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Abstract

We demonstrate that, in the classical non-stochastic regret minimization problem with
d decisions, gains and losses to be respectively maximized or minimized are fundamentally
different. Indeed, by considering the additional sparsity assumption (at each stage, at
most s decisions incur a nonzero outcome), we derive optimal regret bounds of different
orders. Specifically, with gains, we obtain an optimal regret guarantee after T stages of
order

√
T log s, so the classical dependency in the dimension is replaced by the sparsity size.

With losses, we provide matching upper and lower bounds of order
√
Ts log(d)/d, which is

decreasing in d. Eventually, we also study the bandit setting, and obtain an upper bound
of order

√
Ts log(d/s) when outcomes are losses. This bound is proven to be optimal up

to the logarithmic factor
√
log(d/s).

Keywords: regret minimization, bandit, sparsity

1. Introduction

We consider the classical problem of regret minimization (Hannan, 1957) that has been well
developed during the last decade (Cesa-Bianchi and Lugosi, 2006; Rakhlin and Tewari, 2008;
Bubeck, 2011; Shalev-Shwartz, 2011; Hazan, 2012; Bubeck and Cesa-Bianchi, 2012). We
recall that in this sequential decision problem, a decision maker (or agent, player, algorithm,
strategy, policy, depending on the context) chooses at each stage a decision in a finite set
(that we write as [d] := {1, . . . , d}) and obtains as an outcome a real number in [0, 1]. We
specifically chose the word outcome, as opposed to gain or loss, as our results show that
there exists a fundamental discrepancy between these two concepts.

The criterion used to evaluate the policy of the decision maker is the regret, i.e., the
difference between the cumulative performance of the best stationary policy (that always
picks a given action i ∈ [d]) and the cumulative performance of the policy of the decision
maker.

c⃝2016 Joon Kwon and Vianney Perchet.
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We focus here on the non-stochastic framework, where no assumption (apart from bound-
edness) is made on the sequence of possible outcomes. In particular, they are not i.i.d. and
we can even assume, as usual, that they depend on the past choices of the decision maker.
This broad setup, sometimes referred to as individual sequences (since a policy must be
good against any sequence of possible outcomes) incorporates prediction with expert ad-
vice (Cesa-Bianchi and Lugosi, 2006), data with time-evolving laws, etc. Perhaps the most
fundamental results in this setup are the upper bound of order

√
T log d achieved by the

Exponential Weight Algorithm (Littlestone and Warmuth, 1994; Vovk, 1990; Cesa-Bianchi,
1997; Auer et al., 2002) and the asymptotic lower bound of the same order (Cesa-Bianchi
et al., 1997). This general bound is the same whether outcomes are gains in [0, 1] (in which
case, the objective is to maximize the cumulative sum of gains) or losses in [0, 1] (where the
decision maker aims at minimizing the cumulative sum). Indeed, a loss ℓ can easily be turned
into gain g by defining g := 1− ℓ, the regret being invariant under this transformation.

This idea does not apply anymore with structural assumption. For instance, consider
the framework where the outcomes are limited to s-sparse vectors, i.e. vectors that have
at most s nonzero coordinates. The coordinates which are nonzero may change arbitrarily
over time. In this framework, the aforementioned transformation does not preserve the
sparsity assumption. Indeed, if (ℓ1, . . . , ℓd) is a s-sparse loss vector, the corresponding gain
vector (1− ℓ1, . . . , 1− ℓd) may even have full support. Consequently, results for loss vectors
do not apply directly to sparse gains, and vice versa. It turns out that both setups are
fundamentally different.

The sparsity assumption is actually quite natural in learning and have also received
some attention in online learning (Gerchinovitz, 2013; Carpentier and Munos, 2012; Abbasi-
Yadkori et al., 2012; Djolonga et al., 2013). In the case of gains, it reflects the fact that the
problem has some hidden structure and that many options are irrelevant. For instance, in
the canonical click-through-rate example, a website displays an ad and gets rewarded if the
user clicks on it; we can safely assume that there are only a small number of ads on which
a user would click.

The sparse scenario can also be seen through the scope of prediction with experts. Given
a finite set of expert, we call the winner of a stage the expert with the highest revenue (or the
smallest loss); ties are broken arbitrarily. And the objective would be to win as many stages
as possible. The s-sparse setting would represent the case where s experts are designated as
winners (or, non-loser) at each stage.

In the case of losses, the sparsity assumption is motivated by situations where rare failures
might happen at each stage, and the decision maker wants to avoid them. For instance, in
network routing problems, it could be assumed that only a small number of paths would lose
packets as a result of a single, rare, server failure. Or a learner could have access to a finite
number of classification algorithms that perform ideally most of the time; unfortunately,
some of them makes mistakes on some examples and the learner would like to prevent that.
The general setup is therefore a number of algorithms/experts/actions that mostly perform
well (i.e., find the correct path, classify correctly, optimize correctly some target function,
etc.); however, at each time instance, there are rare mistakes/accidents and the objective
would be to find the action/algorithm that has the smallest number (or probability in the
stochastic case) of failures.
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Figure 1: Summary of upper and lower bounds.

1.1 Summary of Results

We investigate regret minimization scenarios both when outcomes are gains on the one
hand, and losses on the other hand. We recall that our objectives are to prove that they are
fundamentally different by exhibiting rates of convergence of different order.

When outcomes are gains, we construct an algorithm based on the Online Mirror Descent
family (Shalev-Shwartz, 2007, 2011; Bubeck, 2011). By choosing a regularizer based on the
ℓp norm, and then tuning the parameter p as a function of s, we get in Theorem 2 a regret
bound of order

√
T log s, which has the interesting property of being independent of the

number of decisions d. This bound is trivially optimal, up to the constant.
If outcomes are losses instead of gains, although the previous analysis remains valid, a

much better bound can be obtained. We build upon a regret bound for the Exponential
Weight Algorithm (Littlestone and Warmuth, 1994; Freund and Schapire, 1997) and we

manage to get in Theorem 4 a regret bound of order
√

Ts log d
d , which is decreasing in d, for

a given s. A nontrivial matching lower bound is established in Theorem 6.
Both of these algorithms need to be tuned as a function of s. In Theorem 9 and Theo-

rem 10, we construct algorithms which essentially achieve the same regret bounds without
prior knowledge of s, by adapting over time to the sparsity level of past outcome vectors,
using an adapted version of the doubling trick.

Finally, we investigate the bandit setting, where the only feedback available to the deci-
sion maker is the outcome of his decisions (and, not the outcome of all possible decisions). In
the case of losses we obtain in Theorem 11 an upper bound of order

√
Ts log(d/s), using the

Greedy Online Mirror Descent family of algorithms (Audibert and Bubeck, 2009; Audibert
et al., 2013; Bubeck, 2011). This bound is proven to be optimal up to a logarithmic factor,
as Theorem 13 establishes a lower bound of order

√
Ts.

The rates of convergence achieved by our algorithms are summarized in Figure 1.

1.2 General Model and Notation

We recall the classical non-stochastic regret minimization problem. At each time instance
t ⩾ 1, the decision maker chooses a decision dt in the finite set [d] = {1, . . . , d}, possibly at
random, according to xt ∈ ∆d, where

∆d =

{
x = (x(1), . . . , x(d)) ∈ Rd

+

∣∣∣∣∣
d∑

i=1

x(i) = 1

}
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is the the set of probability distributions over [d]. Nature then reveals an outcome vector
ωt ∈ [0, 1]d and the decision maker receives ω(dt)

t ∈ [0, 1]. As outcomes are bounded, we can
easily replace ω(dt)

t by its expectation that we denote by ⟨ωt, xt⟩. Indeed, Hoeffding-Azuma
concentration inequality will imply that all the results we will state in expectation hold with
high probability.

Given a time horizon T ⩾ 1, the objective of the decision maker is to minimize his regret,
whose definition depends on whether outcomes are gains or losses. In the case of gains (resp.
losses), the notation ωt is then changed to gt (resp. ℓt) and the regret is:

RT = max
i∈[d]

T∑
t=1

g
(i)
t −

T∑
t=1

⟨gt, xt⟩

(
resp. RT =

T∑
t=1

⟨ℓt, xt⟩ −min
i∈[d]

T∑
t=1

ℓ
(i)
t

)
.

In both cases, the well-known Exponential Weight Algorithm guarantees a bound on the
regret of order

√
T log d. Moreover, this bound cannot be improved in general as it matches

a lower bound.

We shall consider an additional structural assumption on the outcomes, namely that ωt

is s-sparse in the sense that ∥ωt∥0 ⩽ s, i.e., the number of nonzero components of ωt is less
than s, where s is a fixed known parameter. The set of components which are nonzero is
not fixed nor known, and may change arbitrarily over time.

