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ORIGINAL RESEARCH ARTICLE

Molecular methods routinely used to detect Coxiella
burnetii in ticks cross-react with Coxiella-like bacteria

Jourdain Elsa, PhD, DVM1*, Olivier Duron, PhD2, Barry Séverine1,
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Background: Q fever is a widespread zoonotic disease caused by Coxiella burnetii. Ticks may act as vectors,

and many epidemiological studies aim to assess C. burnetii prevalence in ticks. Because ticks may also be

infected with Coxiella-like bacteria, screening tools that differentiate between C. burnetii and Coxiella-like

bacteria are essential.

Methods: In this study, we screened tick specimens from 10 species (Ornithodoros rostratus, O. peruvianus, O.

capensis, Ixodes ricinus, Rhipicephalus annulatus, R. decoloratus, R. geigy, O. sonrai, O. occidentalis, and

Amblyomma cajennense) known to harbor specific Coxiella-like bacteria, by using quantitative PCR primers

usually considered to be specific for C. burnetii and targeting, respectively, the IS1111, icd, scvA, p1, and

GroEL/htpB genes.

Results: We found that some Coxiella-like bacteria, belonging to clades A and C, yield positive PCR results

when screened with primers initially believed to be C. burnetii-specific.

Conclusions: These results suggest that PCR-based surveys that aim to detect C. burnetii in ticks by using

currently available methods must be interpreted with caution if the amplified products cannot be sequenced.

Future molecular methods that aim at detecting C. burnetii need to take into account the possibility that

cross-reactions may exist with Coxiella-like bacteria.
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Q
fever is a worldwide zoonosis caused by Coxiella

burnetii, a ubiquitous intracellular bacterium that

infects humans and a variety of animals. Live-

stock, especially small ruminants, are the main sources of

human infections (1�3). In domestic ruminants, Q fever’s

major clinical manifestations are abortions and stillbirths,

whose occurrence may translate into significant economic

losses (1�3). In humans, C. burnetii infections range from

asymptomatic to severe. Acute forms of the disease may

result in high fevers and severe pneumonia or hepatitis,

and chronic forms are strongly debilitating and may be

fatal when endocarditis develops in patients with under-

lying heart disease (3, 4). Both animals and humans

essentially become infected through the inhalation of

airborne particles contaminated with C. burnetii (2, 5).

Ticks are historically known to be potential vectors for

Q fever. Indeed, the first strain of C. burnetii was isolated

from a Dermacentor andersoni tick in the 1930s (6�8). First

assigned to the genus Rickettsia (in which infection by

arthropods is the rule), it was later recognized as the

Q fever etiologic agent and is now considered as C. burnetii

reference strain (9). Because C. burnetii is frequently

detected in field-sampled ticks (10�13) and because labo-

ratory experiments have revealed that at least some tick

species are competent vectors (6, 14, 15), it is currently

considered that ticks may act as vectors and help transmit

the bacterium among wildlife and, on occasion, domestic

ruminants (2, 16).

Interestingly, ticks also frequently carry Coxiella-like

bacteria that are likely involved in mutualistic symbioses
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with their arthropod hosts (16�19). To date, there has been

no indication that these tick-carried Coxiella-like bacteria

are transmitted to vertebrates, although Coxiella-like

bacteria have sporadically been detected in pet birds (19,

20). Recent investigations based on multilocus phyloge-

netic analyses and whole genome sequencing data revealed

that all known C. burnetii strains originate within the vast

group of Coxiella-like endosymbionts and are the descen-

dants of a Coxiella-like progenitor hosted by ticks (17).

Because epidemiologic studies that aim at assessing

C. burnetii prevalence in ticks frequently rely on DNA

detection by polymerase chain reaction (PCR), it is im-

portant to make sure that these screening methods are

specific for C. burnetii. The objective of this study was

to determine whether five molecular methods frequently

used to detect or characterize C. burnetii cross-react with

Coxiella-like bacteria present in ticks.

