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ABSTRACT The cucumber anthracnose fungus Colletotrichum orbiculare forms specialized cells called appressoria for host pen-
etration. We identified a gene, FAM1, encoding a novel peroxin protein that is essential for peroxisome biogenesis and that asso-
ciates with Woronin bodies (WBs), dense-core vesicles found only in filamentous ascomycete fungi which function to maintain
cellular integrity. The fam1 disrupted mutants were unable to grow on medium containing oleic acids as the sole carbon source
and were nonpathogenic, being defective in both appressorium melanization and host penetration. Fluorescent proteins carry-
ing peroxisomal targeting signals (PTSs) were not imported into the peroxisomes of fam1 mutants, suggesting that FAM1 is a
novel peroxisomal biogenesis gene (peroxin). FAM1 did not show significant homology to any Saccharomyces cerevisiae perox-
ins but resembled conserved filamentous ascomycete-specific Pex22-like proteins which contain a predicted Pex4-binding site
and are potentially involved in recycling PTS receptors from peroxisomes to the cytosol. C. orbiculare FAM1 complemented the
peroxisomal matrix protein import defect of the S. cerevisiae pex22 mutant. Confocal microscopy of Fam1-GFP (green fluores-
cent protein) fusion proteins and immunoelectron microscopy with anti-Fam1 antibodies showed that Fam1 localized to nas-
cent WBs budding from peroxisomes and mature WBs. Association of Fam1 with WBs was confirmed by colocalization with WB
matrix protein CoHex1 (C. orbiculare Hex1) and WB membrane protein CoWsc (C. orbiculare Wsc) and by subcellular fraction-
ation and Western blotting with antibodies to Fam1 and CoHex1. In WB-deficient cohex1 mutants, Fam1 was redirected to the
peroxisome membrane. Our results show that Fam1 is a WB-associated peroxin required for pathogenesis and raise the possibil-
ity that localized receptor recycling occurs in WBs.

IMPORTANCE Colletotrichum orbiculare is a fungus causing damaging disease on Cucurbitaceae plants. In this paper, we charac-
terize a novel peroxisome biogenesis gene from this pathogen called FAM1. Although no genes with significant homology are
present in Saccharomyces cerevisiae, FAM1 contains a predicted Pex4-binding site typical of Pex22 proteins, which function in
the recycling of PTS receptors from peroxisomes to the cytosol. We show that FAM1 complements the defect in peroxisomal ma-
trix protein import of S. cerevisiae pex22 mutants and that fam1 mutants are completely defective in peroxisome function, fatty
acid metabolism, and pathogenicity. Remarkably, we found that this novel peroxin is specifically localized on the bounding
membrane of Woronin bodies, which are small peroxisome-derived organelles unique to filamentous ascomycete fungi that
function in septal pore plugging. Our finding suggests that these fungi have coopted the Woronin body for localized receptor
recycling during matrix protein import.
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Peroxisomes are single-membrane-bound organelles in eu-
karyotic cells that function in diverse metabolic processes such

as �-oxidation, the glyoxylate cycle, cholesterol metabolism, and
methanol assimilation (1). Among filamentous fungi, peroxi-
somes have been implicated in sexual reproduction (2), biosyn-
thesis of secondary metabolites (3), biotin synthesis (4), and plant
pathogenicity, notably in the anthracnose fungi, Colletotrichum
species, and the rice blast fungus Magnaporthe oryzae (5, 6). These

pathogens elaborate highly differentiated infection structures
called appressoria, which develop thick, melanized cell walls and
mediate the initial penetration of host cells. The key metabolic
pathways involved in appressorium-mediated penetration were
extensively studied (7, 8). Lipid bodies are mobilized in appresso-
ria, and lipolysis provides triacylglycerol and fatty acids that are
subjected to �-oxidation in peroxisomes (9, 10). The production
of acetyl coenzyme A (acetyl-CoA) via �-oxidation and the
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glyoxylate cycle is critical for pathogenesis by providing an energy
source, osmolytes for turgor generation, and substrate for the syn-
thesis of 1,8-dihydroxynaphthalene-derived melanin (6).

The life cycle of the peroxisome involves the following steps:
peroxisomal membrane formation and sorting of membrane pro-
teins, import of peroxisomal matrix proteins from the cytosol,
peroxisome division, and peroxisome degradation by pexophagy,
which is a type of autophagy (11, 12). Pexophagy was shown to be
essential for pathogenesis of both Colletotrichum and Magna-
porthe (13, 14). Proteins required for peroxisome biogenesis are
collectively called peroxins, and to date, more than 32 peroxins
have been identified (12, 15). The import of peroxisomal matrix
proteins is mediated by Pex5 and Pex7, which are receptors for
type I and type II peroxisomal targeting signals (PTSs) (peroxi-
somal targeting signal 1 [PTS1] and PTS2), respectively. Pex13
and Pex14 function as docking proteins for Pex5 and Pex7, respec-
tively (16, 17), and we previously showed that Pex13 is essential for
peroxisome function and pathogenesis in Colletotrichum orbicu-
lare (10).

The recycling of PTS receptors to the cytosol involves Pex4, a
ubiquitin-conjugating enzyme, together with its membrane anchor
Pex22 (18, 19) and a complex containing two ATPases associated
with diverse cellular activities (AAA ATPases), Pex1 and Pex6, and
the Pex6 membrane anchor Pex15/Pex26 (20, 21). Kimura et al. (22)
showed that the Pex6 AAA ATPase is essential for appressorium func-
tion and pathogenesis in C. orbiculare. Although the membrane-
associated components Pex1, Pex4, and Pex6 are all conserved from
yeast to humans, the proposed membrane anchors (Pex22 and
Pex15/Pex26) are less well-conserved (15).

The Woronin body (WB) is a peroxisome-derived organelle
that is unique to filamentous ascomycete fungi and that functions
to maintain cellular integrity after hyphal damage by sealing septal
pores, thereby preventing cytoplasmic leakage (23). In Neuro-
spora crassa, WB formation proceeds via a series of steps: the ma-
jor WB protein HEX1 is preferentially expressed at hyphal apices
and is imported into the peroxisome matrix, where it self-
assembles into extremely large protein complexes that form the
dense core of the WB (23). The HEX1 assemblies recruit WB sort-
ing complex protein (WSC) to the peroxisome membrane, where
WSC self-assembles and assists budding of the nascent WB (24).
In addition, WSC recruits the tethering protein LAH-1 that me-
diates fission of the WB from the mother peroxisome (25). Al-
though many studies have shown that WBs develop from peroxi-
somes, so far only one report has implicated a peroxin protein in
WB biogenesis, namely, Pex26, which mediates recycling of Pex5
in N. crassa (26). By binding to Hex1 oligomers, Pex26 becomes
enriched in the membranes of a subset of peroxisomes destined to
differentiate WBs, where it likely promotes the import of further
HEX1 through a positive-feedback mechanism.

