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Abstract:  In mammals, oocytes develop inside the ovarian follicles; this process is strongly 
supported by the surrounding follicular environment consisting of cumulus, granulosa and 
theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large 
amounts of energy that is produced by follicular cells from substrates including glucose, 
amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring 
oocyte developmental competence, the aim of this study was to investigate site-specificity 
of lipid metabolism in ovaries by comparing lipid profiles and expression of FA  
metabolism-related genes in different ovarian compartments. Using MALDI Mass 
Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion 
signals for the first time. Cluster analysis of ion spectra revealed differences in spatial 
distribution of lipid species among ovarian compartments, notably between the follicles and 
interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca 
and the oocyte-cumulus complex. Moreover, by transcript quantification using real time 
PCR, we showed that expression of five key genes in FA metabolism significantly varied 
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between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, 
lipid metabolism differs between ovarian and follicular compartments. 

Keywords: lipids; ovary; MALDI MS imaging; oocyte; follicular cells; fatty acid metabolism; 
gene expression; porcine 

 

1. Introduction  

Successful reproduction is largely dependent on oocyte developmental competence, that is, the ability 
of the female gamete, the oocyte, to undergo fertilization and subsequent embryo development. In mammals, 
such competence is acquired inside the follicle in the ovary through folliculogenesis [1]. The ovarian follicle 
grows from the primordial stage, where an oocyte is surrounded with only a single layer of follicular cells, 
to the antral follicle that is characterized by an antrum cavity filled with follicular fluid (FF) and specialized 
follicular cells: steroidogenic wall theca cells, granulosa cells (GC) and their derivate cumulus cells (CC), 
which surround an oocyte and form the oocyte-cumulus complex (OCC). Each cycle, only a few follicles 
from the antral cohort are selected for final growth and maturation and thus progress to the preovulatory 
stage. Most of the remaining follicles are eliminated by atresia. The mechanisms of oocyte selection are 
not fully understood. However, oocyte growth strongly depends on a tight metabolic relationship between 
an oocyte and its ovarian follicular environment [2]. 

Ovarian cells can use multiple metabolic substrates including glucose, amino acids and lipids; the 
flexibility of the metabolic pathways available for energy production during oocyte growth and maturation 
seems to be a key to high developmental competence of the oocyte [2,3]. Folliculogenesis and final 
oocyte maturation are regulated at the endocrine and paracrine levels and are strongly influenced by 
dietary fat supplementation in cows [4] and humans [5]. Although glucose metabolism has largely been 
studied in ovarian follicular cells and is considered essential in determining oocyte developmental 
potential (for a review, see [6]), intrafollicular lipid metabolism has been revealed to be particularly 
important in farm species (cattle, sheep, pigs) with oocytes that contain relatively high concentrations of 
lipids compared with humans [7]. 

Apart from energy supply, intracellular lipids have a critical role in biological membrane functions, 
cell-to-cell interaction, cell proliferation, transport, and regulation of enzyme activity. Lipids of different 
classes, such as fatty acids (FAs), glycerolipids (mono-, bi-, and tri-acylglycerols), glycerophospholipids, 
sphingolipids, sterol and sterol esters, etc. and their derivatives, are essential components in different 
endocrine and cell signaling pathways [8]. Reproductive processes are strongly regulated by FAs through 
a variety of mechanisms (for a review, see [9]). Thus, FAs provide the precursors for prostaglandin 
synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin 
and steroid metabolism, which play a crucial role in female reproduction. In addition, mitochondrial  
��-oxidation of free FAs that are either released from triacylglycerols (TAGs) through lipolysis or 
synthesized de novo, is important for energy supply for ovarian cells which can store lipids and possess 
lipogenic and lipolytic properties [10�±12]. Indeed, recent studies have demonstrated that FA oxidation 
in the oocyte is required for the completion of oocyte meiotic maturation, the final step of oocyte 
development before fertilization, in different species including cattle, pigs and mice [13]. Moreover, CC can 
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also accumulate lipids from the OCC environment [14] and thus protect the oocyte from the  
lipotoxity induced by excessive FAs [15]. Therefore, lipid metabolism is of great importance for oocyte 
developmental competence. 

Lipid metabolism has been shown to be regulated by a set of FA metabolism-related genes (for a 
review, see [16]). Among the key factors of FA metabolism are acetyl coenzyme A carboxylase (ACACA) 
�L�Q�Y�R�O�Y�H�G���L�Q���)�$���V�\�Q�W�K�H�V�L�V�����F�D�U�Q�L�W�L�Q�H���S�D�O�P�L�W�R�\�O���W�U�D�Q�V�I�H�U�D�V�H���������&�3�7�������L�Q�Y�R�O�Y�H�G���L�Q���)�$����-oxidation, FA-binding 
proteins (FABP) involved in FA transport in the cell, thrombospondin receptor alias FA translocase 
CD36 involved in the FA entry in the cell, and perilipins (PLIN), which are involved in lipolysis and are 
located in the periphery of lipid droplets. Free FAs may occur through de novo synthesis using acetyl-CoA, 
through lipolysis of TAGs in lipid droplets, or through importation from the follicular environment via 
FA membrane transporters such as CD36. Inside the cell, FAs may be transported by FABPs and can 
either be transformed and stored in lipid droplets or directed to mitochondria using CPT1 where FAs are 
metabolized through FA oxidation, thus producing ATP. 