We aim at proving that it is then possible to drastically improve the previously mentioned
guarantee of order

√
T log d and that losses and gains are two fundamentally different settings

with minimax regrets of different orders.

2. When Outcomes are Gains to be Maximized

2.1 Online Mirror Descent Algorithms

We quickly present the general Online Mirror Descent algorithm (Shalev-Shwartz, 2011;
Bubeck, 2011; Bubeck and Cesa-Bianchi, 2012; Kwon and Mertikopoulos, 2014) and state
the regret bound it incurs; it will be used as a key element in Theorem 2.

A convex function h : Rd → R ∪ {+∞} is called a regularizer on ∆d if h is strictly
convex and continuous on its domain ∆d, and h(x) = +∞ outside ∆d. Denote δh =
max∆d

h−min∆d
h and h∗ : Rd → Rd the Legendre-Fenchel transform of h:

h∗(y) = sup
x∈Rd

{⟨y, x⟩ − h(x)} , y ∈ Rd,

which is differentiable since h is strictly convex. For all y ∈ Rd, it holds that ∇h∗(y) ∈ ∆d.
Let η ∈ R be a parameter to be tuned. The Online Mirror Descent Algorithm associated

with the regularizer h and parameter η is defined by:

xt = ∇h∗
(
η

t−1∑
k=1

ωk

)
, t ⩾ 1,

where ωt ∈ [0, 1]d denote the vector of outcomes and xt the probability distribution chosen
at stage t. The specific choice h(x) =

∑d
i=1 x

(i) log x(i) for x = (x(1), . . . , x(d)) ∈ ∆d (and

4
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h(x) = +∞ otherwise) gives the celebrated Exponential Weight Algorithm, which can be
written explicitly, component by component:

x
(i)
t =

exp
(
η
∑t−1

k=1 ω
(i)
k

)
∑d

j=1 exp
(
η
∑t−1

k=1 ω
(j)
k

) , t ⩾ 1, i ∈ [d].

The following general regret guarantee for strongly convex regularizers is expressed in
terms of the dual norm ∥ · ∥∗ of ∥ · ∥. Similar statements have appeared in e.g. (Shalev-
Shwartz, 2011, Theorem 2.21), (Bubeck and Cesa-Bianchi, 2012, Theorem 5.6) and (Kwon
and Mertikopoulos, 2014, Theorem 5.1).

Theorem 1 Let K > 0 and assume h to be K-strongly convex with respect to a norm ∥ · ∥.
Then, for any sequence of outcome vectors (ωt)t⩾1 in Rd, the Online Mirror Descent strategy
associated with h and η (with η > 0 in cases of gains and η < 0 in cases of losses) guarantees,
for T ⩾ 1, the following regret bound:

RT ⩽ δh
|η|

+
|η|
2K

T∑
t=1

∥ωt∥2∗ .

2.2 Upper Bound on the Regret

We first assume s ⩾ 2. Let p ∈ (1, 2] and define the following regularizer:

hp(x) =

{
1
2 ∥x∥

2
p if x ∈ ∆d

+∞ otherwise.

One can easily check that hp is indeed a regularizer on ∆d and that δhp ⩽ 1/2. Moreover, it
is (p− 1)-strongly convex with respect to ∥ · ∥p: see (Bubeck, 2011, Lemma 5.7) or (Kakade
et al., 2012, Lemma 9).

We can now state our first result, the general upper bound on regret when outcomes are
s-sparse gains.

Theorem 2 Let η > 0 and s ⩾ 3. Against all sequences of s-sparse gain vectors gt, i.e.,
gt ∈ [0, 1]d and ∥gt∥0 ⩽ s, the Online Mirror Descent algorithm associated with regularizer
hp and parameter η guarantees:

RT ⩽ 1

2η
+

ηTs2/q

2(p− 1)
,

where 1/p+1/q = 1. In particular, the choices η =
√
(p− 1)/Ts2/q and p = 1+(2 log s−1)−1

give:
RT ⩽

√
2eT log s.

Proof hp being (p−1)-strongly convex with respect to ∥ · ∥p, and ∥ · ∥q being the dual norm
of ∥ · ∥p, Theorem 1 gives:

RT ⩽
δhp

η
+

η

2(p− 1)

T∑
t=1

∥gt∥2q .
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For each t ⩾ 1, the norm of gt can be bounded as follows:

∥gt∥2q =

(
d∑

i=1

∣∣∣g(i)t

∣∣∣q)2/q

⩽
( ∑

s terms

∣∣∣g(i)t

∣∣∣q)2/q

⩽ s2/q,

which yields

RT ⩽ 1

2η
+

ηTs2/q

2(p− 1)
.

We can now balance both terms by choosing η =
√
(p− 1)/(Ts2/q) and get:

RT ⩽

√
Ts2/q

p− 1
.

Finally, since s ⩾ 3, we have 2 log s > 1 and we set p = 1 + (2 log s − 1)−1 ∈ (1, 2], which
gives:

1

q
= 1− 1

p
=
p− 1

p
=

(2 log s− 1)−1

1 + (2 log s− 1)−1
=

1

2 log s
,

and thus:

RT ⩽

√
Ts2/q

p− 1
=

√
2T log s e2 log s/q =

√
2e T log s.

We emphasize the fact that we obtain, up to a multiplicative constant, the exact same
rate as when the decision maker only has a set of s decisions.

Theorem 2 was restricted to s ⩾ 3 to simplify the analysis. In the cases s = 1, 2, we can
easily derive a bound of respectively

√
T and

√
2T using the same regularizer with p = 2.

2.3 Matching Lower Bound

For s ∈ [d] and T ⩾ 1, we denote vg,s,dT the minimax regret of the T -stage decision problem
with outcome vectors restricted to s-sparse gains:

vg,s,dT = min
strat.

max
(gt)t

RT

where the minimum is taken over all possible policies of the decision maker, and the maxi-
mum over all sequences of s-sparse gains vectors.

To establish a lower bound in the present setting, we can assume that only the s first
coordinates of gt may be positive (for all t ⩾ 1) and that the decision maker is aware of
that. Therefore he has no interest in assigning positive probabilities to any decision but the
first s ones. Indeed, for any mixed action xt, the decision maker can construct alternative
mixed action x′t = (x

(1)
t , . . . , x

(s)
t + · · ·+ x

(d)
t , 0, . . . , 0) which obviously give a higher payoff:

⟨gt, xt⟩ ⩽
⟨
gt, x

′
t

⟩
6
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and therefore a lower regret:

max
i∈[d]

T∑
t=1

g
(i)
t −

T∑
t=1

⟨
gt, x

′
t

⟩
⩽ max

i∈[d]

T∑
t=1

g
(i)
t −

T∑
t=1

⟨gt, xt⟩ .

Therefore, we can restrict the strategies of the decision maker to those which assign positive
probability to the s first components only. That setup, which is simpler for the decision
maker than the original one, is obviously equivalent to the basic regret minimization prob-
lem with only s decisions. Therefore, the classical lower bound (Cesa-Bianchi et al., 1997,
Theorem 3.2.3) holds and we obtain the following.

Theorem 3

lim inf
s→+∞
d⩾s

lim inf
T→+∞

vg,s,dT√
T log s

⩾
√
2

2
.

The same lower bound, up to the multiplicative constant actually holds non asymptoti-
cally, see (Cesa-Bianchi and Lugosi, 2006, Theorem 3.6).

An immediate consequence of Theorem 3 is that the regret bound derived in Theorem 2
is asymptotically minimax optimal, up to a multiplicative constant.

3. When Outcomes are Losses to be Minimized

3.1 Upper Bound on the Regret

We now consider the case of losses, and the regularizer shall no longer depend on s (as with
gains), as we will always use the Exponential Weight Algorithm. Instead, it is the parameter
η that will be tuned as a function of s.

Theorem 4 Let s ⩾ 1. For any sequence of s-sparse loss vectors (ℓt)t⩾1, i.e., ℓt ∈ [0, 1]d

and ∥ℓt∥0 ⩽ s, the Exponential Weight Algorithm with parameter −η where

η := log
(
1 +

√
2d log d/sT

)
> 0

guarantees, for T ⩾ 1:

RT ⩽
√

2sT log d

d
+ log d.

We build upon the following regret bound for losses which is written in terms of the
performance of the best action. It is often called improvement for small losses: see e.g. (Lit-
tlestone and Warmuth, 1994) or (Cesa-Bianchi and Lugosi, 2006, Theorem 2.4).