Materials and methods

Selection of a panel of 20 ticks infected with specific
Coxiella-like bacteria

Ten tick species, previously shown to harbor specific

Coxiella-like bacteria (17), were investigated.

They were selected with the aim to represent the

four clades (A�D) currently described for the Coxiella

genus (17) (Fig. 1): clade A (Ornithodoros rostratus,

O. peruvianus, O. capensis), clade B (Ixodes ricinus),

clade C (Rhipicephalus annulatus, R. decoloratus, R. geigyi,

O. sonrai, O. occidentalis), and clade D (Amblyomma

cajennense). This panel included three tick species from

which C. burnetii had previously been reported, namely

O. sonrai (12), I. ricinus (21�23), and R. annulatus (24).

Two tick specimens were examined for each species.

They were eitherobtained from breeding colonies or sampled

from their host species or habitats and they were processed

as previously described (17). Briefly, the ticks were first

washed with sterile water to avoid external bacterial

contamination. Then, DNA was individually extracted

using the DNeasy Blood & Tissue Kit (Qiagen) following

manufacturer’s instructions. DNA template quality was

verified via PCR amplification of 18S ribosomal RNA or

cytochrome oxidase 1 arthropod primers. Nested PCR

assays were conducted using primers designed to amplify

bacteria from the Coxiellacae family (i.e. Coxiella and its

sister genus Rickettsiella) and to target the rpoB (DNA-

directed RNA polymerase beta) gene and the GroEL/htpB

(60 kDa chaperone heat shock protein B) gene as des-

cribed elsewhere (17, 25). Sequencing of the PCR products

obtained showed that each tick species was infected by

a specific Coxiella-like bacterium that was genetically

related to, but distinct from, C. burnetii. None of these

tick DNA templates was found infected with C. burnetii

on the basis of multilocus DNA sequencing (17).

Selection of qPCR primers thought to be

specific for C. burnetii
The 20 tick specimens were tested using quantitative PCR

(qPCR) methods using primers that are usually considered

to be specific for C. burnetii (Table 1). We used TaqMan

Fig. 1. Genetic relatedness of the 10 tick species used in this study using as reference the phylogenetic network published by Duron et al.

(17) with concatenated 16S rRNA, 23S rRNA, GroEL/htpB, rpoB, and dnaK sequences for 71 tick-borne Coxiella strains, 15 C. burnetii

reference strains, and several bacterial outgroups.
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Table 1. Details about the qPCR methods used in the study

Gene Function Primer designation

Primers and probe

sequences (5?�3?)

Fragment

length (bp) Reference

% covering with the

endosymbiont of

R. turanicusb

% covering with the

endosymbiont of

A. americanumc

IS1111 Insertion sequence Forward primer

Reverse primer

Probe

Confidentiala

Confidentiala

Confidentiala

76 (1) 58

0

0

63d

0

63d

icd Isocitrate dehydrogenase Forward primer

Reverse primer

Probe

GACCGACCCATTATTCCCT

CGGCGTAGATCTCCATCCA

CGCCCGTCATGAAAAACGTGGTC

139 (2) 84

0

0

0

0

0

p1 Porine Qp1-F

Qp1-R

Probe

CGGCGATTGGCGTTTC

GGTTGCGGTAATGCCGTTAA

AACTGTTCAAAATCCGAAACGAGTCGCA

68 (3) 0

12d

50d

0

0

0

scvA Chromatin condensation QscvA-F

QscvA-R

Probe

TGGAAAGACAAAATGTCCAACAA

GGTTAGAAGCACCCGGTCGT

ACGTGGAAAAGACCAACG

69 (3) 52d

0

67d

0

0

0

GroEL/htpB Heat shock protein HtpB-1

HtpB-2

Probe

TGGCTCAAGCGATTTTGGTT

TTATCAATACCCCGTTTCAAATCC

AAAGCCGTTATTGCTGGAATGAACCCC

82 (4) 65d

92d

70d

0

0

0

aThe detailed protocol used for the amplification of IS1111 will be soon published by Sidi-Boumedine et al. (in preparation) and remains meanwhile confidential; bGenBank accession