Although lipid composition of FF, oocytes and surrounding CC has already been reported in humans, 
cattle and pigs [17�±23], spatial distribution of lipid species throughout the ovary has never been studied. 
Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) is a new 
powerful method for analyzing the spatial distribution of small molecules such as proteins, peptides, 
lipids, drugs and metabolites in tissues of interest; these specific molecules can be clearly assigned to 
their cellular origin (for a review, see [24,25]). Moreover, MALDI MSI is particularly promising in 
clinical research because it has successfully been used for the discovery of candidate biomarkers in 
cancer therapy [26,27]. MALDI MSI has also been used for direct molecular profiling and imaging of both 
male and female reproductive tissues such as murine uterus, epididymis and seminiferous tubules [28]. 

MALDI MSI analyses of ovaries have been performed only for cancer research [29]. Taking into 
account the growing interest in the role of lipid metabolism in ovarian folliculogenesis and oocyte 
developmental competence [16,30,31], we aimed to analyze both the spatial distribution of lipid species 
throughout the ovary and the expression of FA metabolism-related genes in different follicular compartments 
to identify the cells that are particularly involved in FA metabolism in ovaries. Porcine ovary was used 
as a model because of its particular lipid metabolism, notably its very high oocyte lipid level [32]. In our 
study, for the first time, we analyzed the spatial distribution of lipids throughout the ovary by using 
MALDI MSI and quantified the expression of a set of FA metabolism-related genes in different ovarian 
cell types. 

2. Experimental Section 

2.1. Ethics 

Porcine ovaries were obtained from a local commercial slaughterhouse; no experiments on live 
animals were performed. 

2.2. Reagents 

All reagents were purchased from Sigma (Saint-Quentin Fallavier, France) unless otherwise stated. 
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2.3. Tissue Collection and Preparation 

Whole ovaries from slaughtered 9�±10 month Large White gilt pigs in the follicular stage of the estrus 
cycle (n = 3) were snap frozen in vapor of liquid nitrogen and kept at �í80 °C until use. Before tissue 
section the ovary was placed at �í20 °C for 1  h in a microtome chamber. Ovary sections were cut using 
a Cryo-Star HM 560 cryostat (Microm, Francheville, France) with a specimen holder chilled at �í18 °C. 
The 14 µm-thick sections were thaw-mounted onto conductive Indium Tin Oxide (ITO)-coated microscope 
slides (Bruker Daltonics, Wissembourg, France). For external mass calibration, 0.5 ���/���R�I���S�H�S�W�L�G�H���F�D�O�L�E�U�D�W�L�R�Q 
standard II (Bruker Daltonics, Wissembourg, France) was placed near the tissue section and mixed (1:1 v/v) 
with the matrix employed for the MALDI MSI. 

Ovary sections were scanned before matrix deposition using a histology slide scanner (Opticlab H850 
scanner, Plustek, Ahrensburg, Germany). The histological image was used for the teaching point step to 
superpose histological and molecular images. 