We previously used Agrobacterium tumefaciens-mediated
transformation to isolate C. orbiculare mutants deficient in fatty
acid metabolism and identified several new genes essential for
peroxisome biogenesis (27). In this study, we report that FAM1
(fatty acid metabolism 1), a gene unique to filamentous ascomy-
cetes, is required for peroxisome biogenesis, infection-related
morphogenesis, and pathogenicity of C. orbiculare. We show that
FAM1 is the functional ortholog of Saccharomyces cerevisiae
PEX22, required for the import of peroxisomal matrix proteins.
Despite this peroxisome-related function, we present cytological
and biochemical evidence that Fam1 protein is predominantly

associated with WB membranes, rather than peroxisome mem-
branes. Our results demonstrate that a WB-localized protein
functions as a peroxin and is critical for fungal pathogenesis.

RESULTS
Identification of a Pex22-like peroxin unique to filamentous as-
comycetes. Random insertional mutagenesis using Agrobacterium
tumefaciens-mediated transformation (27) was performed to iso-
late Colletotrichum orbiculare mutants defective in fatty acid me-
tabolism. Approximately 3,000 transformants were tested for
their ability to utilize fatty acids using a medium containing oleic
acids as the sole carbon source. Based on this screen, a mutant
defective in fatty acid utilization was identified and named Hi2049
(see Fig. S1A in the supplemental material). Hi2049 was defective
in lesion formation on intact cucumber cotyledons but retained
pathogenicity on wounded tissues (Fig. S1B). These phenotypes
resembled those of the C. orbiculare peroxisome-defective pex6
and pex13 mutants (10, 22).

To isolate genomic DNA segments adjacent to the T-DNA in-
sertion site of the Hi2049 mutant, TAIL-PCR (thermal asymmet-
ric interlaced PCR) was applied to the mutant genomic DNA. The
amplified TAIL-PCR products were sequenced, and primer pairs
were designed based on the obtained sequence to isolate genomic
clones from a cosmid library of C. orbiculare. To identify the dis-
rupted gene in Hi2049, the full genomic DNA sequence was ob-
tained by primer walking, and the positions of introns and exons
were confirmed by sequencing cDNA amplified by reverse
transcription-PCR. The predicted open reading frame (ORF)
consisted of 1,261 bp with two exons separated by one intron (49
bp), and the gene was named FAM1 (for fatty acid metabolism).

Motif searches using the Phobius program (28) identified a
putative transmembrane domain between amino acids 12 and 36
of Fam1, and the amino acid sequence showed high homology to
Magnaporthe oryzae A4R2Z0 (2e�177), N. crassa (GenBank ac-
cession no. Q8WZV7) (9e�110), and Aspergillus oryzae (Gen-
Bank accession no. Q2UQZ8) (5e�95) (see Fig. S2 in the supple-
mental material). PSI-BLAST previously revealed that these three
proteins contain a predicted Pex4p-binding sequence, and based
on in silico analysis only, they were previously described as fila-
mentous ascomycete Pex22-like proteins (15). Nevertheless,
amino acid sequence alignment did not show significant homol-
ogy between Pex22-like proteins from filamentous ascomycetes
and Saccharomyces cerevisiae Pex22 (Fig. S2), and there is only 5%
amino acid identity between the C. orbiculare and S. cerevisiae
proteins, with several of the conserved amino acid residues likely
to be involved in interface formation with Pex4 (19). Further-
more, a stretch of positively charged amino acids is located ahead
of an N-terminal transmembrane domain similar to that of Pichia
pastoris Pex22 (29) (Fig. S2). Until now, there was no experimen-
tal evidence to show that these proteins perform a function similar
to Pex22. In S. cerevisiae, Pex22 acts as a docking protein for the
Pex4 ubiquitin-conjugating enzyme at the peroxisomal mem-
brane and is involved in Pex5 receptor recycling (19). Therefore,
to test whether C. orbiculare FAM1 possesses PEX22 function, we
used a yeast complementation assay.

The green fluorescent protein (GFP)-peroxisome targeting
signal 1 (PTS1) construct was introduced into wild-type and
�pex22 S. cerevisiae strains as a reporter to evaluate complemen-
tation of peroxisome biogenesis. In the wild-type cells, GFP-PTS1
was imported into peroxisomes, producing a punctate labeling
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pattern, but in �pex22 mutant cells, no punctate localization was
detected, indicating a defect in peroxisome biogenesis (Fig. 1).
Then, we expressed the FAM1 and C. orbiculare PEX4 (CoPEX4)
genes, either individually or together, in the �pex22 yeast mutant.
Introduction of the FAM1 gene alone into the �pex22 mutant
partially restored the transport of GFP-PTS1 to peroxisomes, pro-
ducing a faint punctate localization, while simultaneous introduc-
tion of FAM1 and CoPEX4 fully restored the transport of GFP-
PTS1 into peroxisomes, reproducing the wild-type GFP-PTS1
localization (Fig. 1). These results indicate that FAM1 is the func-
tional ortholog of PEX22. On the other hand, the only partial
restoration of GFP-PTS1 import by FAM1 alone suggests that
Fam1 interacts better with C. orbiculare Pex4 (CoPex4) than with
yeast Pex4, producing a fully functional protein complex for com-
plete complementation of the �pex22 mutant.

FAM1 is essential for peroxisome biogenesis, appressorium
maturation, and pathogenesis. To better define the functions of

FAM1 in C. orbiculare, we generated targeted fam1 mutants. Dis-
ruption of FAM1 was verified by DNA blot analysis (see Fig. S3 in
the supplemental material), and the fam1 phenotype was similar
to the Hi2049 phenotype. The fam1 mutants formed melanized
colonies on potato dextrose agar (PDA) like the wild-type strain
(Fig. 2A), but fam1 mutants could not grow on oleic acid-
containing medium (OAM) (Fig. 2A), confirming that FAM1 is
essential for fatty acid utilization.

To investigate the involvement of FAM1 in peroxisomal func-
tion, we introduced PTS1- and PTS2-tagged GFP into the wild-
type strain and fam1 mutants. In the wild-type strain expressing
GFP-PTS1 or PTS2-GFP, the GFP signals were localized to per-
oxisomes, visible as abundant punctate organelles (Fig. 2B). In
contrast, in the fam1 mutant, GFP-PTS1 and PTS2-GFP labeling
was dispersed throughout the fungal cytosol, whereas peroxisome
localization was restored in the fam1�FAM1 complemented strain,
indicating that import of peroxisomal matrix proteins into per-

FIG 1 Complementation of yeast pex22 mutant by dual expression of FAM1 and CoPEX4. Wild-type S. cerevisiae and �pex22 mutants expressing GFP-PTS1,
a fluorescent peroxisome marker, were transformed with vectors harboring FAM1 or CoPEX4 or empty vector. In the wild type, GFP localized at peroxisomes,
producing a punctate pattern, while in �pex22 mutants, GFP was uniformly distributed in the cytoplasm, indicating peroxisome deficiency. Introduction of
FAM1 into the �pex22 mutant partially restored localization of GFP-PTS1 to peroxisomes, while introduction of FAM1 together with CoPEX4 provided full
restoration, producing the same punctate GFP fluorescence pattern as in the wild type. Bars, 5 �m. DIC, differential interference contrast.

Colletotrichum Novel Peroxin Pex22 on Woronin Bodies
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oxisomes was impaired by fam1 mutation. Thus, FAM1 is essential
for peroxisome biogenesis in C. orbiculare.