number: CP011126; cGenBank accession number: CP007541; dsequence positions are distant from each other on the endosymbiont complete genome.
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Universal PCR Master Mix (UMM 2�) following the

amplification protocol: 1 cycle at 508C for 2 min and

1 cycle at 958C for 10 min, followed by 40 PCR cycles

of 958C for 15 s and 608C for 1 min. Two of the targeted

markers � the multicopy IS1111 insertion sequence (26, 27)

and the icd (isocitrate dehydrogenase) housekeeping gene

(26) � are frequently used in surveys that aim to estimate

the prevalence of C. burnetii infection in ticks (16). The

following genes were also targeted: scvA (small-cell-

variant protein A), which is likely involved in chromatin

condensation when the bacterium is ‘sporulating’, and

porine p1, which encodes an outer membrane protein (28).

Finally, we focused on a specific region of the GroEL/htpB,

distinct from the region targeted to amplify the genome of

Coxiella-like bacteria (17) and considered to be specific to

C. burnetii (29). Nine Mile phase II genomic DNA (RSA

493 isolate) was used as a reference. In silico comparisons

of the primers and probes with currently published

sequences of R. turanicus (GenBank accession number:

CP011126) and A. americanum (GenBank accession

number: CP007541) suggested that mismatches with these

symbionts were unlikely (Table 1).

Results
We found that some Coxiella-like bacteria, belonging to

clades A and C, yield positive PCR results when screened

with primers initially believed to be C. burnetii-specific

(Table 2). Overall, DNA was amplified for at least one

marker in 6 of the 10 tick species studied. The most fre-

quently amplified marker was IS1111, which was detected

in five different species, whereas GroEL/htpB and scvA

were amplified from three species. Porine p1 was solely

amplified from a R. geigyi specimen, which was also posi-

tive for htpB, scvA, and IS1111, and displayed a particu-

larly low Ct value (Ct�33) for IS1111. Conversely, icd was

not detected in any of our samples. Interestingly, we

observed intraspecific variation: one of the Coxiella-like

endosymbiont from R. decoloratus was positive for IS1111,

whereas the other was positive for scvA. Unfortunately,

because all PCR products were poorly concentrated,

sequencing was unsuccessful.

Discussion
The marker we most frequently detected in ticks infected

with Coxiella-like endosymbionts was the IS1111 trans-

posable element, which is routinely targeted during epi-

demiological surveys examining C. burnetii prevalence

in ticks (16). We thus showed that C. burnetii detection

assays based only on IS1111 may lead to misidentification

with Coxiella-like endosymbionts. The recent work of

Duron (30) corroborates this finding: several genetically

divergent IS1111 copies were found widespread in many

Coxiella-like endosymbionts, therefore showing that IS1111

can no longer be considered specific to C. burnetii. These

findings may explain why surveys based on IS1111 screening

occasionally report prevalence levels �10% (23, 31�33).

Our results also showed that the use of a combination

of primers targeting different markers, as performed in

some studies (11, 21, 34�36), is not sufficient to guarantee

the specificity of C. burnetii detection. Indeed, up to

four of our markers were detected in a same Coxiella-like

endosymbiont. Interestingly, icd, which is frequently used

as a PCR target in epidemiological studies (16, 34), was

not amplified from our panel of Coxiella-like infected ticks.

