T. Fair, Follicular oocyte growth and acquisition of developmental competence, Anim. Reprod. Sci, vol.78, pp.203-216, 2003.

E. Collado-fernandez, H. M. Picton, and R. Dumollard, Metabolism throughout follicle and oocyte development in mammals, Int. J. Dev. Biol, vol.56, pp.799-808, 2012.

N. Songsasen, Energy metabolism regulating mammalian oocyte maturation, Meiosis-Molecular Mechanisms and Cytogenetic Diversity, pp.173-186, 2012.

J. L. Leroy, R. G. Sturmey, V. Van-hoeck, J. De-bie, P. J. Mckeegan et al., Dietary fat supplementation and the consequences for oocyte and embryo quality: Hype or significant benefit for dairy cow reproduction?, Reprod. Domest. Anim, vol.49, pp.353-361, 2014.

J. H. Ford, Reduced quality and accelerated follicle loss with female reproductive aging-Does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?, J. Biomed. Sci, p.93, 1920.

M. L. Sutton-mcdowall, R. B. Gilchrist, and J. G. Thompson, The pivotal role of glucose metabolism in determining oocyte developmental competence, Reproduction, vol.139, pp.685-695, 2010.

C. R. Ferreira, S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo et al., Single embryo and oocyte lipid fingerprinting by mass spectrometry, J. Lipid Res, vol.51, pp.1218-1227, 2010.

E. Fahy, S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. Raetz et al., Update of the LIPID MAPS comprehensive classification system for lipids, J. Lipid Res, vol.50, pp.9-14, 2009.

D. C. Wathes, D. R. Abayasekara, and R. J. Aitken, Polyunsaturated fatty acids in male and female reproduction, Biol. Reprod, vol.77, pp.190-201, 2007.

P. M. Badin, D. Langin, and C. Moro, Dynamics of skeletal muscle lipid pools, Trends Endocrinol. Metab, vol.24, pp.607-615, 2013.

D. G. Mashek, Hepatic fatty acid trafficking: Multiple forks in the road, Adv. Nutr, vol.4, pp.697-710, 2013.

L. Sanchez-lazo, D. Brisard, S. Elis, V. Maillard, R. Uzbekov et al., Fatty Acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine, Mol. Endocrinol, vol.28, pp.1502-1521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129856

M. Paczkowski, E. Silva, W. B. Schoolcraft, and R. L. Krisher, Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes, Biol. Reprod, vol.88, p.111, 2013.

H. Aardema, F. Lolicato, C. H. Van-de-lest, J. F. Brouwers, A. B. Vaandrager et al., Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage, Biol. Reprod, vol.88, 2013.

F. Lolicato, J. F. Brouwers, C. H. De-lest, R. Wubbolts, H. Aardema et al., The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity, Biol. Reprod, p.16, 2015.

K. Dunning, D. L. Russell, and R. Robker, Lipids and oocyte developmental competence: The role of fatty acids and ?-oxidation, Reproduction, vol.148, pp.15-27, 2014.

S. T. Homa, C. Racowsky, and R. W. Mcgaughey, Lipid analysis of immature pig oocytes, J. Reprod. Fertil, vol.77, pp.425-434, 1986.

T. G. Mcevoy, G. D. Coull, P. J. Broadbent, J. S. Hutchinson, and B. K. Speake, Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida, J. Reprod. Fertil, vol.118, pp.163-170, 2000.

C. R. Ferreira, L. S. Eberlin, J. E. Hallett, and R. G. Cooks, Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry, J. Mass Spectrom, vol.47, pp.29-33, 2012.

D. A. Montani, F. B. Cordeiro, T. Regiani, A. B. Victorino, E. J. Pilau et al., The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells, J. Assist. Reprod. Genet, vol.29, pp.1289-1297, 2012.

V. Pirro, P. Oliveri, C. R. Ferreira, A. F. Gonzalez-serrano, Z. Machaty et al., Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion, Anal. Chim. Acta, vol.848, pp.51-60, 2014.

E. G. Prates, S. P. Alves, C. C. Marques, M. C. Baptista, A. E. Horta et al., Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: Effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin, In Vitro Cell Dev. Biol. Anim, vol.49, pp.335-345, 2013.

T. Cataldi, F. B. Cordeiro, V. Costa-ldo, E. J. Pilau, C. R. Ferreira et al., Lipid profiling of follicular fluid from women undergoing IVF: Young poor ovarian responders versus normal responders, Hum. Fertil. (Camb, vol.16, pp.269-277, 2013.

S. Meding and A. Walch, MALDI imaging mass spectrometry for direct tissue analysis, Methods Mol. Biol, vol.931, pp.537-546, 2013.

A. Rompp and B. Spengler, Mass spectrometry imaging with high resolution in mass and space, Histochem. Cell Biol, vol.139, pp.759-783, 2013.

J. Cimino, D. Calligaris, J. Far, D. Debois, S. Blacher et al., Towards lipidomics of low-abundant species for exploring tumor heterogeneity guided by high-resolution mass spectrometry imaging, Int. J. Mol. Sci, vol.14, pp.24560-24580, 2013.

C. Schone, H. Hofler, and A. Walch, MALDI imaging mass spectrometry in cancer research: Combining proteomic profiling and histological evaluation, Clin. Biochem, vol.46, pp.539-545, 2013.

M. Lagarrigue, R. Lavigne, B. Guevel, E. Com, P. Chaurand et al., Matrix-assisted laser desorption/ionization imaging mass spectrometry: A promising technique for reproductive research, Biol. Reprod, vol.86, p.74, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877851

J. O. Gustafsson, M. K. Oehler, A. Ruszkiewicz, S. R. Mccoll, and P. Hoffmann, MALDI Imaging Mass Spectrometry (MALDI-IMS)-application of spatial proteomics for ovarian cancer classification and diagnosis, Int. J. Mol. Sci, vol.12, pp.773-794, 2011.