Next, we examined the effect of FAM1 gene disruption on the
infection-related morphogenesis of C. orbiculare. The fam1 mu-
tant formed nonmelanized appressoria on inductive artificial sur-
faces that were abnormally small and ellipsoid in shape compared
with wild-type appressoria, similar to those described for the
pex13 mutant (Fig. 3A) (10). Moreover, the cytoplasm of appres-
soria and conidia of the fam1 mutant contained large globules that
were stained strongly by the lipid probe Nile red (Fig. 3B), show-
ing that the fam1 mutant is impaired in the mobilization of storage
lipid during the development of appressoria.

To assess whether FAM1 plays a role in fungal pathogenesis,
conidial suspensions of the fam1 mutant were inoculated onto
detached cucumber cotyledons and observed at 6 days postinoc-
ulation (dpi). Whereas the fam1 mutant never formed necrotic
lesions, the wild-type and fam1�FAM1 complemented strain
formed yellow-brown lesions (Fig. 3C). To determine at what
stage of infection the fam1 mutant was affected, we examined the

infected cucumber leaves by light microscopy. At 3 dpi, the wild-
type and fam1�FAM1 complemented strains had developed normal
melanized appressoria which penetrated to form infection hyphae
inside the host epidermal cells (Fig. 3D). In contrast, the fam1
mutant formed nonmelanized appressoria which never pene-
trated, and no infection hyphae were visible in the underlying
cucumber epidermal cells (Fig. 3D).

Live-cell confocal imaging of GFP-tagged Fam1. To examine
the subcellular localization of Fam1 protein, we made a construct
to express a Fam1-GFP fusion protein under control of the native
promoter. The FAM1-GFP construct restored all the defective
phenotypes of fam1, indicating that the GFP-tagged FAM1 gene
was functional. Yeast Pex22 was previously shown to localize to
the peroxisomal membrane (30). To evaluate the relationship be-
tween Fam1 protein and peroxisomes, we coexpressed GFP-
labeled Fam1 (Fam1-GFP) together with red fluorescent protein-
labeled PTS1 (RFP-PTS1) to label peroxisomes. On peroxisomes,
Fam1-GFP was localized highly asymmetrically in foci at the per-
oxisome periphery (Fig. 4A, white arrows). Interestingly, only a

FIG 2 C. orbiculare fam1 disruption mutants are deficient in peroxisome biogenesis. (A) The fam1 mutants are defective in fatty acid utilization. Colonies were
grown for 5 days on PDA or 12 days on oleic acid-containing medium (OAM). The strains tested were the wild-type (WT) strain, fam1 mutants (fam1-1 and
fam1-2), fam1-1 complemented strain (Com), and ectopic transformant. The locations of strains on the plates are indicated in the left-hand panel. (B)
Mislocalization of GFP-PTS1 and PTS2-GFP proteins in the fam1 mutant. Vegetative hyphae of the wild-type, fam1-1 mutant, and the fam1-1 complemented
strain (Com) expressing GFP-PTS1 or PTS2-GFP were grown for 24 h on glass slides in liquid medium and observed by differential interference contrast (DIC)
and epifluorescence microscopy. Photos are merged images. Bar, 5 �m.
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FIG 3 Appressorium development and pathogenicity of the fam1 mutant. (A) Conidia of the wild-type strain or fam1 mutant were incubated on glass slides for
24 h and observed by light microscopy. Ap, Appressoria; Co, conidia. Bars, 10 �m. (B) Distribution of lipid droplets in appressoria of the fam1 mutant. After the
cells were stained with Nile red, they were viewed with differential interference contrast (DIC) microscopy, epifluorescence microscopy, and as an overlay. Bar,
10 �m. (C) The fam1 mutant showed attenuated pathogenicity on cucumber cotyledons. Cotyledons were inoculated with spores of the wild type, fam1 mutant,
complemented strain, or distilled water (mock). Symptoms were observed after 6 days. (D) Histology of infection. Spores of the wild-type, fam1 mutant, and
complemented strain were inoculated on cucumber cotyledons, and tissues were examined by light microscopy after 72 h. Ap, appressoria; Ih, infection hyphae.
Bar, 10 �m.
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fraction of Fam1-GFP localized at peroxisomes, and more often,
Fam1-GFP fluorescence was observed on punctate organelles in
the fungal cytoplasm that were distinct from peroxisomes (yellow
arrows) (Fig. 4A). Furthermore, a subset of these labeled organ-
elles were concentrated near growing hyphal tips and septa
(Fig. 4B).

Next, to investigate whether the localization of Fam1 was af-
fected by defects in peroxisome biogenesis, we expressed the
Fam1-GFP fusion protein in copex6 and copex13 mutants (10, 22).
In cells of these mutants, Fam1-GFP was detected on punctate
structures that were smaller and less distinct than in wild-type
cells, and there was no detectable accumulation of these structures
at hyphal tips and septa (see Fig. S4 in the supplemental material).
This result suggests that Fam1 localizes to an organelle derived
from the peroxisome and that peroxisome function is essential for
Fam1 accumulation at hyphal tips and septa.

Fam1 is localized on Woronin bodies. The Fam1 localization
pattern described above closely resembles that reported for the
Woronin body (WB), a peroxisome-derived organelle unique to
filamentous ascomycete fungi (31). To verify whether Fam1 pro-
tein is present on WBs, we checked whether Fam1 colocalized with
two WB marker proteins. For that purpose, we isolated C. orbicu-
lare genes homologous to N. crassa HEX1 and WSC (Woronin
body sorting complex), which encode proteins in the WB matrix
and peripheral membrane, respectively. CoHEX1 comprises a
1,797-bp open reading frame, and the deduced amino acid se-
quence has high homology with N. crassa Hex1 (GenBank acces-
sion no. P87252), M. oryzae Hex1 (MoHex1) (GenBank accession

no. Q2KGA0), and Aspergillus oryzae Hex1 (AoHex1) (I8TQ26)
(see Fig. S5 in the supplemental material). CoWSC comprises an
816-bp open reading frame, and the deduced amino acid sequence
has high homology with N. crassa Wsc (N4VZG1) (Fig. S5).
Transformants expressing either CoHex1-RFP or CoWsc-RFP to-
gether with Fam1-GFP were then constructed. Microscopic anal-
ysis revealed that Fam1 colocalizes with CoHex1 on WBs at hyphal
tips and near septa (Fig. 5A). In accordance with the Wsc localiza-
tion pattern reported in N. crassa (24), CoWsc-RFP was detected
on WBs and at the periphery of differentiating peroxisomes
(Fig. 5B). Fam1-GFP colocalized with CoWsc-RFP on WBs situ-
ated near hyphal tips and septa and on both nascent and mature
WBs in the cytoplasm of subapical cells (Fig. 5C). This suggests
that in C. orbiculare new WBs are not formed exclusively in the
apical cells of hyphae but also in subapical cells, in contrast to
N. crassa. To examine the effect of Fam1 deletion on WB biogen-
esis, we examined the localization of CoHex1 in the fam1 mutant.
CoHex1-RFP signals were uniformly distributed throughout the
cytoplasm and were not concentrated near hyphal apices or septa
(Fig. S6). Taken together, these results indicate that Fam1 is a
WB-associated protein and is essential for WB formation.

