P = 0.463). Therefore,

biological properties of the marked virus are similar to those of the

wild-type virus. On the other hand, the insertion of marker

proteins does appear to affect viral within-host competitive fitness

[21,37].

Protoplasts extraction and fluorescence analysis by flow

cytometry. Protoplast were extracted using a modification of

previously published protocols [20], where sliced leaves were

incubated with enzymatic solution (4.3 g/l MS salts, 0.04%

cellulase, 0.015% pectinase, 0.6 M manitol, pH 5.8) in dark at

2262uC. The incubated solution containing protoplast was

filtered and centrifuged (4 min, 700 rpm). Protoplast were selected

by 21% sucrose gradient, washed (10 mM HEPES, 5 mM CaCl2,

150 mM NaCl, 0.5 M manitol, pH 7) and conserved in a

hormone solution (4.3 g/l MS salts, 0.5 M manitol, 1 mg/l 1-

napthaleneacetic acid, 0.1 mg/l 6-benzylaminopurine, pH 5.8).

Analysis of the protoplasts was carried with a Gallios flow

cytometer (Beckman Coulter). This instrument is equipped with a

488 nm/22 mW blue and a 405 nm/40 mW violet solid state

diode lasers, two detectors for light scattering (forward scatter, FS,

and side scatter, SS) and ten fluorescence detectors. FS measures

cell size and SS defines protoplasts granularity. The FS signal was

10-fold reduced using a neutral density filter. The FL4 channel

with a 670 nm band-pass was used to measure chlorophyll

fluorescence. Live, intact protoplasts were selected based on the

combination of FS, SS and FL4 reads. Venus and BFP contents on

intact individual protoplasts were measured using the 525 nm

(FL1) and the 450 nm (FL9) channels, respectively, in order to

quantify the number of TEV-Venus, TEV-BFP and mix infected

cells. For an example of the raw cytometry data see Figure S3.

Data analysis and modeling of infection
Analysis of flow cytometry data. The combination of

TagBFP [35] and Venus [34] was chosen in order to limit the

overlap between excitation and emission spectra, allowing for the

discrimination of the two fluorescent proteins. For N. tabacum

plants infected with only TEV-Venus or TEV-BFP, we found low

levels of background signal for the virus not present. The

frequency of false-positive signals was low (mean frequency 6 1

SD): (6.2963.08)61024 of cells gave Venus signal when the plant

was only infected with TEV-BFP, whereas (7.7465.26)61023 of

cells gave a BFP signal when the plant was infected with only

TEV-Venus. Since we were dealing with low levels of infection

and to make our analysis conservative as possible, we decided to

include an extra filter for background signal in the analysis of flow-

cytometry data. From the data of non-infected or single-virus

infected controls, we determined the 95 percentile, and used this

point as the threshold for the extra filters. The *.lmd files were

exported to *.csv format (GenePatternServer, http://www.

broadinstitute.org/cancer/software/genepattern/), and all filter-

ing of the data was then performed in the R 2.14 software with a

custom script. The threshold values for filtering data were set to

exclude dead cells, aggregated cells and limit false positive signal:

SS$56, FS Time of flight (TOF)#310, Log10[FL4]$45 (chloro-

phyll), Log10[FL1].7.47 (TEV-Venus) and Log10[FL9].37.39

(TEV-BFP).

The temporal increase in frequency of total infected cells

(Figures 1A–D and 2A) for the pooled data was similar, but not

identical, to measurements of virus genome copy numbers (Figure

S1) [7], which validates that the frequency of infected cells as

measured by flow cytometry is similar to a more classical measure

of infection progress.