Theorem 5 Let η > 0. For any sequence of loss vectors (ℓt)t⩾1 in [0, 1]d, the Exponential
Weight Algorithm with parameter −η guarantees, for all T ⩾ 1:

RT ⩽ log d

1− e−η
+

(
η

1− e−η
− 1

)
L∗
T ,

where L∗
T = min

i∈[d]

T∑
t=1

ℓ
(i)
t is the loss of the best stationary decision.

7
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Proof Let T ⩾ 1 and L∗
T = mini∈[d]

∑T
t=1 ℓ

(i)
t be the loss of the best stationary policy.

First note that since the loss vectors ℓt are s-sparse, we have s ⩾
∑d

i=1 ℓ
(i)
t . By summing

over 1 ⩽ t ⩽ T :

sT ⩾
T∑
t=1

d∑
i=1

ℓ
(i)
t =

d∑
i=1

(
T∑
t=1

ℓ
(i)
t

)
⩾ d

(
min
i∈[d]

T∑
t=1

ℓ
(i)
t

)
= dL∗

T ,

and therefore, we have L∗
T ⩽ Ts/d.

Then, by using the inequality η ⩽ (eη − e−η)/2, the bound from Theorem 5 becomes:

RT ⩽ log d

1− e−η
+

(
eη − e−η

2(1− e−η)
− 1

)
L∗
T .

The factor of L∗
T in the second term can be transformed as follows:

eη − e−η

2(1− e−η)
− 1 =

(1 + e−η)(eη − e−η)

2(1− e−2η)
− 1 =

(1 + e−η)eη

2
− 1 =

eη − 1

2
,

and therefore the bound on the regret becomes:

RT ⩽ log d

1− e−η
+
eη − 1

2
L∗
T ⩽ log d

1− e−η
+

(eη − 1)Ts

2d
,

where we have been able to use the upper-bound on L∗
T since eη−1

2 ⩾ 0. Along with the
choice η = log(1 +

√
2d log d/Ts) and standard computations, this yields:

RT ⩽
√

2Ts log d

d
+ log d .

Interestingly, the bound from Theorem 4 shows that
√

2sT log d/d, the dominating term
of the regret bound, is decreasing when the number of decisions d increases. This is due to
the sparsity assumptions (as the regret increases with s, the maximal number of decision
with positive losses). Indeed, when s is fixed and d increases, more and more decisions are
optimal at each stage, a proportion 1 − s/d to be precise. As a consequence, it becomes
easier to find an optimal decisions when d increases. However, this intuition will turn out
not to be valid in the bandit framework.

On the other hand, if the proportion s/d of positive losses remains constant then the
regret bound achieved is of the same order as in the usual case.

3.2 Matching Lower Bound

When outcomes are losses, the argument from Section 2.3 does not allow to derive a lower
bound. Indeed, if we assume that only the first s coordinates of the loss vectors ℓt can
be positive, and that the decision maker knows it, then he just has to take at each stage
the decision dt = d which incurs a loss of 0. As a consequence, he trivially has a regret

8
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RT = 0. Choosing at random, but once and for all, a fixed subset of s coordinates does not
provide any interesting lower bound either. Instead, the key idea of the following result is to
choose at random and at each stage the s coordinates associated with positive losses. And
we therefore use the following classical probabilistic argument. Assume that we have found
a probability distribution on (ℓt)t such that the expected regret can be bounded from below
by a quantity which does not depend on the strategy of the decision maker. This would
imply that for any algorithm, there exists a sequence of (ℓt)t such that the regret is greater
than the same quantity.

In the following statement, vℓ,s,dT stands for the minimax regret in the case where out-
comes are losses.

Theorem 6 For all s ⩾ 1,

lim inf
d→+∞

lim inf
T→+∞

vℓ,s,dT√
T s

d log d
⩾
√
2

2
.

The main consequences of this theorem are that the algorithm described in Theorem 4 is
asymptotically minimax optimal (up to a multiplicative constant) and that gains and losses
are fundamentally different from the point of view of regret minimization.
Proof We define the sequence of i.i.d. loss vectors ℓt (t ⩾ 1) as follows. First, we draw a
set It ⊂ [d] of cardinality s uniformly among the

(
d
s

)
possibilities. Then, if i ∈ It set ℓ(i)t = 1

with probability 1/2 and ℓ
(i)
t = 0 with probability 1/2, independently for each component.

If i ̸∈ It, we set ℓ(i)t = 0.
As a consequence, we always have that ℓt is s-sparse. Moreover, for each t ⩾ 1 and each

coordinate i ∈ [d], ℓ(i)t satisfies:

P
[
ℓ
(i)
t = 1

]
=

s

2d
and P

[
ℓ
(i)
t = 0

]
= 1− s

2d
,

thus E
[
ℓ
(i)
t

]
= s/2d. Therefore we obtain that for any algorithm (xt)t⩾1, E [⟨ℓt, xt⟩] = s/2d.

This yields that

E
[
RT√
T

]
= E

[
1√
T

(
T∑
t=1

⟨ℓt, xt⟩ −min
i∈[d]

T∑
t=1

ℓ
(i)
t

)]

= E

[
max
i∈[d]

1√
T

T∑
t=1

( s
2d
− ℓ(i)t

)]

= E

[
max
i∈[d]

1√
T

T∑
t=1

X
(i)
t

]
,

where t ⩾ 1, we have defined the random vector Xt by X(i)
t = s/2d− ℓ(i)t for all i ∈ [d]. For

t ⩾ 1, the Xt are i.i.d. zero-mean random vectors with values in [−1, 1]d. We can therefore
apply the comparison Lemma 8 to get:

lim inf
T→+∞

E
[
RT√
T

]
= lim inf

T→+∞
E

[
max
i∈[d]

1√
T

T∑
t=1

X
(i)
t

]
⩾ E

[
max
i∈[d]

Z(i)

]
,

9
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where Z ∼ N (0,Σ) with Σ = (cov(X
(i)
1 , X

(j)
1 ))i,j .

We now make appeal to Slepian’s lemma, recalled in Proposition 7 below. Therefore, we
introduce the Gaussian vector W ∼ N (0, Σ̃) where

Σ̃ = diag
(
VarX

(1)
1 , . . . ,VarX

(1)
1

)
.

As a consequence, the first two hypotheses of Proposition 7 follow from the definitions of Z
and W . Let i ̸= j, then

E
[
Z(i)Z(j)

]
= cov(Z(i), Z(j)) = cov(ℓ

(i)
1 , ℓ

(j)
1 ) = E

[
ℓ
(i)
1 ℓ

(j)
1

]
− E

[
ℓ
(i)
1

]
E
[
ℓ
(j)
1

]
.

By definition of ℓ1, ℓ
(i)
1 ℓ

(j)
1 = 1 if and only if ℓ(i)1 = ℓ

(j)
1 = 1 and ℓ

(i)
1 ℓ

(j)
1 = 0 otherwise.

Therefore, using the random subset I1 that appears in the definition of ℓ1:

E
[
Z(i)Z(j)

]
= P

[
ℓ
(i)
1 = ℓ

(j)
1 = 1

]
−
( s
2d

)2
= P

[
ℓ
(i)
1 = ℓ

(j)
1 = 1

∣∣∣ {i, j} ⊂ I1]P [{i, j} ⊂ I1]−
( s
2d

)2
=

1

4
·
(
d−2
s−2

)(
d
s

) − ( s
2d

)2
=

1

4

(
s(s− 1)

d(d− 1)
− s2

d2

)
⩽ 0,

and since E
[
W (i)W (i)

]
= 0 by independence, the third hypothesis of Slepian’s lemma is also

satisfied. It yields that, for all θ ∈ R:

P
[
max
i∈[d]

Z(i) ⩽ θ

]
= P

[
Z(1) ⩽ θ, . . . , Z(d) ⩽ θ

]
⩽ P

[
W (1) ⩽ θ, . . . ,W (d) ⩽ θ

]
= P

[
max
i∈[d]

W (i) ⩽ θ

]
.

This inequality between two cumulative distribution functions implies the reverse inequality
on expectations:

E
[
max
i∈[d]

Z(i)

]
⩾ E

[
max
i∈[d]

W (i)

]
.

The components of the Gaussian vector W being independent, and of same variance Var ℓ(1)1 ,
we have

E
[
max
i∈[d]

W (i)

]
= κd

√
Var ℓ

(1)
1 = κd

√
s

2d

(
1− s

2d

)
⩾ κd

√
s

4d
,

where κd is the expectation of the maximum of d Gaussian variables. Combining everything
gives:

lim inf
T→+∞

vℓ,s,dT√
T

⩾ lim inf
T→+∞

E
[
RT√
T

]
⩾ E

[
max
i∈[d]

Z(i)

]
⩾ E

[
max
i∈[d]

W (i)

]
⩾ κd

√
s

4d
.