2.4. Matrix Coating and MALDI MSI 

The MALDI MSI workflow is presented in Figure 1. The matrix was coated using an Image  
Prep device (Bruker Daltonik GmbH, Bremen, Germany) using one of three methods: spraying with  
�.-cyano-4-hydroxycinnamic (CHCA) acid matrix at 7 mg/mL in 60:40 acetonitrile/H2O, 0.2% trifluoroacetic 
acid (TFA); spraying with 2,5-dihydroxybenzoic acid (DHB), in 50:50 acetonitrile/H2O, 0.2% TFA; or 
using the manufacturer�¶s standard protocol. The slides were placed in a desiccator for 1 h before MALDI 
MSI analysis. Spectra were acquired using an UltrafleXtrem MALDI-TOF/TOF instrument (Bruker 
Daltonik GmbH, Bremen, Germany) equipped with a Smartbeam laser (Nd:YAG, 355 nm) at 2 kHz 
laser repetition rate at the �³small focus�  ́ setting. The FlexControl 3.0 software (Bruker Daltonics, 
Bremen, Germany) was used to control the instrument. Spectra were obtained in both positive and negative 
reflector ion mode in the 200�±1200 m/z range. The accelerating voltage was set to 25 kV. Lipid mass 
spectra were acquired with spatial resolution set at 50, 35 or 22 µm. At 22 µm, for each pixel, 500 spectra 
were collected as a sum of 50 consecutive laser shots in 10 random walk shot steps. External calibration 
was performed using Bruker Peptide Calibration Standard. Raw spectra were analyzed with FlexImaging 4.0 
software (Bruker Daltonik GmbH) after baseline subtraction and Root Mean Square (RMS) normalization. 
Ion density maps were created for ions observed from the skyline projection spectrum. Masses were manually 
selected with a mass accuracy set to ±0.1% (manual peak picking). Anatomical regions of interest (ROIs) 
were manually defined by using both the histological image and MSI data. For signals located in a ROI, 
a mass spectrum associated with a high-intensity pixel was opened with FlexAnalysis 3.4. Mass spectra 
were smoothed using the Savitzky-Golay algorithm with the following parameters: 0.2 m/z, one cycle 
and baseline subtracted using the Top Hat algorithm. For the whole acquisition region and ROIs, hierarchical 
cluster analyses were performed using FlexImaging software. Three ovaries from different gilts were 
sectioned. MSI was performed on different sections in positive and negative modes. MSI images at  
22 µm resolution were used for cluster analysis of individual follicles. 
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Figure 1. Schematic representation of MALDI Mass Spectrometry Imaging (MSI) of lipids 
performed on fresh frozen sections of Sus scrofa gilt ovaries. Cryostat ovary section was 
transferred onto an ITO glass slide (1�������7�K�H���V�O�L�G�H���Z�D�V���W�K�H�Q���F�R�Y�H�U�H�G���Z�L�W�K���.-CHCA or DHB 
(2). After matrix drying, the slide was introduced into the MALDI-TOF mass spectrometer 
for analysis (3). The laser scans through a set of preselected locations with a spatial resolution 
set at 50, 35 or 22 µm (4) generated mass spectra of lipids at each point (5). After normalization, 
ion density maps were created (6) for the ions, which were observed from the representative 
mass spectra showing the major molecular species (skyline projection spectra). Hierarchical 
cluster analysis displaying discriminatory signals and creating groups of related molecules 
based on their classification allowed the reconstruction of a molecular image (7). 

2.5. MALDI MSI Lipid Profiling Data Analysis 

After hierarchical cluster analysis on ROIs targeted at different follicles, twelve MALDI spectra were 
extracted from characteristic compartments of individual follicles (theca, granulosa, OCC and FF) according 
to the morphology in the histological scan images. For an individual follicle, presenting all compartments, a 
total of 48 spectra were generated for positive and negative mode MSI analysis. Each spectrum was 
converted to .txt files using FlexAnalysis 3.4 software and integrated in Progenesis MALDI version 1.2 
software (NonLinear Dynamics, Newcastle upon Tyne, UK). All spectra were processed with baseline 
subtraction (Top Hat filter 60), denoising (Noise filter 4) and spectra alignment steps to maximize 
correlations. Automatic peak detection was applied to the reference spectrum (a weighted average of all 
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experimental spectra) with a threshold fixed at 200 counts. Thus, peaks were detected with a 
signal:background ratio > 5. Normalization of peak height was performed using the Total Ionic Count (TIC) 
in order to display and compare all spectra on the same scale. The repeatability of analysis of different 
follicular compartments linked directly to the spectrometer process was evaluated by a coefficient of 
variation (CV) on the 20 biggest peaks selected on mean normalized peak height. CV was calculated using 
normalized peak height of the 12 spectra for one experiment (negative mode). Mean CV values did not 
exceed 35% for theca, 30% for granulosa, 45% for OCC and 30% for FF. To characterize differences in peak 
intensity between the follicular cell types, the mean normalized peak height intensity values were subjected 
to one-way analysis of variance (ANOVA) followed with Fisher�¶s post hoc test. Details of detected m/z 
peaks are provided in the Supplementary data (Table S1). 

2.6. RNA Analysis: Quantification of Gene Expression 

Small follicles (2�±5 mm) from the ovaries of gilts in the follicular stage of the estrus cycle were 
dissected to isolate GC by gentle scraping of the inside of the follicles. Theca cells were collected after 
GC removal and three washes of the inside of the follicle with PBS 1X. GC and theca samples were 
recovered from 12 individual follicles of six different gilts. OCC were recovered from the remaining 
follicles of the same ovaries, and the oocytes were stripped of CC under a binocular microscope by repetitive 
aspiration�² ejection using a micropipette. Cells were precipitated by centrifugation (3000 g, 5 min) and 
kept at �í80 °C in TRIzol reagent (Life Technologies, Saint Aubin, France). Total RNA extraction was 
performed using the TRIzol purification system according to the manufacturer�¶s instructions (n = 10 for 
theca, n = 8 for GC, n = 12 for CC and n = 8 for the oocytes). Total RNA from 25 oocytes or 100 ng of 
total RNA (from Th, GC and CC) were subjected to Reverse Transcription (RT) and real time Polymerase 
Chain Reaction (PCR) as previously described [33]. Real time PCR reactions �Z�H�U�H���F�D�U�U�L�H�G���R�X�W���L�Q�����������/��
containing 1× qPCR Mastermix Plus for SYBR Green I (BioRad, Marnes-la-Coquette, France), specific 
primers (Table 1) at a final concentration of 150 nM, and 5 ���/���R�I���W�K�H���5�7���U�H�D�F�W�L�R�Q���G�L�O�X�W�H�G���������������H�T�X�L�Y�D�O�H�Q�W��
to 2.5 ng cDNA) for Th, GC and CC or 1:30 for oocyte (cDNA equivalent to 0.2 oocyte). Real time PCR 
quantification of gene expression was performed using CFX96 (BioRad) with all the samples in duplicate. 
The efficiency of the primers and standard curve for each gene was deduced from serial dilutions of the 
corresponding cDNA fragment obtained as a template. 