Ultrastructural localization of Fam1 and Hex1 in Woronin
bodies. To localize Fam1 and Hex1 with greater resolution, we
used immunoelectron microscopy. Thin sections of C. orbiculare
vegetative hyphae were probed with either rabbit antibodies raised
against recombinant Fam1 expressed in Escherichia coli or rabbit
antibodies raised against N. crassa Hex1 (23). In wild-type hyphae,
nascent WBs were observed budding from peroxisomes (Fig. 6A),

FIG 4 Subcellular localization of Fam1 in C. orbiculare. (A) Fam1-GFP and RFP-PTS1 were coexpressed in hyphae of the wild type and observed by confocal
microscopy. RFP-PTS1 localized to the peroxisome matrix, while Fam1-GFP localized asymmetrically in small foci at the peroxisome periphery (white arrows)
or in punctate structures distinct from peroxisomes (yellow arrows) in the overlay projection image of bright-field, GFP, and RFP channels. Bar, 2.5 �m. (B)
Fam1-GFP accumulated in punctate structures at hyphal tips (left) and near septal pores (right). Overlay projection images of bright-field and GFP channels are
shown. Bar, 5 �m.
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FIG 5 Fam1 is localized in Woronin bodies. Images show vegetative hyphae viewed by differential interference contrast (DIC) microscopy, epifluorescence of
GFP or RFP, merged GFP and RFP channels, and an overlay of all channels. (A) In hyphae coexpressing Fam1-GFP and CoHex1-RFP, Fam1-GFP colocalized
with Woronin body (WB) matrix protein CoHex1 on WBs at hyphal tips (top panels) and septa (bottom panels). Bars, 4 �m. (B) In hyphae coexpressing
GFP-PTS1 and CoWsc-RFP, the WB peripheral membrane protein CoWsc localized around the peroxisomal matrix (labeled by GFP-PTS1) and was enriched at
sites where nascent WBs budded from mother peroxisomes (white arrows). Bar, 2 �m. (C) In hyphae coexpressing Fam1-GFP and CoWsc-RFP, both markers
colocalized in WBs at hyphal tips (top panels), septa (middle panels), and in the cytoplasm of subapical cells (bottom panel, merge image). Bars, 2 �m.
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while mature WBs were either found concentrated close to septa
(Fig. 6B) or, less frequently, randomly distributed in the fungal
cytoplasm (Fig. 6C). C. orbiculare WBs were on average 184 nm in
diameter (n � 25; standard deviation [SD] � 37 nm), approxi-

mately fivefold smaller than those described from N. crassa (up to
1-�m diameter) (23), and with the KMnO4-uranyl acetate-lead
citrate staining method (32) used here, the WB core appeared
slightly more electron-opaque than the peroxisome matrix and

FIG 6 Immunoelectron microscopic localization of Fam1 in Woronin bodies. TEM images showing the ultrastructure of peroxisomes and Woronin bodies in
vegetative hyphae of C. orbiculare (A to C) and the immunogold localization of Hex1 (D and E) and Fam1 (F to H). (A) Peroxisome (P) with nascent WB budding
from it. (B) Mature WBs in the cytoplasm near a septum (S). (C) The single membrane of mature WBs is thicker than the peroxisome membrane and has a
prominent bilayer structure. (D and E) Hex1 is localized in the dense matrix of nascent and mature WBs. (F to H) Fam1 is localized in the membranes of nascent
WBs (F) and mature WBs (G and H) but is not detected on the peroxisome membrane. Bars, 200 nm.
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had a homogeneous, fine-grained structure. The single membrane
enclosing WBs appeared thicker than the peroxisome membrane
and displayed a more clearly defined bilayer structure (Fig. 6C).
Immunolabeling of wild-type hyphae showed that Hex1 was lo-
calized specifically in the dense core of nascent and mature WBs
(Fig. 6D and E), while Fam1 signals were detected predominantly
on the bounding membrane of nascent and mature WBs (Fig. 6F
to H). However, Fam1 was barely detectable on the membranes of
wild-type peroxisomes, including those to which budding WBs
were attached (Fig. 6F). These immunoelectron microscopy data
are consistent with those obtained from fluorescent protein tag-
ging and confirm that Fam1 protein is predominantly located in
WB membranes, rather than peroxisome membranes.

Fam1 accumulates in peroxisome membranes of mutants
lacking Woronin bodies. In N. crassa, the WB matrix protein
HEX1 is essential for biogenesis of the WB (23). Therefore, to
investigate the destination of Fam1 in hyphae lacking WBs, we
isolated cohex1 disrupted mutants (see Fig. S3 in the supplemental
material). First, we verified the role of CoHex1 in WB function in
C. orbiculare. In ascomycete fungi, WBs function to seal septal
pores, thereby blocking cytoplasmic leakage when adjacent hyphal
compartments are damaged (23, 33, 34). Using hypotonic shock

to induce hyphal tip lysis (35), we found that cytoplasm was re-
tained in subapical hyphal compartments of wild-type and
cohex1�CoHEX1 complemented mutant strains (Fig. S7A). In con-
trast, cytoplasmic bleeding was observed in subapical compart-
ments of cohex1 mutant hyphae (Fig. S7A). Nevertheless, the my-
celial growth rate of the cohex1 mutant on PDA and OAM did not
differ from that of the wild-type strain (Fig. S7B and C). Thus,
CoHEX1 is required for WB function, but not peroxisome func-
tion.

Next, we examined the subcellular localization of Fam1-GFP
in the cohex1 mutant. The accumulation of Fam1-GFP on WBs
near hyphal tips and septa was abolished in the absence of HEX1.
Instead, most Fam1-GFP fluorescence was observed at the periph-
ery of all peroxisomes (Fig. 7A), in striking contrast to the WB
localization seen in wild-type hyphae. Consistent with this, using
immunoelectron microscopy, Fam1 signals were detected on per-
oxisome membranes in hyphae of the cohex1 mutant (Fig. 7B and
C), but almost never on those of wild-type hyphae (Fig. 6F). To
verify this observation, we quantified the density of immunogold
labeling on the peroxisome membrane. In wild-type hyphae, the
mean number of gold particles located on the peroxisome mem-
brane was 0.48 (n � 29; standard error [SE] � 0.2), compared to

FIG 7 Subcellular localization of Fam1 in Woronin body-deficient cohex1 mutants. (A) In vegetative hyphae of the cohex1 mutant coexpressing Fam1-GFP and
RFP-PTS1, Fam1-GFP localized to the periphery of peroxisomes. Confocal images show differential interference contrast (DIC), GFP or RFP fluorescence,
merged GFP and RFP channels, and an overlay of all channels. Bar, 5 �m. (B and C) TEM and immunogold labeling with anti-Fam1 antibodies detect Fam1 on
the peroxisome membrane (black arrowheads) of the cohex1 mutant. Bars, 200 nm. (D) Quantification of immunogold labeling by anti-Fam1 antibodies. The
histogram shows mean numbers of gold particles located on the membrane or matrix of wild-type (WT) peroxisomes (n � 29) and peroxisomes of the cohex1
mutant (n � 30). Each error bar depicts 1 standard error.
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1.83 (n � 30; SE � 0.25) in the cohex1 mutant (Fig. 7D). This
nearly fourfold difference was significant in an unpaired t test (P �
0.0001). These results indicate that in the WB-deficient cohex1
mutant, Fam1 is redirected to the peroxisome membrane. Fur-
thermore, our data suggest that translocation of Fam1 from per-
oxisome to WB membranes depends on the presence of CoHex1,
whereas transport to the peroxisome does not.