10
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And for large d, since κd is equivalent to
√
2 log d (see e.g. Galambos, 1978),

lim inf
d→+∞

lim inf
T→+∞

vℓ,s,dT√
T s

d log d
⩾
√
2

2
.

Proposition 7 (Slepian (1962)) Let Z = (Z(1), . . . , Z(d)) and W = (W (1), . . . ,W (d)) be
Gaussian random vectors in Rd satisfying:

(i) E [Z] = E [W ] = 0;

(ii) E
[
(Z(i))2

]
= E

[
(W (i))2

]
for i ∈ [d];

(iii) E
[
Z(i)Z(j)

]
⩽ E

[
W (i)W (j)

]
for i ̸= j ∈ [d].

Then, for all real numbers θ1, . . . , θd, we have:

P
[
Z(1) ⩽ θ1, . . . , Z

(d) ⩽ θd

]
⩽ P

[
W (1) ⩽ θ1, . . . ,W

(d) ⩽ θd

]
.

The following lemma is an extension of e.g. (Cesa-Bianchi and Lugosi, 2006, Lemma
A.11) to random vectors with correlated components.

Lemma 8 (Comparison lemma) For t ⩾ 1, let (Xt)t⩾1 be i.i.d. zero-mean random vec-
tors in [−1, 1]d, Σ be the covariance matrix of Xt and Z ∼ N (0,Σ). Then,

lim inf
T→+∞

E

[
max
i∈[d]

1√
T

T∑
t=1

X
(i)
t

]
⩾ E

[
max
i∈[d]

Z(i)

]
.

Proof Denote

YT = max
i∈[d]

1√
T

T∑
t=1

X
(i)
t .

Let A ⩽ 0 and consider the function ϕA : R→ R defined by ϕA(x) = max(x,A).

E [YT ] = E
[
YT · 1{YT⩾A}

]
+ E

[
YT · 1{YT<A}

]
= E

[
ϕA(YT ) · 1{YT⩾A}

]
+ E

[
YT · 1{YT<A}

]
= E [ϕA(YT )]− E

[
ϕA(YT ) · 1{YT<A}

]
+ E

[
YT · 1{YT<A}

]
= E [ϕA(YT )]− E

[
(A− YT ) · 1{A−YT>0}

]
.

11
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Let us estimate the second term. Denote ZT = (A−YT ) ·1A−YT>0. We clearly have, for
all u > 0, P [ZT > u] = P [A− YT > u]. And ZT being nonnegative, we can write:

0 ⩽ E
[
(A− YT ) · 1{A−YT }>0

]
= E [ZT ]

=

∫ +∞

0
P [ZT > u] du

=

∫ +∞

0
P [A− YT > u] du

=

∫ +∞

−A
P [YT < −u] du

=

∫ +∞

−A
P

[
max
i∈[d]

1√
T

T∑
t=1

X
(i)
t < u

]
du

⩽
∫ +∞

−A
P

[
T∑
t=1

X
(1)
t < u

√
T

]
du.

For u > 0, using Hoeffding’s inequality together with the assumptions E
[
X

(1)
t

]
= 0 and

X
(1)
t ∈ [−1, 1], we can bound the last integrand:

P

[
T∑
t=1

X
(1)
t < u

√
T

]
⩽ e−u2/2,

Which gives:

0 ⩽ E
[
(A− YT ) · 1{A−YT }>0

]
⩽
∫ +∞

−A
e−u2/2 du ⩽ e−A2/2

−A
.

Therefore:

E [YT ] ⩾ E [ϕA(YT )] +
e−A2/2

A
.

We now take the liminf on both sides as t → +∞. The left-hand side is the quantity that
appears in the statement. We now focus on the second term of the right-hand side. The
central limit theorem gives the following convergence in distribution:

1√
T

T∑
t=1

Xt
L−−−−−→

T→+∞
X.

The application (x(1), . . . , x(d)) 7−→ maxi∈[d] x
(i) being continuous, we can apply the contin-

uous mapping theorem:

YT = max
i∈[d]

1√
T

T∑
t=1

X
(i)
t

L−−−−−→
n→+∞

max
i∈[d]

X(i).

12
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This convergence in distribution allows the use of the portmanteau lemma: ϕA being lower
semi-continuous and bounded from below, we have:

lim inf
t→+∞

E [ϕA(YT )] ⩾ E
[
ϕA

(
max
i∈[d]

X(i)

)]
,

and thus:

lim inf
t→+∞

E [YT ] ⩾ E
[
ϕA

(
max
i∈[d]

X(i)

)]
+
e−A2/2

A
.

We would now like to take the limit as A → −∞. By definition of ϕA, for A ⩽ 0, we have
the following domination:∣∣∣∣ϕA(max

i∈[d]
X(i)

)∣∣∣∣ ⩽ ∣∣∣∣max
i∈[d]

X(i)

∣∣∣∣ ⩽ max
i∈[d]

∣∣∣X(i)
∣∣∣ ⩽ d∑

i=1

∣∣∣X(i)
∣∣∣ ,

where each X(i) is L1 since it is a normal random variable. We can therefore apply the
dominated convergence theorem as A→ −∞:

E
[
ϕA

(
max
i∈[d]

X(i)

)]
−−−−−→
A→−∞

E
[
max
i∈[d]

X(i)

]
,

and eventually, we get the stated result:

lim inf
t→+∞

E [YT ] ⩾ E
[
max
i∈[d]

X(i)

]
.

4. When the Sparsity Level s is Unknown

We no longer assume in this section that the decision maker have the knowledge of the
sparsity level s. We modify our algorithms to be adaptive over the sparsity level of the
observed gain/loss vectors. The algorithms are proved to essentially achieve the same regret
bounds as in the case where s is known. The constructions follow the same ideas behind
the classical doubling trick. However, the latter cannot be directly applied here: the usual
doubling trick involves time intervals whose lengths are always the same, whereas we here
need to make the lengths on the sparsity levels of the payoff vectors.

Specifically, let T ⩾ 1 be the number of rounds and s∗ the highest sparsity level of
the gain/loss vectors chosen by Nature up to time T . In the following, we construct algo-

rithms which achieve regret bounds of order
√
T log s∗ and

√
T s∗ log d

d for gains and losses
respectively, without prior knowledge of s∗.

4.1 For Losses

Let (ℓt)t⩾1 be the sequence of loss vectors in [0, 1]d chosen by Nature, and T ⩾ 1 the number
of rounds. We denote s∗ = max1⩽t⩽T ∥ℓt∥0 the higher sparsity level of the loss vectors up

13
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to time T . The goal is to construct an algorithm which achieves a regret bound of order√
Ts∗ log d

d without any prior knowledge about the sparsity level of the loss vectors.
The time instances {1, . . . , T} will be divided into several time intervals. On each of

those, the previous loss vectors will be left aside, and a new instance of the Exponential
Weight Algorithm with a specific parameter will be run. Let M = ⌈log2 s∗⌉ and τ(0) = 0.
Then, for 1 ⩽ m < M we define

τ(m) = min {1 ⩽ t ⩽ T | ∥ℓt∥0 > 2m} and τ(M) = T.

In other words, τ(m) is the first time instance at which the sparsity level of the loss vector
exceeds 2m. (τ(m))1⩽m⩽M is thus a nondecreasing sequence. We can then define the time
intervals I(m) as follows. For 1 ⩽ m ⩽M , let

I(m) =

{
{τ(m− 1) + 1, . . . , τ(m)} if τ(m− 1) < τ(m)

∅ if τ(m− 1) = τ(m).
.

The sets (I(m))1⩽m⩽M clearly form a partition of {1, . . . , T} (some of the intervals may be
empty). For 1 ⩽ t ⩽ T , we define mt = min {m ⩾ 1 | τ(m) ⩾ t} which implies t ∈ I(mt). In
other words, mt is the index of the only interval t belongs to.

Let C > 0 be a constant to be chosen later and for 1 ⩽ m ⩽M , let

η(m) = log

(
1 + C

√
d log d

2mT

)

be the parameter of the Exponential Weight Algorithm to be used on interval I(m). In
this section, h will be entropic regularizer on the simplex h(x) =

∑d
i=1 x

(i) log x(i), so that
y 7−→ ∇h∗(y) is the logit map used in the Exponential Weight Algorithm. We can then
define the played actions to be:

xt = ∇h∗

−η(mt)
∑
t′<t

t′∈I(mt)

ℓt′

 , t = 1, . . . , T.