Estimates of cellular contagion rate (R). To estimate the

cellular contagion rate R we used an approach similar to Metcalf

et al. [6], although in our case we are estimating the contagion rate

per cell per day, rather than effective reproduction over the

lifetime of a cell. We assume a Susceptible-Infectious (SI) model of

within host dynamics at the cellular level. Recall that we proposed

an SI meta-population model, in which Ik is the fraction of infected

cells and its change with time is given by Equation 1, b is the

within-leaf transmission coefficient, x is the between-leaf trans-

mission coefficient, S is the fraction of susceptible cells and k

denotes the leaf. For estimates of R, we considered only individual

leaves, or the pooled data for the whole plant and disregarding any

sub-partition into different leaves. We estimated the time-varying

transmission constant bk,t by predicting the infection level for the

next data time point at which data were available (t) using the

recursive equation:

Ik,t~Ik,t{1zbk,tSk,t{1Ik,t{1 ð2Þ

over a period of t2t days. bk,t was estimated using a maximum

likelihood approach to compare model predictions and the data,

such that:

L Ik,tDAk,t,Vk,tð Þ~
Ak,t

Vk,t

� �
I

Vk,t
k,t 1{Ik,tð ÞAk,t{Vk,t , ð3Þ

where A is the total number of valid observations made by flow

cytometry (the number of cells which pass all quality control

filters), and V is the number of valid observations for which the cell

was found to be infected by one or both virus variants. We

performed a grid search over a large parameter space to obtain

estimates of bk,t, and also performed searches on 1000 bootstraps

of the data to obtain confidence intervals for parameter estimates.

Rk,t~bk,tSk,t was then used to obtain R values for leaf k. Note

that we did not incorporate aggregation of virus-infected cells in

the estimate, in order to keep our estimates as close to the data as

possible.

SI model fitting and selection. In this section five SI models

are discussed, and we refer to the model described in the Results

and Discussion section of the paper as Model 5.

Model 1 is the simplest variant of the model. The meta-

population SI model is retained but the model does not allow for

infection aggregation (y = 1), and therefore unlike Models 2–5,
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Sk = 12Ik. The between-leaf transmission coefficient x is assumed

to be the same for Leaves 5–7. Note that no between-leaf

transmission occurs for Leaf 3, because this is the inoculated leaf

and phloem-based long-range viral movement is only to higher

leaves. Three model parameters need to be estimated to fit the

model: I1(0), the proportion of infected cells in the inoculated leaf

at t = 0, b and x (Table S1).

Model 2 introduces the infection aggregation parameter y,

assuming it to be constant for all leaves. The model parameter x is

again assumed to be the same for Leaves 5–7, as in Model 1. Four

model parameters need to be estimated to fit the model: I1(0), b, x
and y (Table S1).

Model 3 is an extension of Model 2, which allows y to be leaf

dependent. Seven model parameters need to be estimated to fit the

model: I1(0), b, x, y3, y5, y6, and y7 (Table S1).

Model 4 is an extension of Model 2, which allows x to be leaf

dependent, while assuming y to be the same for each leaf. Note

that because there is no within-leaves transmission to the

inoculated leaf, x estimates are only made for Leaves 2–4. Six

model parameters need to be estimated to fit the model: I1(0), b,

x5, x6, x7 and y (Table S1).

Finally, Model 5 incorporates leaf-dependent infection aggre-

gation and between-leaf transmission. Nine model parameters

need to be estimated to fit the model: I1(0), b, x5, x6, x7, y3, y5, y6,

and y7 (Table S1).

Models were fitted using a maximum likelihood approach

(Equation 3). We first performed grid searches over a large

parameter space to ensure we had a global minimum for the

negative log likelihood (NLL). Next, we performed stochastic hill

climbing (SHC), initiating each hill climb from a random starting

point in parameter space close to the global minimum for the

NLL. Finally, to obtain 95% confidence intervals for model-

parameter estimates, we repeated SHC on 1000 bootstraps of the

data. Model parameter estimates and their 95% confidence

intervals are given in Table S1. The Akaike Information Criterion

(AIC) was used for model selection (Table S2).