Subcellular fractionation confirms the association of Fam1
with Woronin bodies. To obtain independent verification of the
association of Fam1 with WBs, we used equilibrium density gra-
dient centrifugation to fractionate organelles obtained from wild-
type and cohex1 mutant hyphae expressing GFP-PTS1. In the
wild-type strain, Fam1 largely cofractionated with CoHex1 in the
densest region of the gradient, which contains only a minor part of
the total protein, and partly overlapped with the peroxisomal ma-
trix marker GFP-PTS1 (see Fig. S8 in the supplemental material).
In contrast, in the cohex1 mutant, Fam1 largely cofractionated
with the peroxisomal marker. Thus, the results from subcellular
fractionation are fully consistent with the data from both fluores-
cent protein tagging and immunoelectron microscopy, confirm-
ing that Fam1 is a WB-associated protein.

HEX1 is not required for infection-related morphogenesis
and pathogenesis in C. orbiculare. The WB was previously im-
plicated in pathogenicity of the rice blast fungus, M. oryzae, and
the causal agent of Fusarium head blight on wheat and barley,

Fusarium graminearum (34, 35). To investigate the role of WBs in
C. orbiculare pathogenicity, we tested the ability of cohex1 mutants
to undergo infection-related morphogenesis and invade cucum-
ber plants. The mutant showed no detectable defects in appresso-
rium development in vitro (Fig. 8A and B). Moreover, cohex1 ap-
pressoria penetrated cucumber leaves at a frequency similar to
that of the wild type (Fig. 8C and D), and the mutant produced
necrotic lesions on cucumber leaves with severity similar to that of
the wild type (Fig. 8E). We therefore conclude that CoHEX1 and
WBs are dispensable for C. orbiculare pathogenesis.

DISCUSSION
Fam1 is a Pex22-like peroxin unique to filamentous ascomyce-
tes. A previous analysis of the whole-genome sequences of 17 fun-
gal species revealed that most peroxins are conserved between
yeast and filamentous fungi, but among those involved in the im-
port of peroxisome matrix proteins, the membrane anchors Pex22
and Pex15/Pex26 are much less well-conserved (15). These au-
thors suggested that Pex22 homologs could be identified in fila-
mentous fungi by the presence of a Pex4-binding site, which they
used to define a class of Pex22-like proteins. In our study, we
identified the FAM1 gene encoding a Pex22-like protein in a
screen for C. orbiculare mutants impaired in fatty acid metabo-
lism. Database searches showed that FAM1 homologs are re-
stricted to filamentous ascomycete fungi, being absent from both

FIG 8 Appressorium formation and pathogenicity of cohex1 mutants. (A) Microscopic observation of appressorium formation in vitro. Conidial suspensions
of the C. orbiculare wild-type strain and cohex1 mutants were incubated on glass slides for 24 h. Ap, Appressoria; Co, conidia. Bars � 10 �m. (B) Percentage of
conidia forming appressoria. A total of at least 200 conidia were scored for each genotype, based on the examination of three replicates. The wild-type strain,
cohex-1-1 and cohex-1-2 CoHEX1 disruption mutants, and CoHEX1 ectopic transformant were tested. Means � standard deviations (error bars) were calculated
from three independent experiments. (C) Microscopic observation of host infection. Conidial suspensions of the wild-type strain and cohex1 mutant were
inoculated on the abaxial surface of cucumber cotyledons and viewed after 72 h. Ap, appressoria on the leaf surface; Ih, infection hyphae inside epidermal cells
stained with aniline blue. Bars, 10 �m. (D) Percentage of appressoria penetrating to form visible infection hyphae. A total of at least 200 appressoria were scored
for each sample, based on the examination of three replicates. The wild-type strain, cohex-1-1 and cohex-1-2 CoHEX1 disruption mutants, and CoHEX1 ectopic
transformant were tested. Means plus standard deviations were calculated from three independent experiments. (E) Pathogenicity assay of cohex1 mutants on
intact cucumber cotyledons. Droplets of conidial suspension were inoculated onto detached cucumber cotyledons and incubated for 7 days. The wild-type strain,
cohex-1-1 and cohex-1-2 CoHEX1 disruption mutants, and CoHEX1 ectopic transformant, were tested. Distilled water was used as a control (mock).
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basidiomycetes and ascomycete yeasts. Overall, the predicted se-
quence of the Fam1 protein shows very limited identity (5%) to
the S. cerevisiae Pex22 sequence, with only a few conserved amino
acid residues that are likely involved in interface formation with
Pex4 (19), and the protein is nearly two times larger than yeast
Pex22. It was therefore unclear whether Fam1 really performs a
function similar to that of Pex22. Here we showed that a yeast
pex22 mutant can be fully complemented by FAM1 expressed in
combination with CoPEX4, demonstrating that FAM1 is a func-
tional ortholog of PEX22. Moreover, similar to yeast pex22 mu-
tants, the C. orbiculare fam1 mutant was deficient in peroxisome
biogenesis and the import of peroxisomal matrix proteins. In
S. cerevisiae, Pex22 is an integral membrane protein involved in
receptor recycling that anchors Pex4 to the cytosolic face of the
peroxisomal membrane (30). Fam1 contains no predicted bind-
ing site for the peroxisomal membrane protein import receptor
PEX19, but it has a putative targeting signal comprising an
N-terminal transmembrane domain immediately preceded by a
stretch of positively charged amino acids (see Fig. S2 in the sup-
plemental material), similar to Pichia pastoris Pex22 (29).

Fam1 is a novel Woronin body-associated peroxin. After
demonstrating that FAM1 is a functional ortholog of the PEX22
peroxin, we had expected Fam1 to be located on peroxisome
membranes, as in other organisms (30). Surprisingly, colocaliza-
tion experiments with FP-tagged markers of the peroxisome ma-
trix, WB matrix, and WB membranes showed that Fam1 is pre-
dominantly associated with WBs, rather than with peroxisome
membranes. Moreover, a subset of the punctate organelles labeled
by Fam1-GFP were concentrated near hyphal apices and septa,
which is the typical distribution of WBs in filamentous ascomyce-
tes (25, 31). The localization of Fam1 on WBs was further verified
by immunoelectron microscopy, which showed that Fam1 is lo-
cated predominantly on the bounding membrane of WBs. The
WB association of Fam1 was further supported by cellular frac-
tionation experiments. Thus, all our cytological and biochemical
data point to Fam1 being a WB-associated protein.