Theorem 9 The above algorithm with C = 23/4(
√
2 + 1)1/2 guarantees

RT ⩽ 4

√
Ts∗ log d

d
+
⌈log s∗⌉ log d

2
+ 5s∗

√
log d

dT
.

Proof Let 1 ⩽ m ⩽ M . On time interval I(m), the Exponential Weight Algorithm is run
with parameter η(m) against loss vectors in [0, 1]d. Therefore, the following regret bound

14
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Algorithm 1: For losses in full information without prior knowledge about sparsity
input: T ⩾ 1, d ⩾ 1 integers, and C > 0.
η ← log(1 + C

√
d log d/2T );

m← 1;
for i← 1 to d do

w(i) ← 1/d;
end
for t← 1 to T do

draw and play decision i with probability w(i)/
∑d

j=1w
(j);

observe loss vector ℓt;
if ∥ℓt∥0 ⩽ 2m then

for i← 1 to d do
w(i) ← w(i)e−ηℓ

(i)
t ;

end
else

m← ⌈log2 ∥ℓt∥0⌉;
η ← log(1 + C

√
d log d/2mT );

for i← 1 to d do
w(i) ← 1/d;

end
end

end
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derived in the proof of Theorem 4 applies:

R(m) :=
∑

t∈I(m)

⟨ℓt, xt⟩ −min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t

⩽ log d

1− e−η(m)
+
eη(m) − 1

2
min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t

=
1

C

√
2mT log d

d
+

log d

C
+
C

2

√
d log d

2mT
·min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t .

We now bound the “best loss” quantity from above, using the fact that ℓt is 2m-sparse for
t ∈ I(m) \ {τ(m)} and that ℓτ(m) is s∗-sparse:

d∑
i=1

∑
t∈I(m)

ℓ
(i)
t =

∑
t∈I(m)

d∑
i=1

ℓ
(i)
t =

∑
t<τ(m)
t∈I(m)

d∑
i=1

ℓ
(i)
t +

d∑
i=1

ℓ
(i)
τ(m)

⩽ (τ(m)− τ(m− 1))2m + s∗,

which implies:

min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t ⩽ (τ(m)− τ(m− 1))2m + s∗

d
.

Therefore, the regret on interval I(m), which we will denote R(m), is bounded by:

R(m) :=
∑

t∈I(m)

⟨ℓt, xt⟩ −min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t

⩽ 1

C

√
2mT log d

d
+

log d

C
+
C

2

√
2m log d

dT
(τ(m)− τ(m− 1)) +

C

2

√
log d

2mdT
s∗

⩽ 1

C

√
2mT log d

d
+

log d

C
+
C

2

√
2s∗ log d

dT
(τ(m)− τ(m− 1)) +

C

2

√
log d

2mdT
s∗,

where we used 2m ⩽ 2M = 2⌈log2 s
∗⌉ ⩽ 2log2 s

∗+1 = 2s∗ for the third term of the last line.
We now turn the whole regret RT from 1 to T . Since (I(m))1⩽m⩽M is a partition of

{1, . . . , T}, we obtain

RT =
T∑
t=1

⟨ℓt, xt⟩ −min
i∈[d]

T∑
t=1

ℓ
(i)
t

⩽
M∑

m=1

∑
t∈I(m)

⟨ℓt, xt⟩ −
M∑

m=1

min
i∈[d]

∑
t∈I(m)

ℓ
(i)
t

=
M∑

m=1

R(m)

⩽ 1

C

√
T log d

d

M∑
m=1

√
2m + C

√
s∗T log d

2d
+
M log d

C
+
C

2

√
log d

dT
s∗

M∑
m=1

2−m/2.
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The sum in the first term above can be bounded as follows
M∑

m=1

√
2m ⩽

M∑
m=1

√
2
m

=
√
2

√
2
M − 1√
2− 1

⩽
√
2

√
2log2 s

∗+1

√
2− 1

= 2

√
s∗√

2− 1
= 2(
√
2 + 1)

√
s∗,

whereas the sum in the last term can be bounded by
√
2 + 1. Eventually, the choice C =

23/4(
√
2 + 1)1/2 gives:

RT ⩽ 25/4(
√
2 + 1)1/2

√
Ts∗ log d

d
+
⌈log s∗⌉ log d

23/4(
√
2 + 1)1/2

+ 21/4(
√
2 + 1)3/2s∗

√
log d

dT
,

and the statement follows from numerical computation of the constant factors.

4.2 For Gains

The construction is similar to the case of losses, but the time intervals are slightly different.
Let (gt)t⩾1 be the sequence of gain vectors in [0, 1]d chosen by Nature. We assume s∗ ⩾ 2
and set M = ⌈log2 log2 s∗⌉ and τ(0) = 0. For 1 ⩽ m ⩽M we define

τ(m) = min
{
1 ⩽ t ⩽ T

∣∣ ∥gt∥0 > 22
m}

and τ(M) = T.

We now define the time intervals I(m). For 1 ⩽ m ⩽M ,

I(m) =

{
{τ(m− 1) + 1, . . . , τ(m)} if τ(m− 1) < τ(m)

∅ if τ(m− 1) = τ(m).

Therefore, for 1 ⩽ m ⩽ M and t < τ(m), we have ∥gt∥0 ⩽ 22
m . For 1 ⩽ t ⩽ T , we

denote mt = min {m ⩾ 1 | τ(m) ⩾ t}. Let C > 0 be a constant to be chosen later and for
1 ⩽ m ⩽M , let

p(m) = 1 +
1

log 2 · 2m+1 − 1
,

q(m) =

(
1− 1

p(m)

)−1

,

η(m) = C

√
p(m)− 1

T22m+1/q(m)
.

As in Section 2.2, for p ∈ (1, 2], we denote hp the regularizer on the simplex defined by:

hp(x) =

{
1
2 ∥x∥

2
p if x ∈ ∆d

+∞ otherwise.

The algorithm is then defined by:

xt = ∇h∗p(mt)

η(mt)
∑
t′<t

t′∈I(mt)

gt′

 , t = 1, . . . , T.
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Algorithm 2: For gains in full information without prior knowledge about sparsity.
input: T ⩾ 1, d ⩾ 1 integers, and C > 0.
p← 1 + (4 log 2− 1)−1;
q ← (1− 1/p)−1;
η ← C

√
(p− 1)/24/qT ;

m← 1;
y ← (0, . . . , 0) ∈ Rd;
for t← 1 to T do

draw and play decision i ∼ ∇h∗p(η · y);
observe gain vector gt;
if ∥gt∥0 ⩽ 22

m then
y ← y + gt;

else
m← ⌈log2 log2 ∥gt∥0⌉;
p← 1 + (log 2 · 2m+1 − 1)−1;
q ← (1− 1/p)−1;
η ← C

√
(p− 1)/22m+1/qT ;

y ← (0, . . . , 0);
end

end

Theorem 10 The above algorithm with C = (e
√
2(
√
2 + 1))1/2 guarantees

RT ⩽ 7
√
T log s∗ +

4s∗√
T
.

Proof Let 1 ⩽ m ⩽ M . On time interval I(m), the algorithm boils down to an Online
Mirror Descent algorithm with regularizer hp(m) and parameter η(m). Therefore, using
Theorem 1, the regret on this interval is bounded as follows.

R(m) := max
i∈[d]

∑
t∈I(m)

g
(i)
t −

∑
t∈I(m)

⟨gt, xt⟩

⩽ 1

2η(m)
+

η(m)

2(p(m)− 1)

∑
t∈I(m)

∥gt∥2q(m)

=
1

2η(m)
+

η(m)

2(p(m)− 1)

 ∑
t∈I(m)
t<τ(m)

∥gt∥2q(m) +
∥∥gτ(m)

∥∥2
q(m)

 .

gt being 22
m-sparse for t < τ(m) and gτ(m) being s∗-sparse, the q(m)-norms can therefore

bounded from above as follows:

∥gt∥2q(m) ⩽ 22
m+1/q(m) and

∥∥gτ(m)

∥∥2
q(m)

⩽ (s∗)2/q(m).
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The bound on R(m) then becomes

R(m) ⩽ 1

2η(m)
+
η(m)(τ(m)− τ(m− 1))22

m+1/q(m)

2(p(m)− 1)
+
η(m)(s∗)2/q(m)

2(p(m)− 1)

=
1

2C

√
Te(log 2 · 2m+1 − 1) +

C

2

√
e(log 2 · 2m+1 − 1)

T
(τ(m)− τ(m− 1))

+
C

2
(s∗)1/(log 2·2

m)

√
e(log 2 · 2m+1 − 1)

T

⩽ 1

2C

√
Te log 2 · 2m+1 + C

√
e log s∗

T
(τ(m)− τ(m− 1))

+
C

2
s∗
√
e log 2 · 2m+1

T
,

where for the second term of the last expression we used:

log 2 · 2m+1 − 1 ⩽ log 2 · 2M+1 = log 2 · exp (log 2 (⌈log2 log2 s∗⌉+ 1))

⩽ log 2 · exp (log 2 (log2 log2 s∗ + 2))

= log 2 · e2 log 2 exp (log 2 · log2 log2 s∗)
= 4 log 2 · exp (log log2 s∗)
= 4 log 2 · log2 s∗

= 4 log s∗.