MOI model fitting and selection. For model selection, we

use the models and approach described in ref. [17], and briefly

described below. These models are all based on the Poisson model,

but incorporate a number of mechanisms that can account for

deviations between the data and model predictions. The following

notation is used: mI is the MOI in infected cells [7], with a range [1,

‘); mT is the MOI in all cells, including uninfected cells [9], and has

a range [0, ‘); pA is the frequency of TEV-Venus (A), whereas pB

is the frequency of TEV-BFP (B), which can be estimated

as: pB~1{pA~ f �AA\B
� �

zf A\Bð Þ
	 
�

f �AA\B
� �

zf A\�BBð Þz
	

2f �AA\�BB
� �

�, where f(?) represents the experimentally-observed

frequencies of cells infected by none, one or both marked virus

variants. We have not considered Model 1 [17], since it assumes

an MOI that is constant over cells and gives similar results to

Model 2, the null-model. Model 2 assumes the number of

effectively infecting virions follows a Poisson distribution over all

host cells. Model 3 incorporates spatial segregation of genotypes

during virus expansion, by limiting the fraction of cells that can

become coinfected. The rate of spatial segregation is determined

by the parameter w with range [0, ‘), and is non-existent if w is

zero and augments as w becomes larger. Model 4 allows for the

possibility that there is not perfect mixing, and that virus-infected

cells tend to be aggregated. The model is therefore similar to SI

Model 2, and again incorporates the infection aggregation

parameter y:

mT~{ln 1{Pr A|Bð Þ=yð Þ: ð4Þ

where Pr(?) is the expected probability that cells are infected by

none, one or both marked virus variants (as opposed to the observed

frequency f(?)). Model 4a is a variant of Model 4 that assumes that

each leaf has its own aggregation constant y. Four parameters must

be estimated to fit the model: y3, y5, y6, and y7. Model 5 relaxes

the assumption of independent action by virions and allows for

superinfection exclusion [19,38,39], by relaxing assumptions about

the relationship between the fraction of uninfected cells and mT.

Parameter v determines exclusion effects at t = 0, whilst m controls

the rate of change over time. As we expect only antagonistic effects

(a lowering of the mean number of infecting virions per cell), the

range of v set to [0, 1] and m to [0, ‘) [17]. We also combined the

different models, in order to ascertain whether a combination of

mechanisms could explain the data best (Table S3). Model 6

combines Models 2 and 4a; Model 7 combines Models 4a and 5;

Model 8 combines Models 2 and 5; and Model 9 combines Models

2, 4a and 5. Model 4a was used instead of Model 4 in combination

with other models because it incorporates the same mechanism and

is better supported by the data.

In order to perform model fitting and selection, we exploit the

fact that for each model there is a relationship between the

fractions of uninfected and coinfected cells [17]. Model fitting

(Table S3) was performed as above. The likelihood of a particular

probability of coinfection is then:

L Pr Cð ÞDVk,Dkð Þ~
Vk

Dk

� �
Pr Cð ÞDk 1{Pr Cð Þð ÞAk{Dk ð5Þ

where Dk is the number of coinfected cells observed (and Vk is

again the number of infected cells). Model selection was again

performed using AIC (Table S4). For the best fitting model (Model

4a), we predicted MOI (mT) with Equation 4. To calculate mI

values from mT, we used the relationship between the means of a

zero-truncated and a non-truncated Poisson distribution [17,40]:

mI~mT= 1{e{mTð Þ.
Analysis of variation in genotype frequencies. In order to

estimate effective population sizes, we used FST statistics [41] as

described in Monsion et al. [25]. To estimate Ne in the whole plant

and in the inoculated leaf (Leaf 3), we assumed HT – the genetic

diversity under the assumption all subpopulation form a single

population – was zero, given that the inoculum dose administered

is very high and as such we do not expect there will any

appreciable differences in the frequencies of the genotypes over

inoculated leaves (and therefore over plants). For calculating FST

values for Leaves 5, 6 and 7, we calculated HT for the inoculated

leaf, given that this leaf is the sole source for infection in Leaf 5 and

the chief source for infection in Leaves 6 and 7. The SI model

(Figure 2) indicates there is virtually no infection in Leaf 5,

meaning it will probably not appreciably contribute to infection in

Leaf 6. Leaf 6 may contribute some to infection in Leaf 7, but in

this case using only Leaf 3 to calculate HT is a reasonable

approximation nonetheless, since there is no significant bottleneck

between Leaves 3 and 7. We estimate Ne for each leaf at each time

point, and for the pooled data of days 5, 7 and 10 (Figure S2), in

order to increase the power of our estimates and because the

genetic diversity should not change once infection has been

established. Day 3 was excluded because infection levels in some

leaves are very low and thereby increase diversity to levels that are

probably not representative of that caused by the genetic

bottleneck into the leaf alone.

Supporting Information

Figure S1 Comparison of infected cells to genome copy

numbers is shown. Frequency of infected cells (ordinate) over
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time (abscissae) is given, for the data pooled from all leaves (black

circles). Each data point represents the mean of 5 plants and error

bars indicate 6 1 SD. The black line shows a logistic model fitted

to the data, whereas the brown line indicates a logistic growth

curve fitted to RT-qPCR data in a similar experiment [7], with the

data scaled so that k values (the carry capacity) are the same. The

RT-qPCR-based curve is surprisingly similar to infected-cell

curve, although at 5 dpi predicted TEV RNA levels appear to

be relatively lower than the proportion of infected cells. This

discrepancy may depend on the methodology used, or there may

be a large number of cells that are in early infection, when the

fluorescent marker protein is expressed but viral RNA accumu-

lation levels are still low.

(TIF)

Figure S2 Ne estimates for different leaves and times. Whereas

Figure 5B represents estimates of Ne, the effective population size,

for pooled data of days 5, 7 and 10, here we provide estimates for

the data from individual days, with error bars indicating the 95%

CI. In Panels A–D the data for Leaves 3, 5, 6 and 7 are given,

respectively, and Panel E provides the pooled data of all leaves.

Bars or error bars that extend to the top of the panel indicate

values extending to ‘, whereas for Leaf 3 day 3 the lower limit of

the CI is 1. Each data point is the mean of 5 plants.

(TIF)

Figure S3 Flow cytometry data. Histograms showing the

fluorescence measurement events on four different channels, with

example data from one replicate of Leaf 6 at 7 dpi. In all four

panels, the red line is the threshold value used in the data analysis.

For panels A and B, the data for all 50,000 counts made are given.

In panel A, the log-transformed fluorescence measured on the side

scatter channel is given. Side scatter depends on the granularity of

the cells, and is therefore an indication of the viability of a cell. In

panel B, the log-transformed fluorescence on the FL4 channel is

given, which correlates to the chlorophyll content of the cell and

therefore indicates intact cells. For both side scatter and

chlorophyll content, there is a clear separation between the

selected and excluded measurements. In Panels C and D, we give

only measurements that passed through initial filtering, meeting

criteria for side scatter, chlorophyll and time of flight. In Panel C,

the log-transformed fluorescence on the FL1 channel is given,

which corresponds to the Venus marker protein, whereas in panel

D we give the log-transformed fluorescence on FL9, corresponding

to BFP. Even in a leaf with relatively high infection levels, the

majority of cells give the minimum fluorescence level (set by

default to log10[0.1024] = 20.9897). The cutoff values are clearly

conservative with respect to determining whether cells are infected

(see Materials and Methods for details).

(TIF)

Table S1 Estimated model parameters for SI models.

(DOCX)

Table S2 Model selection for SI models.

(DOCX)

Table S3 Estimated MOI model parameters.

(DOCX)

Table S4 MOI model selection.

(DOCX)
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7. González-Jara P, Fraile A, Canto T, Garcı́a-Arenal F (2009) The multiplicity of

infection of a plant virus varies during colonization of its eukaryotic host. J Virol

83: 7487–7494.
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