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Abstract
Predicting the population dynamics of annual plants is a challenge due to their hidden seed

banks in the field. However, such predictions are highly valuable for determiningmanagement

strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds sur-

vive during unfavourable seasons and persist for several years in the seed bank. This causes

difficulties in making accurate predictions of weed population dynamics and life history traits

(LHT). Consequently, it is very difficult to identify management strategies that limit both weed

populations and species diversity. In this article, we present a method of assessing weed pop-

ulation dynamics from both standing plant time series data and an unknown seed bank. We

use a HiddenMarkov Model (HMM) to obtain estimates of over 3,080 botanical records for

three major LHT: seed survival in the soil, plant establishment (including post-emergence

mortality), and seed production of 18 commonweed species. Maximum likelihood and Bayes-

ian approaches were complementarily used to estimate LHT values. The results showed that

the LHT provided by the HMM enabled fairly accurate estimates of weed populations in differ-

ent crops. There was a positive correlation between estimated germination rates and an

index of the specialisation to the crop type (IndVal). The relationships between estimated

LHTs and that between the estimated LHTs and the ecological characteristics of weeds pro-

vided insights into weed strategies. For example, a common strategy to cope with agricultural

practices in several weeds was to produce less seeds and increase germination rates. This

knowledge, especially of LHT for each type of crop, should provide valuable information for

developing sustainable weedmanagement strategies.

Introduction
Agriculture has to face conflicting challenges such as ensuring food security and conserving
biodiversity while reducing chemical inputs and environmental impacts and to conserve biodi-
versity [1]. In agroecosystems, weeds pose a major threat to crop production. Hence, weeds
have been intensively managed over the decades resulting in a huge decline in weed
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biodiversity [2]. However, arable weeds also sustain many taxa in agroecosystems, including
birds and pollinators [3–5] and one of the major challenges facing stakeholders is to predict the
decline or increase in certain species in response to management actions. Therefore, there is a
need to determine appropriate management strategies that maintain crop production while
maintaining weed species biodiversity in agroecosystems.

Predicting the abundance of weed species and communities is a challenge because of the dif-
ficulty in characterization of the soil seed bank. Most weed species are therophytes [2,6] and
survive as seeds during unfavourable seasons and eventually they complete their life cycle dur-
ing more favourable seasons. The dormant seeds of many species can survive for years or
decades until favourable conditions occur. The seed bank may contain several hundreds or
thousands of seeds m-2. Counts as high as 50,000 seeds m-2 have been reported [7]. There is
some consensus that 500 to 5,000 seeds m-2 is a median value of seed density m-2; although this
range is still highly variable when pooled over all species that may be present in a field [8–10].
One way of describing weed soil seed bank is that they are primarily an assemblage of seeds
that sometimes will germinate, emerge, and produce an adult plant. Unfortunately, little is
known about the structure and composition of the persistent seed bank since counting and
identifying seeds at the species level is tedious, expensive, and time-consuming. In addition,
weed abundance are often only estimated by semi-quantitative measures derived from farmers’
perceptions of weed infestation [11]. While such perceptions are appropriate for describing
highly variable situations within fields, they only provide a vague picture of the actual weed
community and their variations over space and time. Furthermore, weed seed bank emergence
may be spread over several growing seasons, thus, making it difficult to correlate weed popula-
tions with the weed management practices.

The objective of this paper is to estimate three life history traits of the most frequently
occurring weed species in the field, i.e., seed survival, plant establishment and seed produc-
tion. In arable fields, life history traits such as fecundity, establishment rate, seedling survival,
and seed bank persistence have been identified as the most important in determining year-
to-year changes in weed population or weed species occurrence [12, 13, 14, 15]. Weed estab-
lishment and species composition is highly dependent on the agricultural techniques used
(e.g., tillage, crop type) and is influence by environmental variables (e.g., temperature, mois-
ture and soil structure). Using model sensitivity analysis, Colbach et al. [13] confirmed that
life history traits related to plant establishment and seed reproduction are key parameters in
weed dynamics.