The geometric mean of two housekeeping genes (RPL19 and RPS9) was used to normalize gene 
expression. The relative amounts of gene transcripts (R) were calculated according to the equation: 

�5��� ��
k�' �Ú�Ø�á�Ø

�?�¼�ç���Ú�Ø�á�Øo

�:�‰�‡�‘�•�‡�–�”�‹�…���•�‡�ƒ�•���:�' �Ë�É�Ì�=
�?�¼�ç���Ë�É�Ì�=�â���' �Ë�É�Å�5�=

�?�¼�ç���Ë�É�Å�5�=�;�;
  

where Ct is a cycle threshold and E is PCR efficiency for each primer pair (Table 1). Normalized values 
of relative expression were compared by one-way ANOVA with �)�L�V�K�H�U�¶�V��post hoc test (Statview version 
5.0, SAS Institute, Inc., Cary, NC, USA.). Differences were considered significant when p < 0.05. 
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Table 1. Primers used for real-time PCR gene expression analysis. 

Gene Primer  Séquence 5'�±3' Accession Number 
Amplicon 

(bp) 
Gene Product 

Primers 
Efficiency  

ACACA 
fw TGGAGAAACAGCTGACGGAG 

EU168399.1 196 Acetyl coenzyme A carboxylase 
 

rev GAGAGGATCCGGACGACTTC 1.99 

CD36 
fw TTGGCCTATGAACCGTTTACT 

NM_001044622.1 249 CD36 molecule (thrombospondin receptor) 
 

rev CGTTCTGAAGTTGCCAAGCA 1.91 

CPTA1 
fw ACGTGTCGAAAGAAGGAGGT 

NM_001129805.1 138 Carnitine palmitoyl transferase 1 A 
 

rev ACATCCCAAAGAGCATATCGTA 1.95 

FABP5 
fw ATGGGTGCAATGGCCAAAC 

NM_001039746.2 221 Fatty acid binding protein 5 
 

rev GAACCACCACCATGGCATAGA 1.91 

PLIN2 
fw GTGCCACACCCTCGTG 

NM_214200.2 242 Perilipin 2 (alias Adipophilin) 
2.00 

rev AGGGACCTACCAGCCAGTT  

RPL19 
fw ATGAAATCGCCAACGCCAAC 

AF435591.1 173 Ribosomal protein L19 
1.96 

rev AGCATTGGCAGTACCCTTCC  

RPS9 
fw GTGCTGGGGTGCTCTTTAGT 

XM_005664825.1 160 Ribosomal protein S9 
1.92 

rev GAGCCCATATTCGCCGATCA  



Biology 2015, 4 223 
 
3. Results and Discussion 

3.1. MALDI MSI Analysis of Porcine Ovarian Sections 

The molecular specificity and sensitivity of MS was used in this study for direct mapping and imaging 
of lipids present in porcine ovarian tissue (Figure 1). Spatial distribution of numerous lipid species 
throughout ovarian sections was observed using both DHB and CHCA matrices. 

We have chosen to investigate the differential spatial distribution of lipids in ovarian compartments 
and particularly inside the individual follicles �E�\���X�V�L�Q�J���0�$�/�'�,���0�6�,���Z�L�W�K���.-CHCA matrix at the highest 
resolution (22 µm). 

3.1.1. Ovarian Lipid Distribution 

MALDI MSI analysis of ovarian sections in positive reflector ion mode allowed the visualization of 
both molecular protonated species and salt adducts (either sodium [M+Na]+ or potassium [M+K]+) 
generated from the different lipids, similar to reports from other studies [34�±36]. The skyline projection 
spectra generated from all the detected ion signals in the 200�±1200 mass range within the analyzed 
section showed numerous peaks with variable intensity mainly over the 300�±900 m/z range (Figure 2A). 
Such spectra were recorded for more than 120,000 positions throughout an area of ovary section. The 
ion signal profiles were separated using hierarchical cluster analysis. The most specific clusters were 
selected to generate representative molecular reconstructions of ovarian tissue sections (Figure 2B). 

The multiplexing of specific lipid profiles clearly outlined the differences in lipid composition between 
the follicles and follicle-free space (named interstitial tissue). Moreover, such differences in lipid distribution 
were also observed between different follicles. The overlay of the histological digital image and the MSI 
image showed that lipid profiles varied among ovarian compartments. Indeed, numerous ion density 
maps demonstrated specific localization and variable abundance of several lipid species inside the 
ovarian structures (as examples, images for m/z 578.7, 618.3 and 704.9 are presented in Figure 2C). 
Thus, m/z 578.7 was more abundant in follicular fluid, whereas m/z 618.3 was more frequently represented 
in follicular wall cells (likely granulosa and theca cells), and m/z 704.9 seemed to be more enriched in 
the interstitial tissue (Figure 2C). 