Fam1 was present on the membranes around nascent (bud-
ding) WBs attached to parent peroxisomes, as well as mature (re-
leased) WBs, but it was not detected on peroxisome membranes,
including those producing nascent WBs. Fam1 therefore repre-
sents a novel component of the WB membrane, although we can-
not exclude the possibility that some Fam1 protein is also present
in peroxisome membranes at levels below the detection limits of
confocal and immunoelectron microscopy. To date, only three
other proteins were shown to be associated with WB membranes,
namely, the WB sorting complex protein WSC (24), the WB teth-
ering protein Leashin (25), and TmpL, a transmembrane protein
implicated in redox homeostasis (36). Thus, Fam1 is the only WB-
associated protein involved in peroxisome biogenesis.

One plausible explanation for the localization of Fam1 is that
after insertion into the peroxisome membrane, the protein be-
comes enriched in WB membranes via interaction with WB ma-
trix or membrane proteins such as Hex1 or WSC, respectively. In
N. crassa, the membrane-anchored peroxin Pex26, which like
Pex22 functions in receptor recycling, is concentrated in the
membranes of a subset of peroxisomes producing WBs (26). Low
levels of Pex26 were also detected in WB membranes, but unlike
Fam1, Pex26 did not become enriched in WB membranes (26).
Pex26 was shown to physically interact with Hex1, and deletion of
Hex1 resulted in the uniform targeting of Pex26 to all peroxi-

somes, suggesting that Hex1 directly influences Pex26 localiza-
tion. In this way, Pex26 was proposed to amplify the import of
additional Hex1 via a positive-feedback loop (26). We found that
similar to Pex26, in the absence of CoHex1 and WBs, Fam1 was
uniformly relocated to peroxisome membranes in C. orbiculare,
suggesting that the subcellular localization of Fam1 depends on
CoHex1.

Although our results indicate that Fam1 functions like Pex22
in the import of peroxisome matrix proteins, the protein was ex-
clusively localized in WB membranes. It is surprising that a pro-
tein required for crucial functions in peroxisomes is efficiently
sorted into WBs, and this finding raises the possibility that recep-
tor recycling is at least partly compartmentalized in WBs, perhaps
before their separation from parent peroxisomes. Very high levels
of Hex1 oligomer enter peroxisomes via the PTS1 import pathway
and then become sequestered into WBs (26). If dissociation of the
receptor-cargo complex occurs after the concentration of Hex1
into nascent WBs, it is conceivable that the release of the PTS1
receptor Pex5p back into the cytosol occurs preferentially on the
surfaces of WBs. An implication of this model would be that
receptor-cargo docking and translocation are spatially separated
from cargo dissociation and receptor recycling in C. orbiculare,
and perhaps other filamentous ascomycetes, as shown schemati-
cally in Fig. 9. Two proteins mediating earlier steps of the PTS1
import pathway, Pex13 and Pex14, are known to be absent from
mature WBs (37). However, there is no information on whether
components of the receptor recycling machinery, such as Pex1,
Pex2, Pex4, Pex6, Pex10, and Pex12, are present in WBs. Since the
cytosolic ubiquitin-conjugating enzyme Pex4 is anchored to per-
oxisome membranes via Pex22 (19), it would be particularly in-
teresting to determine whether Pex4 is enriched on the surfaces of
C. orbiculare WBs together with Fam1. An alternative possibility is
that sequestration of Fam1 in WB membranes provides a mecha-
nism to downregulate levels of the protein in peroxisome mem-
branes, with every cycle of WB budding depleting more Fam1
protein. A third possibility is that Fam1 has evolved additional roles
specific to the biogenesis or function of WBs that are unrelated to
receptor recycling. The fact that WBs and Pex22-like proteins such as
Fam1 show the same phylogenetic distribution among filamentous
ascomycetes is consistent with this hypothesis.

In copex6 and copex13 mutants, which are defective in the im-
port of peroxisome matrix proteins (10, 22), the localization of
Fam1 on WBs at hyphal tips and septa was abolished, indicating
that peroxisome function is required for WB formation in C. or-
biculare, as in other fungi (37). Interestingly, in copex6 and
copex13 mutants, Fam1-GFP localized to punctate structures that
were smaller and less sharply defined than peroxisomes or WBs
and not associated with hyphal tips or septa. These structures may
represent empty peroxisomal membrane remnants, sometimes
termed “peroxisome ghosts,” which are characteristic of mutants
lacking components of the matrix protein import machinery in
yeast and other organisms (38).

Fam1, but not Hex1, is essential for C. orbiculare pathoge-
nicity. It was previously reported that homologs of S. cerevisiae
PEX6 and PEX13 are essential for C. orbiculare pathogenicity (10,
22). The fam1 mutant was defective in the import of peroxisomal
matrix proteins, which would impact multiple appressorial func-
tions depending on peroxisome activity, notably the biosynthesis
of 1,8-dihydroxynaphthalene-derived melanin, the mobilization
of storage lipids, and turgor generation (6). Similar to copex6 and
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copex13 mutants, the fam1 mutant was impaired in all these activ-
ities, which are known to be essential for appressorium-mediated
mechanical penetration of plant surfaces (10). This probably ac-
counts for the complete loss of pathogenicity in the fam1 mutant.

The self-assembling WB matrix protein HEX1 is essential for
WB biogenesis in N. crassa and other fungi (39). As expected,
deletion of HEX1 in C. orbiculare caused a defect in WB-mediated
septal plugging upon hyphal rupture, and WBs were not visible in
the cytoplasm of cohex1 mutants by transmission electron micros-
copy (TEM). Similar to other fungi (40), CoHEX1 was not essen-
tial for fatty acid metabolism because cohex1 mutants grew nor-
mally on oleic acid-containing medium. Moreover, the
peroxisomes of cohex1 mutants retained the ability to import per-
oxisomal matrix proteins, showing that CoHEX1 is dispensable
for peroxisome biogenesis. Interestingly, cohex1 mutants were not
impaired in either appressorial function or pathogenicity. This
contrasts with the situation in the rice blast fungus, M. oryzae,
where deletion of HEX1 showed that WBs are required not only
for appressorial morphogenesis and function but also for invasive
growth in planta by enhancing resistance to nutritional stress (40).
The WB-associated transmembrane protein TmpL, required for
generating intracellular reactive oxygen species (ROS) and resis-
tance to exogenous ROS, was also found to be essential for host
infection by the plant pathogen Alternaria brassicicola and the hu-
man pathogen Aspergillus fumigatus (36). Overall, our data sug-
gest that, unlike these other ascomycete fungi, CoHEX1 and WBs
are dispensable for C. orbiculare pathogenicity.

Perspectives. In this study, we present evidence that filamen-
tous ascomycete fungi have evolved a novel peroxin that functions
like Pex22 in receptor recycling during matrix protein import. In

C. orbiculare, the Pex22-like protein Fam1 is essential for patho-
genicity on cucumber due to the key role played by peroxisomes in
multiple aspects of appressorium-mediated host penetration. No-
tably, we show that Fam1 is specifically enriched in WB mem-
branes, making it the only WB-associated protein so far identified
that is required for peroxisome biogenesis. In the future, it will be
important to determine whether Pex22-like proteins from other
filamentous ascomycetes are similarly targeted to the WB mem-
brane and whether other components of the receptor recycling
machinery become sequestered into WBs. Further work is now
needed to determine why Fam1 is targeted to WBs, given that this
organelle is not required for peroxisome biogenesis per se.