Hidden Markov Models (HMMs), which are classical extensions of Markov chains, are used
to allow for missing (or hidden) data. HMM have already been used to estimate plant demo-
graphic parameters without seed bank observation in the case of feral populations of oilseed
rape (Brassica napus) [16]. Recently, a study showed that the HMM offers a reliable way to test
for the existence of a one-year seed bank on the sole basis of time series of patch occupancy
data in metapopulations [17]. Here, the HMM approach is used at the field scale to estimate
three major life history traits (LHTs), i.e., seed survival, plant establishment, and seed produc-
tion, from time series of above-ground plant abundance data for the most common weed spe-
cies under several management systems.

We first evaluate the approach by comparing the relationship between estimated LHTs and
certain weed features (specialisation index, i.e., IndVal and functional traits) to current knowl-
edge in ecology. Then, using the estimated LHTs to compute species growth rates, we compare
weed life history strategies, which are synthetic characteristics that determine species popula-
tion dynamics [18].

Hidden Markov Models andWeed Life History Traits
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Materials and Methods

Dataset
A total of 3,080 weed records in 26 types of crop were obtained from 385 fields in France (lat-
itudinal range: 761 km; longitudinal range: 696 km) between 2002 and 2009 as part of the
national Biovigilance-Flore project [19] (S1 Fig). Each field was surveyed for up to eight suc-
cessive years by two or more experts walking across the survey area (2000 m²) for a minimum
of 20 min and recording the abundances of all weed species. Surveys took place in spring
(between the end of March and the beginning of April) for winter-sown crops, and in sum-
mer (around the beginning of July) for spring- and summer-sown crops. This survey was
generally made after herbicide treatments. The abundance scale adapted from Barralis [11]
gives a semi-quantitative count of the number of individual weeds per m², ‘1’ indicates that
no plant was found in the 2000 m² area; ‘2’ that one to two individual weeds were recorded
per m²; ‘3’ that three to 20 individual weeds were recorded per m2; and ‘4’ that more than 20
individual weeds were recorded per m². Since this last abundance class does not have an
upper bound and has a wide range of variation, additional abundance classes were created
for the number of seeds in the seed bank (cy), resulting in six abundance classes: ‘1’ = 0 ind/
m²; ‘2’ = {1:2} ind/m²; ‘3’ = {3:20} ind/m²; ‘4’ = {21:60} ind/m²; ‘5’ = {61:100} ind/m²; and
‘6’ = {101:+1} ind/m². This made it possible to model the fact that not all the seeds in the
seed bank may emerge and that a large number of emerged plants could either result from a
high germination rate of a moderate size seed bank or a low germination rate of a large size
seed bank.

Four management actions were selected corresponding to four common crop species and
their associated agricultural practices—winter cereals, oilseed rape, maize (Zea mays) and
sunflower (Helianthus annuus L.)—that were sufficiently representative of the dataset. We
selected the fields (1) where at least one of these crops had been sown at least once, and (2)
that had been surveyed for two consecutive years. This gave a total of 329 out of the 385 sur-
veyed fields (i.e., time series) corresponding to 1,191 records. The average duration of a time
series was 3.62 years (s.d. = 1.19 years). Management actions were unequally represented in
the surveys (49.6% of winter cereals (WC), 10.2% of oilseed rape (OR), 29.3% of maize (M)
and 10.8% of sunflower (SF)) for the whole dataset. Up to 288 different species were
recorded. We focused on the annual weed species recorded in at least 120 surveys. We ini-
tially selected 32 weed species (S1 Table). Then, in order to improve the quality of our esti-
mates, we removed the species for which the pairs (species, management action) were
present in less than 10% of the total number of crop sequences recorded. Finally, we selected
18 weed species.

Hidden Markov Model (HMM)
The HMM was used to model the dynamics of each weed species. (cx

1, cx
2, . . ., cx

T) are the
observed variables corresponding to a time series of abundance classes of emerged weeds (cx

t

belongs to {1,2,3,4}) and T is the time series length. The hidden variables correspond to the
time series of abundance classes in the seed bank: (cy

1, cy
2, . . ., cy

T) with cy
t taking value in

{1,2,3,4,5,6}. The temporal relationship between these variables is described by two conditional
probabilities (Fig 1):

• Patðcxtþ1 jcyÞ: the probability that at time t+1, there is an abundance class cx
t+1 of emerged

weeds when the abundance class in the seed bank at time t was cy
t and management actions,

i.e., the crop species and its associated agricultural practices, at, were applied.

