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Inner product

An inner product is a map 〈., .〉X : X ×X → K satisfying the following axioms:
I Symmetry: 〈x, y〉X = 〈y, x〉X
I Bilinearity:
〈ax + by, cz + dw〉X = ac〈x, z〉X + ad〈x,w〉X + bc〈y, z〉X + bd〈y,w〉X

I Non-negativity:〈x, x〉X ≥ 0
I Positive definiteness: 〈x, x〉X = 0⇔ x = 0

The standard inner product in the Euclidean space, x ∈ Rd and d ∈ N, is called
the dot product: 〈x, y〉Rn =

∑n
i=1 xiyi .
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Toy data set

Suppose we want to classify the following data

S = {(x1, y1), . . . , (xn, yn)}, (xi , yi ) ∈ R2 × {±1}
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Simple classifier:

I Decision rule: assigns a new sample x to the class whose mean is closer to
x.

f (x) = sgn
(
||µ−1 − x||2 − ||µ1 − x||2

)
. (1)

I Equation (1) can be written in the following way

f (x) = sgn (〈w, x〉+ b) .

I Identify w and b. Tips: ||µ−1 − x||2 = 〈µ−1 − x, µ−1 − x〉 and
µ−1 =

1
m−1

∑m−1
i=1 xi .



Solution 1/3

‖µ1 − x‖2 = 〈 1
m1

m1∑
i=1

xi − x,
1
m1

m1∑
i=1

xi − x〉

= 〈 1
m1

m1∑
i=1

xi ,
1
m1

m1∑
i=1

xi 〉+ 〈x, x〉 − 2〈 1
m1

m1∑
i=1

xi , x〉

=
1
m2

1

m1∑
i=1
k=1

〈xi , xk〉+ 〈x, x〉 − 2〈 1
m1

m1∑
i=1

xi , x〉 (2)

‖µ−1 − x‖2 =
1

m2
−1

m−1∑
j=1
l=1

〈xj , xl〉+ 〈x, x〉 − 2〈 1
m−1

m−1∑
j=1

xj , x〉 (3)

Plugging (2) and (3) into (1) leads to

〈w, x〉+ b = 〈2(
1
m1

m1∑
i=1

xi −
1

m−1

m−1∑
j=1

xj), x〉 −
1
m2

1

m1∑
i=1
k=1

〈xi , xk〉+
1

m2
−1

m−1∑
j=1
l=1

〈xj , xl〉



Solution 2/3

w = 2
m1+m−1∑

i=1

αiyixi (4)

yi = 1 or − 1

αi =
1
m1

or
1

m−1

b = − 1
m2

1

m1∑
i=1
k=1

〈xi , xk〉+
1

m2
−1

m−1∑
j=1
l=1

〈xj , xl〉 (5)



Solution 3/3
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Another toy data set

I Now the data are distributed a bit differently:
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I However, if we can find a feature space where the data are linearly
separable, it can still be applied.

I Questions:
1. Find a feature space where the data are linearly separable.
2. Try to write the dot product in the feature space in terms of input space

variables.



Feature space

Two simple feature spaces are possible:

1. Projection in the polar domain

ρ = x2
1 + x2

2

θ = arctan
(

x2

x1

)
2. Projection in the space of monomials of order 2.

φ : R2 → R3

x 7→ φ(x)

(x1, x2) 7→ (x2
1, x

2
2,
√
2x1x2)



Feature space associated to monomials of order 2

I In R3, the inner product can be expressed as

〈φ(x), φ(x′)〉R3 =
3∑

i=1

φ(x)iφ(x′)i

= φ(x)1φ(x′)1 + φ(x)2φ(x′)2 + φ(x)3φ(x′)3

= x2
1x
′2
1 + x2

2x
′2
2 + 2x1x2x′1x′2

= (x1x′1 + x2x′2)2

= 〈x, x′〉2R2

= k(x, x′).

I The decision rule can be written in the input space thanks to the function
k.

f (x) = 2
m1+m−1∑

i=1

αiyik(xi , x)− 1
m2

1

m1∑
i=1
k=1

k(xi , xk) +
1

m2
−1

m−1∑
j=1
l=1

k(xj , xl)



Non linear decision function
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Conclusion

I A linear algorithm can be turned to a non linear one, simply by exchanging
the dot product by an appropriate function.

I This function has to be equivalent to a dot product in a feature space.
I It is called a kernel function or just kernel.
I What are the properties of kernel ?
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Definition

Definition (Positive semi-definite kernel)
k : Rd × Rd → R is positive semi-definite is

I ∀(x, x′) ∈ Rd × Rd , k(xi , xj) = k(xj , xi ).
I ∀n ∈ N,∀ξ1 . . . ξn ∈ R, ∀x1 . . . xn ∈ Rd ,

∑n
i,j ξiξjk(xi , xj) ≥ 0.