Then, the whole regret RT is bounded by the sum of the regrets on each interval:

RT ⩽
M∑

m=1

R(m) ⩽ 1

2C

√
Te log 2

M∑
m=1

√
2m+1 + C

√
e log s∗

T

M∑
m=1

(τ(m)− τ(m− 1))

+
Cs∗

2

√
e log 2

T

M∑
m=1

2−(m+1)/2.

The second sum is equal to T and the third sum is bounded from above by (
√
2 + 1)/

√
2.

Let us bound the first sum from above:√
log 2

M∑
m=1

√
2m+1 = 2

√
log 2

2M/2 − 1√
2− 1

⩽ 2(
√
2 + 1)

√
log 2 · exp

(
log 2

2
(log2 log2 s

∗ + 1)

)
= 2(
√
2 + 1)

√
log 2 ·

√
2elog log2 s

∗

= 2
√
2(
√
2 + 1)

√
log 2 log2 s

∗

= 2
√
2(
√
2 + 1)

√
log s∗.

Therefore,

RT ⩽
√
2(
√
2 + 1)

C

√
Te log s∗ + C

√
Te log s∗ +

C(
√
2 + 1)s∗

2

√
e log 2

2T
.
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Choosing C = (e
√
2(
√
2 + 1))1/2 balances the first two term and gives:

RT ⩽ 2(e
√
2(
√
2 + 1))1/2

√
T log s∗ + 2−5/4e

√
log 2(

√
2 + 1)3/2

s∗√
T

⩽ 7
√
T log s∗ +

4s∗√
T
.

5. The Bandit Setting

We now turn to the bandit framework—see for instance (Bubeck and Cesa-Bianchi, 2012)
for a recent survey. Recall that the minimax regret (Audibert and Bubeck, 2009) in the
basic bandit framework (without sparsity) is of order

√
Td. In the case of losses, we manage

to take advantage of the sparsity assumption and obtain in Theorem 11 an upper bound
of order

√
Ts log d

s , and a lower bound of order
√
Ts in Theorem 13. This establishes the

order of the minimax regret up to a logarithmic factor. In the case of gains, the argument
from Section 2.3 can be adapted to get a lower bound of order

√
sT ; but the upper bound

techniques from losses do not seem to work; this difficulty is discussed below in Remark 12.
For simplicity, we shall assume that the sequence of outcome vectors (ωt)t⩾1 is cho-

sen before stage 1 by the environment, which is called oblivious in that case. We refer
to (Bubeck and Cesa-Bianchi, 2012, Section 3) for a detailed discussion on the difference
between oblivious and non-oblivious opponent, and between regret and pseudo-regret.

As before, at stage t, the decision maker chooses xt ∈ ∆d and draws decision dt ∈ [d]
according to xt. The main difference with the previous framework is that the decision maker
only observes his own outcome ωdt

t before choosing the next decision dt+1.

5.1 Upper Bounds on the Regret with Sparse Losses

We shall focus in this section on s-sparse losses. The algorithm we consider belongs to
the family of Greedy Online Mirror Descent. We follow (Bubeck and Cesa-Bianchi, 2012,
Section 5) and refer to it for the detailed and rigorous construction. Let Fq(x) be the
Legendre function associated with the potential ψ(x) = (−x)−q (q > 1), i.e.,

Fq(x) = −
q

q − 1

d∑
i=1

(xi)1−1/q.

The algorithm, which depends on a parameter η > 0 to be fixed later, is defined as follows.
Set x1 = (1d , . . . ,

1
d) ∈ ∆d. For all t ⩾ 1, we define the estimator ℓ̂t of ℓt as usual:

ℓ̂
(i)
t = 1{dt=i}

ℓ
(i)
t

x
(i)
t

, i ∈ [d],

which is then used to compute

zt+1 = ∇F ∗
q (∇Fq(xt)− ηℓ̂t) and xt+1 = argmin

x∈∆d

DFq(x, zt+1),
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where DFq : D̄ × D → R is the Bregman divergence associated with Fq:

DFq(x
′, x) = Fq(x

′)− Fq(x)−
⟨
∇Fq(x), x

′ − x
⟩
.

Theorem 11 Let η > 0 and q > 1. For any sequence of s-sparse loss vectors, the above
strategy with parameter η guarantees, for T ⩾ 1:

RT ⩽ q

(
d1/q

η(q − 1)
+
ηTs1−1/q

2

)
.

In particular, if d/s ⩾ e2, the choices

η =

√
2d1/q

(q − 1)Ts1−1/q
and q = log(d/s)

yield the following regret bound:

RT ⩽ 2
√
e

√
Ts log

d

s
.

Proof The general regret bound for Greedy Online Mirror Descent (Bubeck and Cesa-
Bianchi, 2012, Theorem 5.10) gives:

RT ⩽ maxx∈∆d
F (x)− F (x1)
η

+
η

2

T∑
t=1

d∑
i=1

E

[
(ℓ̂

(i)
t )2

(ψ−1)′(x
(i)
t )

]
,

with (ψ−1)′(x) = (q x1+1/q)−1. Let us bound the first term.

1

η
max
x∈∆d

Fq(x)− Fq(x1) ⩽
1

η

q

q − 1

(
0 + d (1/d)1−1/q

)
=

qd1/q

η(q − 1)
.

We turn to the second term. Let 1 ⩽ t ⩽ T .

d∑
i=1

E

[
(ℓ̂

(i)
t )2

(ψ−1)′(x
(i)
t )

]
= q

d∑
i=1

E
[
(ℓ̂

(i)
t )2(x

(i)
t )1+1/q

]
= q

d∑
i=1

E

[
E

[
1{dt=i}

(ℓ
(i)
t )2

(xit)
2
(xit)

1+1/q

∣∣∣∣∣xt
]]

= q
d∑

i=1

E
[
(ℓ

(i)
t )2(x

(i)
k )1/q

]
= q E

[ ∑
s terms

(ℓ
(i)
t )2(x

(i)
t )1/q

]
⩽ qs(1/s)1/q = qs1−1/q,
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where we used the assumption that ℓt has at most s nonzero components, and the fact that
xt ∈ ∆d. The first regret bound is thus proven. By choosing η =

√
2s1−1/q

(q−1)Td1/q
, we balance

both terms and get:

RT ⩽ 2q

√
Td1/qs1−1/q

2(q − 1)
=
√
2q

√
Ts

(
d

s

)1/q ( q

q − 1

)
.

If d/s ⩾ e2 and q = log(d/s), then q/(q − 1) ⩽ 2 and finally:

RT ⩽ 2
√
e

√
Ts log

d

s
.

Remark 12 The previous analysis cannot be carried in the case of gains because the bound
from (Bubeck and Cesa-Bianchi, 2012, Theorem 5.10) that we use above only holds for
nonnegative losses (and its proof strongly relies on this assumption). We are unaware of
techniques which could provide a similar bound in the case of nonnegative gains.

5.2 Matching Lower Bound

The following theorem establishes that the bound from Theorem 11 is optimal up to a
logarithmic factor. We denote v̂ℓ,s,dT the minimax regret in the bandit setting with losses.

Theorem 13 For all d ⩾ 2, s ∈ [d] and T ⩾ d2/4s, the following lower bound holds:

v̂ℓ,s,dT ⩾ 1

32

√
Ts.

The intuition behind the proof is the following. Let us consider the case where s = 1
and assume that ℓt is a unit vector eit = (1{j = it})j where P(it = i) ≃ (1 + ε)/d for all
i ∈ [d], except one fixed coordinate i∗ where P(it = i∗) ≃ 1/d− ε.

Since 1/d goes to 0 as d increases, the Kullback-Leibler divergence between two Bernoulli
of parameters (1 + ε)/d and 1/d − ε is of order dε2. As a consequence, it would require
approximately 1/dε2 samples to distinguish between the two. The standard argument that
one of the coordinates has not been chosen more than T/d times, yields that one should
take 1/dε2 ≃ T/d so that the regret is of order Tε. This provides a lower bound of order√
T . Similar arguments with s > 1 give a lower bound of order

√
sT .