Hidden Markov Models andWeed Life History Traits
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• Patðcytþ1 jcxtþ1 ; cyÞ: the probability that at time t+1, the abundance class in the seed bank is

cy
t+1 when the emerged weed abundance class cx

t+1 is observed at time t+1 and when, at time
t, the abundance class in the seed bank was cy

t and management actions, at, were applied.

These two conditional probabilities depend on life history parameter triplets, (σa, sa, φa),
which in turn are conditioned by the management actions a. More precisely, the conditional
probability of emerged weeds, Pat ðcxtþ1 jcyÞ, depends on the germination rate σa since only seeds

that have germinated will produce a mature plant. cx
t does not contribute to cx

t+1 since the
studied species are annual. The conditional probability of the seed bank state transition,
Pat ðcytþ1 jcxtþ1 ; cyÞ, depends on the germination rate σa, the seed survival rate in the seed bank sa,

and the seed production number φa, i.e., the number of seeds from each emerged plant in the
seed bank. The seed bank at a given time stage comprises the seeds that did not germinate and
survived, plus the seeds produced by the mature plants. Therefore, in this HMM, the sets of
triplets {(σa, sa, φa)}a⊰ A for all possible management actions (a⊰ A) summarise the weed popu-
lation dynamics in various crop conditions.

The two transition probabilities for emerged plant classes and the seed bank classes were
derived by integrating simple equations over each class range that define the weed population
dynamics based on count data (Xt, Yt) of the emerged flora and the seed bank. To build the
model, it was assumed that the number of emerged plants Xt+1 at time t+1 followed a bino-
mial distribution of parameters (Yt, σa), where Y

t is the number of seeds in the seed bank at
time t. It was also assumed that the number of dead seeds in the seed bank followed a bino-
mial distribution with population size equal to the seed count Yt, minus the number of ger-
minated seeds (i.e., Xt+1) and probability (1—sa). Since intensive computer processing would
be required to give an exact evaluation of the conditional probabilities, they were estimated
by simulation. A complete description of the mathematical expression of the conditional
probabilities and the method used for their estimation is given in S1 File.

Fig 1. Hidden Markov Model for abundance classes. cx
t+1, the abundance class of the emerged plants at

time t+1 depends on the abundance class of the weed population in the seed bank (cy
t) and the management

actions at at time t. At time t+1, the abundance class of the weed population in the seed bank cy
t+1 is the sum

of the output of the interaction between the abundance class of the weed population in the seed bank (cy
t)

and management actions at at time t and of the number of seeds produced by the emerged plants of this
weed population at t+1 (cx

t+1). The three LHTs are the germination rate σ, the seed survival rate in the seed
bank s, and the seed production number φ, i.e., the number of seeds from each emerged plant in the seed
bank. The values of these three LHTs (s, σ and φ) depend on the management action at.

doi:10.1371/journal.pone.0139278.g001
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Maximum likelihood and Bayesian estimates of life history traits
The Maximum Likelihood estimates of the LHTs were evaluated as follows. For a given weed
species in a given field, the probability of observing a time series (cx

1, cx
2, . . ., cx

T) of emerged
weeds when the corresponding sequence of management actions is (a0,a1, a2, . . ., aT), is given
by the formula:

Ln ¼
X

cy0 ...cyT�1
Pa0ðcx1 jcy0ÞPðcy0Þ

YT

t¼2
Pat�2ðcyt�1 jcxt�1 ; cyt�2ÞPat�1ðcxt jcyt�1Þ ð1Þ

where subscript n is the sample number. A sample is a time series and there are N samples for
the N fields where the species was recorded. For a given species, it was assumed that the N time
series were independent. The maximum likelihood estimators for the LHT are the values that
maximise the log-likelihood:

logL ¼
XN

n¼1
logðLnÞ ð2Þ

Therefore, since we considered four management actions, the output of this maximisation is
a set of four triplets (σa, sa, φa) of LHT values, one for each management action a (equal to
WC, OR, M or SF). In addition, to avoid introducing a priori assumptions on the initial distri-
bution of abundance classes in the seed bank at t = 0, the p(cy

0) were considered as parameters,
which were estimated by maximum log-likelihood, together with the LHT values. All calcula-
tions were carried out using the R package FME [20], based on the pseudo random search opti-
misation [21].