MALDI MSI analysis of the same porcine ovary sections was also performed in negative reflector 
ion mode in the 200�±1200 mass range, and enabled visualization of negatively charged ions ([M-H] �í). 
In this study, an area overlapping with the positive ion mode analysis was defined to record 98,016 
positions. As in positive ion mode, the skyline projection spectra showed numerous peaks with variable 
intensity mainly in the 450�±940 m/z range (Figure 3A). After hierarchical cluster analysis, specific 
cluster groups were selected to generate a representative molecular reconstruction of the ovarian section 
(Figure 3B). Multiplex molecular profiles overlaid with the histological digital image outlined 
characteristic ovarian structures and follicular compartments (FF, OCC, GC, Th). In addition, numerous 
ion density maps (in Figure 3C, density maps at m/z 463.8, 886.5 and 717.3) showed preferential 
localization of distinct lipids to different follicular compartments or their variable abundance between 
the follicles (Figure 3C). 
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Figure 2. High-resolution MALDI MSI in positive reflector ion mode. MALDI MSI analysis 
of porcine ovary section acquired at 22 µm spatial resolution. (A) Skyline projection spectrum 
of molecular species (lipids) in the m/z 200�±1200 range; (B) Histological image of ovary 
section (digital scan at 7200 dpi) overlaid (merge) on molecular reconstruction image  
(Lipids MSI); (C) Molecular images of three lipids showing preferential localization to 
follicular fluid (m/z 578.7), to follicular wall cells (m/z 618.3) and to interstitial tissue outside 
follicular cells (m/z 704.9). 

The intensities of specific ions and global lipid profiles, in both positive and negative mode, showed 
the difference in lipid content between the individual follicles. Such specific spatial distribution patterns 
may reflect the metabolic difference between follicular cell types and/or fluid contents. Similarly, MALDI 
MSI lipid profiles differed between cancer and normal tissues in breast, lung, colorectal, esophageal, 
gastric, and thyroid cancer [37] and in ovarian tumors [29]. Similar to tumors, follicular metabolism is very 
diverse and is involved in energy production, redox potential and anabolism, notably to support growth [2]. 
By using specific assays, the concentrations of many metabolites, including non-esterified FA and 
cholesterol, were shown to be different in follicles of different sizes in cattle [38]. Similarly, ten FAs in 
FF of women with poor ovarian response to super-ovulation treatment differed compared to women with 
a normal response [23]. Oocyte competence was also correlated with FA composition in FF in  
humans [31,39]. Therefore, the differences in lipid content between the different ovarian follicles 
observed here by MALDI MSI may be due to differences in their stages of folliculogenesis and thus may 
reflect the different capacities of the follicles to respond to hormonal signals and consequently to their 
capacity for further maturation. 
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Figure 3. High-resolution MALDI MSI in negative reflector ion mode. MALDI MSI analysis 
of porcine ovary section acquired at 22 µm spatial resolution. (A) Skyline projection spectrum 
of molecular species (lipids) in the m/z 200�±1200 range; (B) Histological image of ovary 
section (digital scan at 7200 dpi) overlaid (merge) on molecular reconstruction image (Lipids 
MSI); (C) Molecular images of three lipids showing preferential localization to follicular 
fluid (m/z 463.8), to follicular wall cells (m/z 886.5) and to interstitial tissue, mainly outside 
follicular fluid (m/z 704.9). 

Approximately 40 lipid ions detected by MALDI MSI using the CHCA matrix were precisely 
identified by tandem MS/MS analysis in human bone marrow mesenchymal stem cells [40]. These lipid 
species were detected in similar experimental conditions to ours and were identified as free FAs in the 
300�±350 m/z range, fragments from phosphatidylcholines (PC) over the 470�±670 m/z range, sphingomyelins 
(SM) over the 682�±742 m/z range, phosphatidylethanolamines (PE), phosphatidylglycerol (PG) and PC 
in the 750�±833 m/z range, and phosphatidylinositols (PI) at m/z > 883). In another study, numerous lipid 
species were noted in porcine oocytes; peaks within 250�±340 m/z range were attributed to free FAs and 
those over the 511�±610 m/z range were identified as FA dimers [21]. Phosphatidylserines (PS), PG and 
PI were ranged between 788 and 888 m/z; m/z 725.43 and 751.44 were identified as diacylglycerols 
(DAGs) 36:2 and 38:4, respectively, and peaks at m/z > 909 were attributed to TAGs [21]. Moreover, 
SM, PC and TAG have also been detected in mammalian oocytes by MALDI MS fingerprinting [7,41]. 
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In our study, MALDI MSI analysis of porcine ovary sections also revealed numerous ion species, 
with most of the peaks ranged between 400 and 900 m/z, several peaks > 900 m/z and several  
peaks < 400 m/z. Therefore it is possible that among the detected species there could be FA dimers, 
SMs, PCs, PEs, PIs, mono-, di-, and tri-glycerolipids which might explain the different spatial 
distribution patterns between the ovarian structures and between the follicles. Tentative identifications 
of several m/z peaks here detected in positive and negative ion mode by MALDI MSI, are shown in 
Supplemental data S1. However, the MS/MS approach is required to confirm these attributions. 