We emphasize that one cannot simply assume that the s components with positive
losses are chosen at the beginning once for all, and apply standard lower bound techniques.
Indeed, with this additional information, the decision maker just has to choose, at each
stage, a decision associated with a zero loss. His regret would then be uniformly bounded
(or even possibly equal to zero).
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5.3 Proof of Theorem 13

Let d ⩾ 1, 1 ⩽ s ⩽ d, T ⩾ 1, and ε ∈ (0, s/2d). Denote Ps([d]) the set of subsets of [d] of
cardinality s, δij the Kronecker symbol, and B(1, p) the Bernoulli distribution of parameter
p ∈ [0, 1]. If P,Q are two probability distributions on the same set, D (P ||Q) will denote
the relative entropy of P and Q.

5.3.1 Random s-Sparse Loss Vectors ℓt and ℓ′t

For t ⩾ 1, define the random s-sparse loss vectors (ℓt)t⩾1 as follows. Draw Z uniformly
from [d]. We will denote Pi [ · ] = P [ · |Z = i] and Ei [ · ] = E [ · |Z = i]. Knowing Z = i, the
random vectors ℓt are i.i.d and defined as follows. Draw It uniformly from Ps([d]). If j ∈ It,
define ℓ(j)t such that:

Pi

[
ℓ
(j)
t = 1

]
= 1− Pi

[
ℓ
(j)
t = 0

]
=

1

2
− εd

s
δij .

If j ̸∈ It, set ℓ(j)t = 0. Therefore, one can check that for each component j ∈ [d] and all
t ⩾ 1,

Ei

[
ℓ
(j)
t

]
=

s

2d
− εδij .

For t ⩾ 1, define the i.i.d. random s-sparse loss vectors (ℓ′t)t⩾1 as follows. Draw I ′t uniformly
from Ps([d]). Then if j ∈ I ′t, set (ℓ′t)

(j) such that:

P
[
(ℓ′t)

(j) = 1
]
= P

[
(ℓ′t)

(j) = 0
]
= 1/2.

And if j ̸∈ I ′t, set (ℓ′t)
(j) = 0. Therefore, one can check that for each component j ∈ [d] and

all t ⩾ 1,
E
[
(ℓ′t)

(j)
]
=

s

2d
.

By construction, ℓt and ℓ′t are indeed random s-sparse loss vectors.

5.3.2 A Deterministic Strategy σ for the Player

We assume given a deterministic strategy σ = (σt)t⩾1 for the player:

σt : ([d]× [0, 1])t−1 −→ [d].

Therefore,
dt = σt(d1, ω

(d1)
1 , . . . , dt−1, ω

(dt−1)
t−1 ),

where dt denotes the decision chosen by the strategy at stage t and ωt the outcome vector
of stage t. But since dt is determined by previous decisions and outcomes, we can consider
that σt only depends on the received outcomes:

σt : [0, 1]
t−1 −→ [d],

dt = σt(ω
(d1)
1 , . . . , ω

(dt−1)
t−1 ).

23



Kwon and Perchet

We define dt and d′t to be the (random) decisions played by deterministic strategy σ
against the random loss vectors (ℓt)t⩾1 and (ℓ′t)t⩾1 respectively:

dt = σt(ℓ
(d1)
1 , . . . , ℓ

(dt−1)
t−1 ),

d′t = σt((ℓ
′
1)

(d′1), . . . , (ℓ′t−1)
(d′t−1)).

For t ⩾ 1 and i ∈ [d], define A(i)
t to be the set of sequences of outcomes in {0, 1} of the

first t− 1 stages for which strategy σ plays decision i at stage t:

A
(i)
t =

{
(u1, . . . , ut−1) ∈ {0, 1}t−1

∣∣∣σt(u1, . . . , ut−1) = i
}
,

and B(i)
t the complement:

B
(i)
t = {0, 1}t−1 \A(i)

t .

Note that for a given t ⩾ 1, (A(i)
t )i∈[d] is a partition of {0, 1}t−1 (with possibly some empty

sets).
For i ∈ [d], define τi(T ) (resp. τ ′i(T )) to be the number of times decision i is played by

strategy σ against loss vectors (ℓt)t⩾1 (resp. against (ℓ′t)t⩾1) between stages 1 and T :

τi(T ) =

T∑
t=1

1{dt=i} and τ ′i(T ) =

T∑
t=1

1{d′t=i}.

5.3.3 The Probability Distributions Q and Qi (i ∈ [d]) on Binary Sequences

We consider binary sequences u⃗ = (u1, . . . , uT ) ∈ {0, 1}T . We define Q and Qi (i ∈ [d]) to
be probability distributions on {0, 1}T as follows:

Qi [u⃗] = Pi

[
ℓ
(d1)
1 = u1, . . . , ℓ

(dT )
T = uT

]
,

Q [u⃗] = P
[
(ℓ′1)

(d′1) = u1, . . . , (ℓ
′
T )

(d′T ) = uT

]
.

Fix (u1, . . . , ut−1) ∈ {0, 1}t. The applications

ut 7−→ Q [ut |u1, . . . , ut−1] and ut 7−→ Qi [ut |u1, . . . , ut−1] ,

are probability distributions on {0, 1}, which we now aim at identifying. The first one is
Bernoulli of parameter s/2d. Indeed,

Q [1 |u1, . . . , ut−1] = P
[
(ℓ′t)

(d′t) = 1
∣∣∣ (ℓ′1)(d′1) = u1, . . . , (ℓ

′
t−1)

(d′t−1) = ut−1

]
= P

[
(ℓ′t)

(d′t) = 1
]

= P
[
d′t ∈ I ′t

]
P
[
(ℓ′t)

(dt) = 1
∣∣∣ d′t ∈ I ′t]

=
s

d
× 1

2

=
s

2d
,
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where we used the independence of the random vectors (ℓ′t)t⩾1 for the second inequality. We
now turn to the second distribution, which depends on (u1, . . . , ut−1). If (u1, . . . , ut−1) ∈
A

(i)
t , it is a Bernoulli of parameter s/2d− ε:

Qi [1 |u1, . . . , ut−1] = Pi

[
ℓ
(dt)
t = 1

∣∣∣ ℓ(d1)1 = u1, . . . , ℓ
(dt−1)
t−1 = ut−1

]
= Pi

[
ℓ
(i)
t = 1

∣∣∣ ℓ(d1)1 = u1, . . . , ℓ
(dt−1)
t−1 = ut−1

]
= Pi

[
ℓ
(i)
t = 1

]
= Pi [i ∈ It]Pi

[
ℓ
(i)
t = 1

∣∣∣ i ∈ It]
=
s

d
×
(
1

2
− εd

s

)
=

s

2d
− ε.

where for the third inequality, we used the assumption that the random vectors (ℓt)t⩾1 are
independent under Pi, i.e. knowing Z = i. On the other hand, if (u1, . . . , ut−1) ∈ B(i)

t , we
can prove similarly that the distribution is a Bernoulli of parameter s/2d.

5.3.4 Computation the Relative Entropy of Qi and Q

We apply iteratively the chain rule to the relative entropy of Q[u⃗] and Qi[u⃗]. Using the
short-hand Di[ · ] := D (Q[ · ] ||Qi[ · ]),

D (Q [u⃗] ||Qi [u⃗]) = Di[u⃗]

= Di [u1] + Di [u2, . . . , uT |u1]
= Di [u1] + Di [u2 |u1] + Di [u3, . . . , uT |u1, u2]

=
T∑
t=1

Di [ut |u1, . . . , ut−1] .
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We now use the definition of the conditional relative entropy, and make the previously
discussed Bernoulli distributions appear. For 1 ⩽ t ⩽ T ,

Di [ut |u1, . . . , ut−1] =
∑

u1,...,ut−1

Q [u1, . . . , ut−1]

×
∑
ut

Q [ut |u1, . . . , ut−1] log
Q [ut |u1, . . . , ut−1]

Qi [ut |u1, . . . , ut−1]

=
1

2t−1

∑
u1,...,ut−1

∑
ut

Q [ut |u1, . . . , ut−1] log
Q [ut |u1, . . . , ut−1]

Qi [ut |u1, . . . , ut−1]

=
1

2t−1

∑
(u1,...,ut−1)∈A(i)

t

D
(
B
(
1,

s

2d

) ∣∣∣∣∣∣B (1, s
2d
− ε
))

+
1

2t−1

∑
(u1,...,ut−1)∈B(i)

t

D
(
B
(
1,

s

2d

) ∣∣∣∣∣∣B (1, s
2d

))
=

1

2t−1

∑
(u1,...,ut−1)∈A(i)

t

B
( s
2d
, ε
)
,

where we used the short-hand B
(

s
2d , ε

)
:= D

(
B
(
1, s

2d

) ∣∣∣∣B (1, s
2d − ε

))
. Eventually:

D (Q[u⃗] ||Qi[u⃗]) = B
( s
2d
, ε
) T∑

t=1

∣∣∣A(i)
t

∣∣∣
2t−1

.