However, Reeves et al. (37) were able to amplify a 612-bp

icd fragment, displaying 93% homology with C. burnetii,

from a Coxiella-like bacterium that infects ticks from the

O. capensis complex in South Carolina, USA. This result

contrasts with our observation that icd was not amplified

from the endosymbiont of O. capensis ticks sampled from

Cape Verde and highlights the fact that the amplifica-

tion of a specific genetic marker strongly depends on

the PCR method (PCR, nested PCR, or qPCR) and the

primer sequences used.

Table 2. Ct values obtained using qPCR for both specimens of the 10 tick species tested

Coxiella-like clade Tick species IS1111 icd GroEL/htpB p1 scvA

A O. rostratus �/� �/� �/� �/� �/�

O. peruvianus 39/37 �/� 30/31 �/� �/�

O. capensis �/� �/� 35/35 �/� �/38

B I. ricinus �/� �/� �/� �/� �/�

C R. annulatus 37/38 �/� �/� �/� �/�

R. decoloratus �/36 �/� �/� �/� 39/�

R. geigyi 37/33 �/� �/38 �/35 �/38

O. sonrai 39/36 �/� �/� �/� �/�

O. occidentalis �/� �/� �/� �/� �/�

D A. cajennense �/� �/� �/� �/� �/�

The sign ‘/’ is used to separate the results obtained for the first and the second tick specimen; ‘�’ indicates that no amplification was

observed.
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More generally, negative results may be due to low

detection sensitivity, which is supported by high detection

thresholds for most of the genes. In particular, intraspe-

cific variation may be due to the individual ticks having

a low bacterial burden, sex- or stage-specific differences,

and the presence of PCR inhibitors. In our study, it is

possible that the IS1111-based PCR method was the

most sensitive of the tests used, because several copies of

this gene are likely present in the genome of Coxiella-like

bacteria, as is the case for C. burnetii. This hypothesis is

supported by the observation that GroEL/htpB, porine p1,

and scvA were detected in the endosymbiont of a R. geigyi

specimen that displayed a low Ct value for IS1111.

Standardizing methodology across laboratories is essen-

tial to allow comparisons among studies. Although remark-

able progress has recently been made in designing new

PCR-based techniques to detect C. burnetii, these ad-

vances have overlooked that an important genetic diver-

sity actually exists within the Coxiella genus (16). In this

context, it may not be surprising that the PCR primers

routinely used to target C. burnetii actually cross-react

with Coxiella-like bacteria. Therefore, in the future, mole-

cular methods aiming at detecting C. burnetii should make

sure that no cross-reaction exists not only with other abortive

agents but also with Coxiella-like organisms. Recent full-

genome sequencing data indeed not only highlighted

obvious genetic similarities of C. burnetii with Coxiella-

like bacteria but also revealed some mutations specific

to Coxiella-like bacteria (18, 38). This pattern likely ex-

plains why PCR cross-reactions with Coxiella-like bacteria

are partial and variable between markers. Interestingly,

identical IS1111 copies were found in C. burnetii and some

Coxiella-like bacteria (30), suggesting that the risk of

detecting Coxiella-like bacteria with IS1111 primers de-

signed to detect C. burnetii is very high and must not be

underestimated.

PCR-based surveys that aim to detect C. burnetii in

ticks must be interpreted with caution if the amplified

DNA products are not sequenced. Unfortunately, the ratio

of bacterial DNA to tick DNA is frequently low, which

makes it challenging to obtain PCR products concentrated

enough for direct sequencing via conventional PCR. Addi-

tionally, currently available qPCR methods, such as those

used in this study, often yield very short DNA fragments

that are difficult to concentrate for sequencing purposes

and that correspond to rather uninformative sequences.

Therefore, there is an urgent need to develop a multiplex

qPCRor microchip method that would make it possible to

directly differentiate Coxiella-like bacteria from C. burnetii

in tick samples and to detect co-infections. Pending devel-

opment of such a test, useful alternative methods include

the sequencing of the 16S rRNA, rpoB, and GroEL genes

of Coxiella bacteria, after amplification by nested PCR,

as previously described (17, 25).
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