MATERIALS AND METHODS
Fungal and bacterial strains. Strain 104-T (MAFF240422) of Colletotri-
chum orbiculare (syn. C. lagenarium) was used as the wild-type strain.
Culture conditions and methods for Agrobacterium-mediated transfor-
mation were described previously (22, 27).

Cloning and sequence analysis of FAM1, CoHEX1, and CoPEX4.
Fungal genomic DNA flanking the T-DNA insert was rescued using the
thermal asymmetrical interlaced PCR (TAIL-PCR) protocol and se-
quenced as described previously (27). Genomic clones of FAM1, CoHEX1,
and CoPEX4 genes were isolated from the cosmid library of C. orbiculare
by PCR using primer pairs CoHEX1-S2 and CoHEX1-AS2, CoHEX1-S2
and CoHEX1-AS2, and PEX4-S2 and PEX4-AS2, respectively (see Ta-
ble S1 in the supplemental material). The obtained cosmid clones con-
taining each gene were sequenced to obtain the entire open reading frame
(ORF).

Construction of GFP or RFP fusion plasmids. For GFP labeling of
peroxisomes, pEGFPPTS1 and pPTS2EGFP plasmids were used as previ-
ously described (10). For RFP labeling of peroxisomes, the full-length

FIG 9 Proposed model for the import of Woronin body matrix proteins and receptor recycling in C. orbiculare. Woronin body matrix protein Hex1 binds the
Pex5 receptor in the cytosol via its C-terminal peroxisome targeting signal (PTS1). The Pex5-cargo complex first interacts with docking proteins Pex13 and Pex14
on the peroxisome surface and then translocates into the peroxisome matrix, mediated by Pex2, Pex8, Pex10, and Pex12. Dissociation of the Pex5 receptor from
Hex1 occurs after sequestration of the complex into the nascent Woronin body (WB), driven by the self-assembly of Hex1. Recycling of Pex5 back to the cytosol
occurs preferentially on the WB membrane, mediated by FAM1 (i.e., Pex22), Pex4, Pex26, Pex1, and Pex6.
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monomeric red fluorescent protein gene (mRFP1) was amplified by PCR
with the primers mRFP1S1 and PTS1RFP-AS. The amplified product was
digested with SpeI and BamHI and introduced into pBI-SCD1pGFP-
TUB1S as previously described (42), and the resulting plasmid was named
pBI-RFPPTS1S. For the FAM1-GFP fusion gene, we added the enhanced
green fluorescent protein (EGFP) to the N terminus of FAM1. The SalI
fragment containing the bialaphos resistance gene from pCB1635 was
introduced into the XhoI site of pGreenII0000 (43) and designated
pGr2B1. The EGFP ORF encoding glycine residues in the N-terminal
region and the terminator of the glucoamylase gene of Aspergillus
awamori (44) were amplified by PCR with primer EGFPSGly. The ampli-
fied product was digested with HindIII and SalI, introduced into pGr2B1,
and the resulting plasmid was designated pGr2B1GlyGFP. The BamHI-
KpnI fragment containing EGFP and the bialaphos resistance gene from
pGr2B1GlyGFP was introduced into pBIG4MRH and designated pBI-
BglyGFP. The 1,030-bp 5= region upstream of FAM1 together with the
full-length ORF of FAM1 without the stop codon was amplified by PCR
with primers FAM1pro-S1 and FAM1deS-AS. The amplified product was
digested with BamHI and introduced into pBI-BglyGFP. The resulting
clone was named pBI-FAM1-GFPB. For RFP labeling of WBs, the
CoHEX1-mRFP1 fusion gene was constructed. mRFP1 containing a PTS1
(SRL) sequence was amplified by PCR with primers glyRFP-S and RFPsrl-
AS. The amplified product was digested with BamHI and EcoRI, and the
�-TUB1 gene in pBI-SCD1pGFP-TUB1S was replaced with the EcoRI-
BamHI fragment, and the resulting plasmid was named pBI-
SCD1pGFPRFPsrlS. A 3.5-kb fragment containing the 5= flanking region
and CoHEX1 ORF without the stop codon and the PTS1 sequence was
amplified by PCR with T3 and HEX1dsrl-AS and digested with XbaI
and EcoRI. The short SCD1 promoter and GFP ORF in pBI-
SCD1pGFPRFPsrlS were replaced with the XbaI and EcoRI fragment. The
resulting clone was named pBI-HEX1-RFPsrlS. For constructing the
CoWsc-RFP fusion gene, the mRFP1 ORF containing five additional gly-
cine residues in the N-terminal region were amplified by PCR with prim-
ers glyRFP-S and mRFP1AS1. The amplified product was digested with
EcoRI and BamHI and introduced into pBI-SCD1pGFPS (42) and named
pBI-SCD1pGFP-RFPS. The 981-bp 5= upstream region of the CoWSC
gene with the full-length ORF of CoWSC without the stop codon was
amplified by PCR with CoWSC-S1-Sp and CoWSC-AS1-EI. The ampli-
fied product was digested with SpeI and EcoRI. The short SCD1 promoter
and GFP ORF in pBI-SCD1pGFP-RFPS were replaced with the SpeI and
EcoRI fragment. The resulting clone was named pBI-CoWSC-RFPS.

Plasmid constructs for gene disruption and complementation in
C. orbiculare. To construct the gene replacement vector pFAM1AH3-2, a
cosmid clone containing pFAM1cos was subjected to transposon mu-
tagenesis using the EZ::TN transposase (Epicenter) and transposon (AH3
fragment) in which the kanamycin resistance gene was replaced with the
ampicillin resistance and hygromycin resistance genes. After PCR and
sequence analysis, a cosmid clone (pFAM1cos1AH3-2) was selected in
which the transposon was inserted 541 bp downstream of the predicted
start codon of FAM1. Next, a 4.7-kb PCR product, including FAM1 to-
gether with its 5= and 3=flanking regions and the transposon was amplified
from pFAM1cos1AH3-2 with primer pair FAM1S4/AS4 and introduced
into the BamHI site of the Agrobacterium tumefaciens binary vector
pBIG4MRB, and named pFAM1H3-2. The gene complementation vector
pFAM1C was amplified from pFAM1os1 with primer pair FAM1proS1
containing a terminal BamHI site and Hi2049-AS4 containing a terminal
BamHI site. The PCR product was cloned into the BamHI site of binary
vector pBIG4MRSrev containing the sulfonylurea resistance gene. To
construct the CoHEX1 gene replacement vector pBI-HEX1AH3-2-7S, the
pCBHEX1E plasmid was constructed by introducing a 9.0-kb EcoRI
genomic fragment from a cosmid clone containing CoHEX1 into the
EcoRI site of pCB1004. The pCBHEX1E plasmid was digested with
BamHI, and self-ligation produced a 0.8-kb fragment containing Co-
HEX1, named pCBHEX1EB. The EcoRI-and-BamHI fragment from
pCBHEX1EB was introduced into the pBIG4MRSrev EcoRI and BamHI

site and named pBI-HEX1S. The pBI-HEX1S plasmid was used as the
gene complementation vector for the cohex1 mutant. The pBI-HEX1S
plasmid was subjected to mutagenesis with the EZ::TN transposon system
as described above, and after PCR and sequence analysis, a clone in which
the transposon was inserted 104 bp downstream of the predicted start
codon of HEX1 was selected and named pBI-HEX1AH3-2-7S.