3.1.2. Intrafollicular Lipid Distribution by MALDI MSI  

MALDI MSI analysis was targeted at follicles to characterize intrafollicular lipid distribution. The 
two MSI datasets for positive and negative ion modes were used for differential lipidomic analysis 
(Figures 4 and 5). Twelve spectra per tissue were extracted from the different follicular compartments 
including FF, OCC, GC and Th, which were determined by the special morphology of each cell type 
(Figures 4A,B and 5B). From these spectra profiles, 79 m/z peaks in positive mode and 92 m/z peaks in 
negative mode were detected at a level 5-fold higher than background. These m/z peaks constituted the 
basal molecular phenotype of a follicle in each ion mode (Supplemental data, S1). 

 

Figure 4. Assessing spatial lipid distribution of the whole follicle from targeted MALDI 
MSI analysis performed in positive ion mode. (A) Histological image of follicle describing 
the follicular compartments (scan) and its superposition (merge) with molecular reconstruction 
image (lipids MSI). Scale bars = 200 µm; (B) Representative MALDI -TOF MS single spectra 
acquired directly from the region of interest (Follicular fluid, oocyte-cumulus complex, 
granulosa and theca) of porcine ovary section in the m/z 200�±1000 range. RI = relative intensity. 

Lipid ions detected in positive mode presented more peaks in a lower (m/z 200�±400) or higher mass 
range (particularly in 601�±800 m/z class) than those detected in negative mode (Figure 5A). This may 
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be explained by the presence of multiple salt adducts in positive mode (masses of 22 Da (Na+) or 38 Da 
(K+) and more). In negative mode, more m/z peaks were present in a mid mass range (m/z 401�±600) 
however in a higher mass range (m/z 801�±1000) a similar number of peaks were detected in positive and 
negative modes. Absence of salt adducts in negative mode allowed better detection of molecular species 
in a wide mass range (92 m/z peaks in negative mode vs. 79 m/z peaks in positive, respectively) due to 
an enhanced signal-to-noise ratio and to a difference in the heterogeneity of the sample modifying the 
ion suppression effect. 

 

Figure 5. (A) Comparative distribution of molecular weight (m/z) of the differential lipid 
species (ANOVA, p < 0.001) detected in positive (blue) and negative (red) reflector ion 
mode (left panel) and m/z class distributions (right panel). (B) Histological image of the 
follicle describing the follicular compartments (scan), molecular reconstruction image 
(lipids MSI) and their superposition (merge). Scale bars = 200 µm.  

We did quantitative analyses of the spectra extracted from either FF or OCC, or GC or theca in the 
representative follicles, for both positive and negative ion mode datasets to confirm the visual differences 
in spatial distribution of lipid species between the follicular compartments. For each m/z peak, the 
variations in signal intensities between each compartment were compared (Supplemental data, S1). 
Peaks at 35 and 59 m/z, detected in positive and negative ion mode, respectively, varied between at least 
two different compartments (p < 0.001) more than two-fold. For positive and negative ion mode, 
respectively, the pairwise comparisons identified 19 and 36 differential m/z peaks between OCC and FF, 
4 and 1 differential m/z peaks between theca and GC, 7 and 22 m/z peaks differed between OCC and 
GC, and 21 and 38 m/z peaks differed between FF and GC (p < 0.0001, all differences were more than 
two-fold). 
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The top 25 m/z differential peaks detected by MALDI MSI in positive and negative ion modes are 
shown in Figure 6. Lipid ions measured at m/z 379.6 and 441.5 were approximately 10-fold more abundant 
in FF than in theca, GC or OCC. The normalized peak height of the lipid ions measured at m/z 461.5 
was 4-fold higher in FF than in theca and GC, and 2-fold higher than in OCC. Moreover, the lipid species 
measured at m/z 602.7 were 10-fold more abundant in OOC compared to GC and FF and 3.5-fold higher 
compared to theca cells. In contrast, the ions measured at m/z 885.5 were present in both theca and GC 
at 10-fold higher level than in FF and 3-fold higher than in OCC. 

 

Figure 6. Comparative analysis of the 25 lipid species that differed most among follicular 
compartments detected by MALDI MSI in positive and negative ion mode. Log-values  
of normalized peak heights of the ions detected in follicular fluid, theca, granulosa and 
oocyte-cumulus complex (OCC) of individual follicles are shown. 