S. D. Valckx, V. Van-hoeck, M. Arias-alvarez, V. Maillo, A. P. Lopez-cardona et al., Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence, Fertil. Steril, vol.102, 2014.

S. D. Valckx, M. Arias-alvarez, I. De-pauw, V. Fievez, B. Vlaeminck et al., Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: A descriptive cross-sectional study, Reprod. Biol. Endocrinol, vol.12, p.13, 2014.

G. Genicot, J. Leroy, and A. Soom, Donnay, I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes, Theriogenology, vol.63, pp.1181-1194, 2005.

S. Elis, S. Coyral-castel, S. Freret, J. Cognie, A. Desmarchais et al., Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus, J. Dairy Sci, vol.96, pp.7591-7602, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129783

C. Meriaux, J. Franck, M. Wisztorski, M. Salzet, and I. Fournier, Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids, J. Proteomics, vol.73, pp.1204-1218, 2010.

Y. Kimura, K. Tsutsumi, Y. Sugiura, and M. Setou, Medical molecular morphology with imaging mass spectrometry, Med. Mol. Morphol, vol.42, pp.133-137, 2009.

S. Shimma, Y. Sugiura, T. Hayasaka, Y. Hoshikawa, T. Noda et al., MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis, J. Chromatogr. B Anal. Technol. Biomed. Life Sci, vol.855, pp.98-103, 2007.

S. Guo, Y. Wang, D. Zhou, and Z. Li, Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging, Sci. Rep, vol.4, p.5959, 2014.

J. L. Leroy, T. Vanholder, J. R. Delanghe, G. Opsomer, A. Van-soom et al., Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows, Anim. Reprod. Sci, vol.80, pp.201-211, 2004.

E. S. Jungheim, G. A. Macones, R. R. Odem, B. W. Patterson, S. E. Lanzendorf et al., Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization, Fertil. Steril, vol.95, 1970.

B. Rocha, B. Cillero-pastor, G. Eijkel, A. L. Bruinen, C. Ruiz-romero et al., Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging, Proteomics, vol.15, pp.702-713, 2015.

M. Apparicio, C. R. Ferreira, A. Tata, V. G. Santos, A. E. Alves et al., Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS), Reprod. Domest. Anim, vol.47, pp.113-117, 2012.

K. Jarkovska, J. Martinkova, L. Liskova, P. Halada, J. Moos et al., Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization, J. Proteome Res, vol.9, pp.1289-1301, 2010.

S. Fahiminiya and N. Gerard, Follicular fluid in mammals, Gynecol. Obstet. Fertil, vol.38, pp.402-404, 2010.

J. L. Leroy, T. Vanholder, J. R. Delanghe, G. Opsomer, A. Van-soom et al., Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum, Theriogenology, vol.62, pp.1131-1143, 2004.

R. C. Silva, S. N. Bao, J. L. Jivago, and C. M. Lucci, Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: Lipid component evolution, Theriogenology, vol.76, pp.1647-1657, 2011.

L. L. Listenberger, X. Han, S. E. Lewis, S. Cases, R. V. Farese et al., Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proc. Natl. Acad. Sci, vol.100, pp.3077-3082, 2003.

H. Yada, K. Hosokawa, K. Tajima, Y. Hasegawa, and F. Kotsuji, Role of ovarian theca and granulosa cell interaction in hormone productionand cell growth during the bovine follicular maturation process, Biol. Reprod, vol.61, pp.1480-1486, 1999.

A. Tata, M. J. Sudano, V. G. Santos, F. D. Landim-alvarenga, C. R. Ferreira et al., Optimal single-embryo mass spectrometry fingerprinting, J. Mass. Spectrom, vol.48, pp.844-849, 2013.

A. Bonnet, C. Bevilacqua, F. Benne, L. Bodin, C. Cotinot et al., Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection, BMC Genomics, vol.12, p.417, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01193855

Z. Wan, S. Matravadia, G. P. Holloway, and D. C. Wright, FAT/CD36 regulates PEPCK expression in adipose tissue, Am. J. Physiol. Cell Physiol, vol.304, pp.478-484, 2013.

A. L. Mcintosh, S. Senthivinayagam, K. C. Moon, S. Gupta, J. S. Lwande et al., Direct interaction of Plin2 with lipids on the surface of lipid droplets: A live cell FRET analysis, Am. J. Physiol. Cell Physiol, vol.303, pp.728-742, 2012.

H. Yuan, Y. Xiong, and K. Guan, Nutrient Sensing, Metabolism, and Cell Growth Control. Mol. Cell, vol.49, pp.379-387, 2013.

M. T. Nakamura, B. E. Yudell, and J. J. Loor, Regulation of energy metabolism by long-chain fatty acids, Prog. Lipid Res, vol.53, pp.124-144, 2014.

W. J. Shen, K. Sridhar, D. A. Bernlohr, and F. B. Kraemer, Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein, Proc. Natl. Acad. Sci, vol.96, pp.5528-5532, 1999.

A. Chmurzynska, The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism, J. Appl. Genet, vol.47, pp.39-48, 2006.

A. F. Gonzalez-serrano, V. Pirro, C. R. Ferreira, P. Oliveri, L. S. Eberlin et al., Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos, PLOS ONE, issue.8, p.74981, 2013.

S. Auclair, R. Uzbekov, S. Elis, L. Sanchez, I. Kireev et al., Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes, Am. J. Physiol. Endocrinol. Metab, vol.304, pp.599-613, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129721

J. Hughes, W. Y. Kwong, D. Li, A. M. Salter, R. G. Lea et al., Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism, Reproduction, vol.141, pp.105-118, 2011.