Theorem (Moore-Aronsjan (1950))
To every positive semi-definite kernel k, there exists a Hilbert space H and a
feature map φ : Rd → H such that for all xi , xj we have
k(xi , xj) = 〈φ(xi ), φ(xj)〉H.



Operations on kernels

Let k1 and k2 be positive semi-definite, and λ1,2 > 0 then:

1. λ1k1 is a valid kernel

2. λ1k1 + λ2k2 is positive semi-definite.

3. k1k2 is positive semi-definite.

4. exp(k1) is positive semi-definite.

5. g(xi )g(xj) is positive semi-definite, with g : Rd → R.
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Polynomial kernel

The polynomial kernel of order p and bias q is defined as

k(xi , xj) = (〈xi , xj〉+ q)p

=

p∑
l=1

(
p

l

)
qp−l〈xi , xj〉l .

It correspond to the feature space of monomials up to degree p. Depending on
q ≷ 0, the relative weights of the higher order monomial is
inscreased/deacreased.



Gaussian kernel

The Gaussian kernel with paramater σ is defined as

k(xi , xj) = exp
(
−‖xi − xj‖2

2σ2

)
.

More generally, any distance can be used in the exponential rather than the
Euclidean distance. For instance, the spectral angle is a valid distance:

Θ(xi , xj) =
〈xi , xj〉
‖xi‖‖xj‖

.



Kernel values in R2
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I (a) Polynomial kernel values for p = 2 and q = 0 and x = [1, 1],
I (b) Gaussian kernel values for σ = 2 and x = [1, 1].
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How to construct kernel for my data ?

I A kernel is usually seen as a measure of similarity between two samples. It
reflects in some sens, how two samples are similar.

I In practice, it is possible to define kernels using some a priori of our data.
I For instance: in image classification. It is possible to build kernels that

includes information from the spatial domain.
I Local correlation
I Spatial position
I . . .
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Compute distance in feature space 1/2

I The K-NN decision rule is based on the distance between two samples. In
the feature space, the distance is computed as ‖φ(xi )− φ(xj)‖2H.

I Write this equation in terms of kernel function.
I Fill the function R labwork_knn.R by adding the construction of the

kernel function. Then run it.



Compute distance in feature space 2/2

‖φ(xi )− φ(xj)‖2H = 〈φ(xi )− φ(xj), φ(xi )− φ(xj)〉H
= 〈φ(xi ), φ(xi )〉H + 〈φ(xj), φ(xj)〉H − 2〈φ(xi ), φ(xj)〉H
= k(xi , xi ) + k(xj , xj)− 2k(xi , xj)
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I (a) KNN classification
I (b) Kernel KNN classification with a polynomial kernel of order 2
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Learning problem

I Given a training set S and a loss function L, we want to find a function f
from a set of functions F that minimizes its expected loss, or risk, R(f ):

R(f ) =

∫
S
L(f (x), y)dP(x, y). (6)

I But P(x, y) is unknown !
I The empirical risk, Remp(f ) can be computed:

Remp(f ) =
1
n

n∑
i=1

L(f (xi ), yi ) (7)

I Convergence ?
I f1 minimizes Remp , then Remp(f1) −→ R(f1) as n tends to infinity
I But f1 is not necessarily a minimizer of R.



Non parametric classification

I Bayesian approach consists of selecting a distribution a priori for P(x, y)
(GMM)

I In machine learning, no assumption is made as to the distribution, but
only about the complexity of the class of functions F .

I Favor simple functions to
I discard over-fitting problems,
I to achieve a good generalization ability.

I Vapnik-Chervonenkis (VC) theory: the complexity is related to the number
of points that can be separated by a function.

R(f ) ≤ Remp(f , n) + C(f , n)



Illustration
I Trade-off between Remp and complexity
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Separating hyperplane

I A separating hyperplane H(w, b) is a linear decision function that separate
the space into two half-spaces, each half-space corresponding to the given
class, i.e., sgn (〈w, xi 〉 + b) = yi for all samples from S.

I The condition of correct classification is

yi (〈w, xi 〉 + b) ≥ 1. (8)

I Many hyperplanes ?

x2

x1



Optimal separating hyperplane

I From the VC theory, the optimal one is the one that maximize the margin
I The margin is inversely proportional to ‖w‖2 = 〈w,w〉.
I Optimal parameters are found by solving the convex optimization problem

minimize
〈w,w〉

2
subject to yi (〈w, xi 〉+ b) ≥ 1, ∀i ∈ 1, . . . , n.