5.3.5 Upper Bound on 1
d

∑d
i=1 Ei [τi(T )] Using Pinsker’s Inequality

In this step, we will make use of Pinsker’s inequality to make the relative entropy appear.

Proposition 14 (Pinsker’s inequality) Let X be a finite set, and P,Q probability distri-
butions on X. Then,

1

2

∑
x∈X
|P (x)−Q(x)| ⩽

√
1

2
D (P ||Q).

Immediate consequence:

∑
x∈X

P (x)>Q(x)

(P (x)−Q(x)) ⩽
√

1

2
D (P ||Q).

Let i ∈ [d]. If (u1, . . . , uT ) ∈ {0, 1}T is given, since the decisions dt and d′t are determined
by the previous losses ℓ(dt)t and (ℓ′t)

(d′t) respectively, we have in particular:

Ei

[
τi(T )

∣∣∣ ℓ(d1)1 = u1, . . . , ℓ
(dT )
T = uT

]
= E

[
τ ′i(T )

∣∣∣ (ℓ′1)(d′1) = u1, . . . , (ℓ
′
T )

(d′T ) = uT

]
.
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Therefore,

Ei [τi(T )]− E
[
τ ′i(T )

]
=
∑
u⃗

Qi[u⃗] · Ei

[
τi(T )

∣∣∣∀t, ℓ(dt)t = ut

]
−
∑
u⃗

Q[u⃗] · E
[
τ ′i(T )

∣∣∣∀t, (ℓ′t)d′t = ut

]
=
∑
u⃗

(Qi[u⃗]−Q[u⃗])Ei

[
τi(T )

∣∣∣ ∀t, ℓ(dt)t = ut

]
⩽

∑
u⃗

Qi[u⃗]>Q[u⃗]

(Qi[u⃗]−Q[u⃗])Ei

[
τi(T )

∣∣∣∀t, ℓ(dt)t = ut

]

⩽ T
∑
u⃗

Qi[u⃗]>Q[u⃗]

(Qi[u⃗]−Q[u⃗])

⩽ T

√
1

2
D (Q[u⃗] ||Qi[u⃗])

= T

√
B(s/2d, ε)

2

√√√√√ T∑
t=1

∣∣∣A(i)
t

∣∣∣
2t−1

,

where we used Pinsker’s inequality in the fifth line. Moreover, we have:

1

d

d∑
i=1

E
[
τ ′i(T )

]
=

1

d
E

[
T∑
t=1

d∑
i=1

1{d′t=i}

]
=

1

d
E

[
T∑
t=1

1

]
=
T

d
.

Combining this with the previous inequality gives:

1

d

d∑
i=1

Ei [τi(T )] ⩽
1

d

d∑
i=1

E
[
τ ′i(T )

]
+ T

√
B(s/2d, ε)

2

1

d

d∑
i=1

√√√√√ T∑
t=1

∣∣∣A(i)
t

∣∣∣
2t−1

⩽ T

d
+ T

√
B(s/2d, ε)

2

√√√√√1

d

T∑
t=1

d∑
i=1

∣∣∣A(i)
t

∣∣∣
2t−1

=
T

d
+ T

√
B(s/2d, ε)

2

√√√√√1

d

T∑
t=1

∣∣∣{0, 1}t−1
∣∣∣

2t−1

=
T

d
+ T

√
B(s/2d, ε)

2

√
T

d

=
T

d
+ T 3/2

√
B(s/2d, ε)

2d
.
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where we used Jensen for the second inequality, and for the third line, we remembered that
(A

(i)
t )i∈[d] is a partition of {0, 1}t−1.

5.3.6 An Upper Bound on B(s/2d, ε) for Small Enough ε

We first write B(s/2d, ε) explicitely.

B
( s
2d
, ε
)
= D (B(1, s/2d) ||B(1, s/2d− ε))

=
s

2d
log

s/2d

s/2d− ε
+
(
1− s

2d

)
log

1− s/2d
1− s/2d+ ε

= − s

2d
log

(
1− 2dε

s

)
+
( s
2d
− 1
)
log

(
1 +

ε

1−m/2d

)
.

We now bound the two logarithms from above using respectively the two following easy
inequalities:

− log(1− x) ⩽ x+ x2, for x ∈ [0, 1/2]

− log(1 + x) ⩽ −x+ x2, for x ⩾ 0.

This gives:

B
( s
2d
, ε
)
⩽ s

2d

(
2dε

s
+

4d2ε2

s2

)
+
(
1− s

2d

)(
− ε

1− s/2d
+

ε2

(1− s/2d)2

)
=

4d2ε2

s(2d− s)
,

which holds for 2dε/s ⩽ 1/2, in other words, for ε ⩽ s/4d.
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5.3.7 Lower Bound on the Expectation of the Regret of σ Against ℓt

We can now bound from below the expected regret incurred when playing σ against loss
vectors (ℓt)t⩾1. For ε ⩽ s/4d,

RT = E

[
T∑
t=1

ℓ
(dt)
t −min

j∈[d]

T∑
t=1

ℓ
(j)
t

]

=
1

d

d∑
i=1

Ei

[
T∑
t=1

ℓ
(dt)
t −min

j∈[d]

T∑
t=1

ℓ
(j)
t

]

⩾ 1

d

d∑
i=1

(
Ei

[
T∑
t=1

ℓ
(dt)
t

]
−min

j∈[d]

T∑
t=1

Ei

[
ℓ
(j)
t

])

=
1

d

d∑
i=1

(
Ei

[
T∑
t=1

Ei

[
ℓ
(dt)
t

∣∣∣ dt]]− T min
j∈[d]

( s
2d
− εδij

))

=
1

d

d∑
i=1

(
Ei

[
T∑
t=1

( s
2d
− εδidt

)]
− T

( s
2d
− ε
))

=
1

d

d∑
i=1

ε (T − Ei [τi(T )])

= ε

(
T − 1

d

∑
i

Ei [τi(T )]

)
.

We now use the upper bound derived in Section 5.3.5.

RT ⩾ ε

(
T − T

d
− T 3/2

√
B(s/2d, ε)

2d

)

⩾ ε

(
T − T

d
− T 3/2ε

√
2d

s(2d− s)

)

⩾ ε

(
T − T

d
− 2T 3/2ε

1√
s
.

)
,

where in the penultimate, we used the upper bound on B(s/2d, ε) that we established above,
and in the last line, the fact that s ⩽ d. Let C > 0 and we choose ε = C

√
s/T . Then, for

ε ⩽ s/4d,

RT ⩾ εT

(
1− 1

d
− 2ε

√
T

s

)

= C
√
sT

(
1− 1

d

)
− 2
√
sTC2

⩾
√
sT

(
C

2
− 2C2

)
,
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where in the last line, we used the assumption d ⩾ 2. The choice C = 1/8 give:

RT ⩾ 1

32

√
sT ,

which holds for ε = C
√
s/T ⩽ s/4d i.e. for T ⩾ d2/4s.

The above inequality does not depend on σ. As it is a classic that a randomized strategy
is equivalent to some random choice of deterministic strategies, this lower bound holds for
any strategy of the player. In other words, for T ⩾ d2/4s,

v̂ℓ,s,dT ⩾ 1

32

√
sT .

5.4 Discussion

If the outcomes are not losses but gains, then there is an important discrepancy between the
upper and lower bounds we obtain. Indeed, obtaining small losses regret bound as in the
first displayed equation of the proof of Theorem 11 is still open. An idea for circumventing
this issue would be to enforce exploration by perturbing xt into (1 − γ)xt + γU where U
is the uniform distribution over [d], but usual computations show that the only obtainable
upper bounds are of order of

√
dT . The aforementioned techniques used to bound the regret

from below with losses would also work with gains, which would give a lower bound of order√
sT . Therefore, finding the optimal dependency in the dimension and/or the sparsity level

is still an open question in that specific case. We tend to believe that the upper bound could
be improved: imagine the case s = 1, the restriction on the payoff vectors is huge, and we
think that this could be taken advantage of. This would imply that there is no discrepancy
between gains and losses, unlike the full information setting, which would be an interesting
fact.
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