This differential analysis based on quantitative MSI profiles corroborates the images of ion density 
maps of differential m/z species (Figure 7). The lipid species recorded in negative ion mode at 539.9 and 
859.5 m/z showed variability in intrafollicular distribution, with a specific localization in FF and GC, 
respectively. The intensity of the lipid ion observed in positive ion mode at 820.4 m/z was two times greater 
inside OCC than in other tissues, most likely corresponding to the oocyte (Figure 7, arrow pointing at OCC). 

Specific and very distinct lipid profiles of FF in comparison with follicular cells may be explained by 
the plasma origin of FF. In fact, FF and plasma have relatively similar biochemical content while only 
16 of about 500 proteins detected by 2D SDS-PAGE were different between FF and plasma in humans [42]. 
Although differences exist between FF and serum composition in mammals [43], plasma levels of most 
of the metabolites correspond with those of FF; moreover, metabolic changes in serum were reflected 
by similar changes in FF in cows [44]. 
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Figure 7. Single ion intensity maps and quantification of three lipid species measured at  
m/z 539.9, m/z 859.5 (in negative ion mode) and at m/z 820.4 (in positive ion mode), which 
showed their greater abundance in different follicular compartments�² follicular fluid (FF), 
granulosa cells (GC) and oocyte-cumulus complex (OCC)�² of individual follicles. Histograms 
present the mean values ± standard errors (SEM) of the ion intensities (normalized peak 
height) measured at 12 positions throughout theca, GC, OCC and FF compartments. 

The oocyte is a particular cell, the biggest in the follicle. In pigs, as in some other farm species, the 
oocyte accumulates a large quantity of lipid droplets along with follicular growth [45]. TAGs enclosed 
in lipid droplets are the main component of porcine oocyte lipids [17,18]. Such lipid composition likely 
differentiates the oocyte from the other cells, in which accumulation of the TAGs is related to protection 
against lipotoxity [46]. 

Only some differences in lipid profiles were found between granulosa and theca cells by MALDI 
MSI. This finding corroborates active bidirectional cell interactions between these two types of steroidogenic 
follicular wall cells, which are involved in the control of hormone-producing activity and cell growth [47]. 

Although this study did not identify particular lipid species, the differences observed between the 
ovarian compartments may be due to the relative abundance variation of FA dimers, different PC, PI and 
SM, cholesterol derivatives and glycerolipids (Supplemental data, S1) in accordance with other studies�¶ 
identification of lipid m/z species in bovine, porcine and human oocytes, CC and FF [7,20,21,31,48]. 
According to the relative intensities of different m/z peaks, we conclude that in gilt ovaries, FF and OCC 
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compartments were enriched with low molecular weight species, which may include FA dimers. In 
contrast, significantly higher abundance of lipids with m/z > 800 occurred in GC, theca and OCC. These 
ions may be derivatives of PCs, PIs, SMs or di- or tri-glycerols. However, for exact identification of 
these lipids, secondary high-resolution tandem MS remains essential. 

3.2. Expression of Lipid Metabolism Genes Varied according to Follicular Compartments 

In order to analyze whether the spatial distribution of lipids in different follicular cell types was 
supported by differential expression of lipid metabolism-related genes, the mRNA levels of five genes 
involved in several process of lipid metabolism were compared among cellular follicular compartments, 
notably GC, theca, oocyte and CC (Figure 8). Using real time PCR quantification, we showed that ACACA, 
CD36 and PLIN2 were significantly more expressed in the oocyte than in other follicular compartments, 
most dramatically compared to CC (33-fold, 53-fold and 20-fold, respectively, p < 0.05). This suggests 
that the oocyte�¶s potential lipogenic activity is greater than in surrounding tissues. These differences in 
expression correspond with the functional differences of follicular cells. Indeed, an oocyte has a specific 
lipid metabolism compared to ovarian somatic cells. In sheep, differences in expression of several genes 
related to lipid metabolism were found by comparing transcriptomics of the microdissected GC layer 
and the oocytes from the primordial follicles [49]. 

 