Yeast complementation assay. For complementation of the yeast
�pex22 mutant, the full-length cDNA sequence of FAM1 was amplified
from C. orbiculare mycelial cDNA with primers FAM1yesS1 and
CoFAM1BamAS1. The amplified product was cloned into pTGPD con-
taining the GPD promoter and TRP1 as a selection marker. For comple-
mentation of the yeast �pex4 mutant, the full-length cDNA sequence of
CoPEX4 was amplified from C. orbiculare mycelial cDNA with primers
CoPEX4f-S2 and CoPEX4f-AS2. The amplified product was cloned into
pRS-GPD and named pRS-PEX4. The plasmid pRS-PEX4 contains
CoPEX4 under control of the GPD promoter and LEU2 as a selection
marker. S. cerevisiae wild-type strain JD53 and �pex4 and �pex22 mutants
(45) were transformed with pEW88 which contains GFP-PTS1 and URA3
(46) and with combinations of two plasmids as follows: pTGPD and pRS-
GPD, pTGPD-FAM1 and pRS-GPD, pTGPD and pRS-PEX4, and
pTGPD-FAM1 and pRS-PEX4. Transformants were selected on SD me-
dium lacking Leu, Trp, and uracil (42). GFP-PTS1 fluorescence was ob-
served in yeast grown on 0.3% glucose overnight.

Preparation of Fam1 antibodies. Polyclonal antisera against Fam1
were obtained by immunizing rabbits with recombinant Fam1 purified
from Escherichia coli DH5� carrying a FAM1 expression vector as previ-
ously described (27). The single 44-kDa band corresponding to Fam1 was
confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
and the eluted Fam1 protein was used for immunizing rabbits (SCRUM,
Inc., Japan). The immunoglobulin G (IgG) fraction was purified with an
Hi-Trap protein A affinity column according to the manufacturer’s in-
structions (Amersham Pharmacia Biotech, Buckinghamshire, United
Kingdom).

Cellular fractionation and Western blotting. Cellular fractionation
and Western blot analysis were performed by following the procedures of
Liu et al. (24). Mycelium grown in potato sucrose medium for 5 days was
ground to a powder in liquid nitrogen using a mortar and pestle and used
for cellular fractionation. Protein distribution in the fractionated samples
was determined by enhanced chemiluminescence (ECL) and Western
blotting (Millipore, Billerica, MA, USA). Primary antibodies were ob-
tained from as follows: anti-HEX (23), anti-GFP (Clontech Laboratories,
Inc., CA, USA), and anti-Fam1 (this study). Secondary antibodies were
alkaline phosphatase-conjugated anti-rabbit IgG (H�L) (Jackson Im-
muno Research Laboratories, PA, USA).

Transmission electron microscopy and immunocytochemistry. For
high-pressure freezing, the mycelium of C. orbiculare was grown on po-
tato dextrose agar (PDA) for 3 days. Using a biopsy punch, 2-mm-
diameter discs of mycelium were cut from the colony margins, and most
of the agar was cut away to produce ~0.3-mm-thick samples. Aluminum
specimen carriers (3-mm diameter, 0.5-mm thickness; Leica Microsys-
tems GmbH, Germany) were prefilled with potato dextrose broth, and
mycelial discs were placed in the cavity, mycelium side downwards. A
second specimen carrier was dipped in 1-hexadecene and used as a lid (flat
side toward the sample), and the assembly was immediately frozen using a
Leica EM HPM 100 high-pressure freezer (Leica Microsystems GmbH).
Samples were freeze-substituted in acetone containing 0.5% (wt/vol) ura-
nyl acetate as described previously (47), rinsed in ethanol, and infiltrated
with medium-grade LR White resin for 8 days at �20°C. Polymerization
with UV light was for 24 h at �20°C and 24 h at 0°C. After blocking,
ultrathin sections were incubated at 4°C overnight in the purified IgG
fraction of rabbit polyclonal anti-FAM1 antiserum (diluted 1:50) or anti-
HEX1 antiserum (diluted 1:500) raised against N. crassa Hex1p (23). Pri-
mary antibodies were detected with goat anti-rabbit antibody conjugated
to 10-nm colloidal gold particles (British Biocell International, Cardiff,
United Kingdom) for 1 h. For a negative control, the primary antibody
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was omitted. Sections were stained with 0.1% (wt/vol) potassium per-
manganate in 0.1 N sulfuric acid for 1 min (32) followed by 2% (wt/vol)
uranyl acetate for 10 min and lead citrate for 15 min and examined with a
Hitachi H-7650 transmission electron microscope (TEM) at 100 kV.

Fluorescence microscopy. For appressorium formation in vitro,
conidia were harvested from 7-day-old cultures on PDA and suspended in
distilled water. The conidial suspension, adjusted to 1 � 105 conidia per
ml, was placed in the wells of 8-well multitest glass slides (ICN Biomedi-
cals, Aurora, OH, USA) and incubated at 24°C for 24 h. Germlings were
observed with a Nikon Eclipse E600 microscope with differential interfer-
ence contrast (DIC) optics. Lipid droplets were visualized by staining with
Nile red (48). Nile red fluorescence was viewed with the Nikon B-2A filter
set (450- to 490-nm-wavelength excitation filter, 505-nm-wavelength di-
chroic mirror, and 520-nm-wavelength barrier filter). For observation of
GFP fluorescence, cells were viewed with the Nikon GFP(R)-BP filter set
(460- to 500-nm or 595- to 620-nm excitation filter, 400-nm dichroic
mirror, and 400-nm barrier filter). Confocal images were obtained with
Leica TCS SP2 or Zeiss LSM 700 confocal scanning microscopes. Excita-
tion for imaging GFP fluorescence used the 488-nm laser line, and emis-
sion was detected at 492 to 550 nm. For imaging mRFP, excitation was at
563 nm (Leica) or 555 nm (Zeiss), and emission was detected at 566 to 620
nm (Leica) or 557 to 600 nm (Zeiss).

Hyphal tip lysis experiments. Hypotonic shock was used to induce
hyphal tip lysis. C. orbiculare mycelia were grown on Marthur’s agar me-
dium (0.12% MgSO4 � 7H2O, 0.27% KH2PO4, 0.28% glucose, and 0.22%
Peptone) containing 2% sorbose at 24°C. After 2 or 3 days, distilled water
was added to the fungal colony to induce hyphal tip lysis, and the hyphae
were then observed using light microscopy.

Pathogenicity tests. Conidia of C. orbiculare were collected from
7-day-old cultures grown on PDA at 24°C under constant darkness. The
pathogenicity of each strain was tested by droplet inoculation on cucum-
ber cotyledons (Cucumis sativus L. ‘Suyo’) as previously described (49).

Accession numbers. The isolated genes have the following GenBank
accession numbers, based on the recently published C. orbiculare genome
annotation (42). FAM1, ENH87037.1 (N4VSY8); CoPEX4, ENH88331.1
(N4W4I0); CoHEX1, ENH76003.1 (N4UJP9); CoWSC, ENH86471.1
(N4VZG1).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01305-15/-/DCSupplemental.
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