I The problem is traditionally solved by considering soft margin constraints:
yi (〈w, xi 〉+ b) ≥ 1 + ξi

minimize
〈w,w〉

2
+ C

n∑
i=1

ξi

subject to yi (〈w, xi 〉+ b) ≥ 1− ξi , ∀i ∈ 1, . . . , n

ξi ≥ 0, ∀i ∈ 1, . . . , n.



Quadratic programming

I The previous problem is solved by considering the Lagrangian

L(w, b, ξ,α,β) =
〈w,w〉

2
+ C

n∑
i=1

ξi +
n∑

i=1

αi (1− ξi − yi (〈w, xi 〉+ b))−
n∑

i=1

βiξi

I Minimizing with respect to the primal variables and maximizing w.r.t the
dual variables leads to the so-called dual problem:

max
α

g(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj〈xi , xj〉

subject to 0 ≤ αi ≤ C
n∑

i=1

αiyi = 0.

I w =
∑n

i=1 αiyixi , only some of the αi are non zero. Thus w is supported
by some training samples – those with non-zero optimal αi . These are
called the support vectors.



Visual solution of the SVM

x2

x1

w
· x
+
b
=
0w

· x
+
b
=
1

w
· x
+
b
=
−1

2‖w‖

b‖w‖

w
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Kernelization of the algorithm

It is possible to extend the linear SVM to non linear SVM by switching the dot
product to a kernel function:

max
α

g(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi , xj)

subject to 0 ≤ αi ≤ C
n∑

i=1

αiyi = 0.

Now, the SVM is a non-linear classifier in the input space Rd , but is still linear
in the feature space – the space induced by the kernel function. The decision
function is simply:

f (x) = sgn

(
n∑

i=1

αiyik(x, xi ) + b

)



Toy example with the Gaussian kernel
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Comparison with GMM
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Cross-validation

I Crucial step: improve or decrease drastically the performances of SVM
I Cross validation is conventionally used. CV estimates the expected error R.

Exp. 2

Exp. 1

Test Train

Exp. 3

R1
emp

Exp. k

R2
emp

R3
emp

Rk
emp

I R(p) ≈ 1
k

∑k
i=1 R

i
emp

I Good behavior in various supervised learning problem but high
computational load. Test 10 values with k = 5⇒ 50 learning steps. But
it can be perform in parallel. . .
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Collection of binary classifiers

I One versus All: m binary classifiers

I One versus One: m(m-1)/2 classifiers
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Toy non linear data set

I Run the code toy_svm.R
I The default classification is done with a Gaussian kernel: try to do it with

a polynomial kernel
I Check the influence of each hyperparameters for the Gaussian and

Polynomial kernel
I For the Gaussian kernel and a given set of hyperparameters

I Get the number of support vectors
I Plot them
I Conclusions ?



Simulated data

I Simulated reflectance of Mars surface (500 to 5200 nm)
I The model has 5 parameters (Sylvain Douté): the grain size of water and

CO2 ice, the proportion of water, CO2 ice and dust.
I x ∈ R184 and n = 31500.
I Fives classes according to the grain size of water.
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In this labwork, we are going to use the R package e1071 that use the C++
library libsvm, the state of the art QP solver.

http://ipag.osug.fr/spip.php?page=identite&id=doutes&lang=fr


Questions

I Using the file main_svm.R, classify the data set with
I SVM with a Gaussian kernel,
I K-NN and Kernel KNN (with a polynomial kernel)

I Implement the cross-validation for SVM, to select the optimal
hyperparameters (C,σ)

I Compute the confusion matrix for each methods and look at the
classification accuracy



Load the data

## Load some library
library("e1071")

load("astrostat.RData")

n=nrow(x)
d=ncol(x)
C = max(y)

numberTrain = 100 # Select "numberTrain" per class for training
numberTest = 6300-numberTrain # The remaining is for validation

## Initialization of the training/validation sets
xt = matrix(0,numberTrain*C,d)
yt = matrix(0,numberTrain*C,1)
xT = matrix(0,numberTest*C,d)
yT = matrix(0,numberTest*C,1)

for (i in 1:C)
{

t = which(y==i)
ts = sample(t) # Permute ramdomly the samples for class i
xt[(1+numberTrain*(i-1)):(numberTrain*i),]=x[ts[1:numberTrain],]
yt[(1+numberTrain*(i-1)):(numberTrain*i),]=y[ts[1:numberTrain],]

xT[(1+numberTest*(i-1)):(numberTest*i),]=x[ts[(numberTrain+1):6300],]
yT[(1+numberTest*(i-1)):(numberTest*i),]=y[ts[(numberTrain+1):6300],]

}



Perform a simple classification

## Learn the model
model = svm(xt,yt,cost=1,gamma=0.001,type="C",cachesize=512)

## Predict the validation samples
yp = predict(model,xT)

## Confusion matrix
confu = table(yT,yp)
OA = sum(diag(confu))/sum(confu)
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