Figure 8. Gene expression analysis of lipid metabolism-related genes ACACA, CD36, 
CPTA1, FABP5 and PLIN2 in porcine follicular compartments (Th, GC, CC and oocyte) by 
real time qPCR. Histograms present mRNA expression values ± SEM of 8�±12 independent 
samples per compartment. 
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Oocyte developmental competence depends in part on the capacity to increase intracellular energy 
storage because the early embryo cleavages rely on stored lipid [3,13]. To increase its lipid stock, the 
oocyte may increase ACACA expression and thus FA synthesis. ACACA uses a substrate, acetyl-CoA, to 
produce malonyl-CoA which in turn is used by FA synthase as a substrate. CD36 is involved in FA entry 
to the cell [50], and by increasing its expression, the entry of FAs into the oocyte may be facilitated, 
therefore increasing lipid stock, notably through formation of lipid droplets which are mainly composed 
of TAGs. PLIN2 interacts with lipid droplets and is involved in maintaining their structure and function [51]. 
TAGs may serve as a supplemental fuel reserve to support the first embryo cleavages. In addition, by 
being involved directly in FA synthesis, promoting FA entry and maintaining its lipid droplet structure, 
the oocyte may reduce FA utilization in two ways. Indeed, according to our data, CPT1A expression was 
significantly lower in the oocyte compared to somatic follicular cells (GC, CC, theca). CPT1 is responsible 
�I�R�U�� �)�$�� �H�Q�W�U�\�� �L�Q�W�R�� �P�L�W�R�F�K�R�Q�G�U�L�D�� �D�Q�G�� �L�V�� �W�K�X�V�� �H�V�V�H�Q�W�L�D�O�� �I�R�U�� �)�$�� ��-oxidation (for a review, see [52]). By 
reducing CPT1A �H�[�S�U�H�V�V�L�R�Q���D�Q�G���W�K�X�V���)�$����-oxidation, the oocyte may block the use of FA. In addition, 
ACACA �L�V�� �D�O�V�R�� �D�E�O�H�� �W�R�� �U�H�J�X�O�D�W�H�� �)�$�� ��-oxidation. Indeed, the malonyl-CoA produced by ACACA is a 
physiological inhibitor of CPT1 activity [53]. The oocyte is thus protecting its lipid stores by both reducing 
CPT1A expression at the same time as it enhances lipogenesis. 

Theca cells also have a specific function in molecular regulation of lipid metabolism compared to 
other ovarian compartments. CPT1A was significantly more expressed in theca than in GC (by 3.5-fold), 
and 5-fold more expressed in GC than in the oocyte (p < 0.05). FABP5 was also 3.5-fold more expressed 
in theca than in GC (p < 0.05). In the small immature follicles we used in this study, theca cells were 
likely less involved in FA synthesis or in saving energy but more involved in lipid storage to provide 
ATP to the cell for energy consuming functions such as steroid production and cell proliferation. Theca 
�F�H�O�O�V���F�R�X�O�G���L�Q�F�U�H�D�V�H���H�Q�H�U�J�\���S�U�R�G�X�F�W�L�R�Q���E�\���L�Q�F�U�H�D�V�L�Q�J���E�R�W�K���V�X�E�V�W�U�D�W�H���I�R�U���)�$����-oxidation and FA entry into 
mitochondria. Indeed, an increase in expression of FABP5, the protein that is involved in FA transport 
and in lipolysis [54,55], may lead to a decrease in the amount of TAGs and to a concomitant increase in 
free FAs in the cell. Moreover, by increasing CPT1A expression, the entry of FAs into mitochondria 
may also be increased, thus leading to a higher level of production of ATP. 

These differences in expression of lipid metabolism genes were consistent with the variations of the 
lipid profiles between GC, theca and OCC observed in this study using MALDI MSI. In general, an 
oocyte seems to be lipogenic because of the elevated abundance of free FAs, phospholipids and TAGs 
as identified by MALDI- and DESI-MS in porcine and bovine oocytes [21,48,56]. This corroborates the 
high transcript level of ACACA and PLIN2 that we detected in the oocytes. However, the presence of 
lipolytic activity in the oocytes could be also suggested. Thus, CPT1 protein and hormone-sensitive 
lipase were detected in bovine immature oocytes at a higher level than in CC [12,57]. According to the 
higher expression of CPT1A and FABP5, theca cells seem more lipolytic than GC and CC. The difference 
in GC and theca lipid metabolism was also reported in one study where the same treatment with 
polyunsaturated FAs affected steroidogenesis only in theca cells rather than in GC in sheep [58]. In addition, 
the particular lipid content of FF may be due both to different metabolic activities of follicular cells and 
to external direct delivery of FAs from blood to FF. 
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4. Conclusions 

In the present study, we were able to map numerous lipid species to specific cell types in porcine 
ovaries by MALDI MSI and to reconstruct ovarian section morphology using lipid ion signals measured 
in both positive and negative ion modes. Different ovarian structures showed specific lipid patterns; in 
particular the follicles were quite different from non-follicular ovarian tissues. Moreover, according to 
reconstructed lipid MSI images, the heterogeneity of lipid composition was also observed between different 
follicles, underlining the individuality of the metabolome of each follicle which may reflect properties 
of the follicular environment for oocyte development. Inside the follicles, lipids were also distributed 
differently among intrafollicular compartments. Different cell layers, notably granulosa, theca and 
oocyte-cumulus complex, had lipid compositions that differed from those of inter follicular fluids. These 
differences in lipid composition between the follicular compartments were supported by a gene expression 
study that underlined the particular importance of the different steps of FA metabolism in different 
follicular cells and allowed better understanding of their specific functions. We conclude that lipid 
metabolism occurs in all the follicular cellular compartments, with possible particular involvement of 
the theca cells in FA oxidation. The enrichment of some specific lipids in the oocyte and FF needs to be 
studied in more detail. Further analysis including a high-resolution MS in combination with tandem MS 
are necessary for accurate identification of the lipid species in the ovarian tissues. 
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