Evaluation of the predictive efficiency by cross-validation
The quality of the LHT estimates obtained from the HMMmodel was evaluated by calculating
the predictive efficiency, defined as the percentage of correct predictions of abundance classes
of emerged plants. This was evaluated by cross-validation over four sub-datasets of 18 species
and 82 fields selected at random (25% of the total number of fields). Each sub-dataset, in turn,
represented the validation dataset, while the three others were merged and represented the
training dataset. For a given training set, the maximum log-likelihood estimator was calculated
using the above-mentioned pseudoOptim function with a large maximum number of iterations
(50,000) and a relatively low precision criterion (1e-6) in the algorithm. The number of simula-
tions used to evaluate transition probabilities (K in S2 File) was set to 30,000. The abundance
class cx

t was then predicted as the mode of Pat ðcxtþ1 jcxt Þ calculated for the estimated LHT.
For each species, the model was tested to determine whether it correctly predicted the

absence (class 1) and presence (class larger than 1) of species by calculating an average effi-
ciency for predicting absence over the whole validation dataset (proportion of cases where class
1 was predicted when class 1 was observed) and an average predictive efficiency of presence
(proportion of cases where a class above 1 was predicted when a class above 1 was observed). If
the predictions differed from the observed classes, two average class errors were then estimated:
one based on the prediction of absence (mean difference between the predicted class and “true”
class 1) and the other on the prediction of presence (mean difference between the predicted
class and the observed class for classes larger than 1).

Relationships between LHT estimates and species characteristics
The quality of prediction of the model was also evaluated by investigating the relationships
between estimated LHTs and current knowledge on weed ecology. Since the likelihood estima-
tion procedure was highly time-consuming when applied to the whole data set, a faster

Hidden Markov Models andWeed Life History Traits
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estimation algorithm was used for the following analyses. Posterior distributions of the LHTs
were estimated using a Bayesian approach with the Gibbs sampler algorithm. The Gibbs sam-
pler requires a good starting point. Therefore, the maximum likelihood estimators obtained
from the cross validation analysis were selected for initialisation. In practice, the posterior dis-
tribution parameters were obtained assuming uniform prior distributions and running the
gibbs function of the LearnBayes R package with log-likelihood logL as the posterior density.

The relationship between the germination rate and the indicator species index (indicator
value, IndVal) [22] of the 18 species was determined for each type of crop. IndVal is computed
from a combination of a species' relative abundance with its relative frequency of occurrence
within the various crop types based on botanical records. Consequently, within a given type of
crop, we expected a positive correlation between this score and the estimated germination rate
since the most frequent species would also be those that easily germinate in these conditions.
IndVal indices were computed (using the indicspecies R package, [22]) to discriminate
autumn/winter and spring/summer weeds by measuring species specificity and frequency in
several crop types. The relevance of the model predictions was also tested by analysing the cor-
relation between LHT estimates (averaged over the four crop types) and two functional traits:
the seed mass, which is related to reproduction [23], and the seed coat thickness, which is
related to seed persistence in the seed bank [24]. Depending on total allocation trade-offs [20],
the average seed production per plant (i.e., number of seeds) was expected to be negatively cor-
related with the per capita seed mass. The average seed survival rate was expected to be posi-
tively correlated with the seed coat thickness as shown by Gardarin et al. [24]. Weed functional
trait values were extracted from the WEED-DATA database (INRA, S. Gaba pers. comm.).

LHT combination and growth rate
LHT estimates were used to identify the triplets (σa, sa, φa) which represent the life history
strategy that gives positive growth rates for the management conditions, a. Species growth
rates were estimated from the three LHTs using a Leslie matrix framework that incorporates
the LHTs of the weed species into a structured population model [25]:

naseed

naplant

" #
tþ1

¼ sað1� saÞ þ saφa 0

sa 0

" #
naseed

naplant

" #
t

The asymptotic growth rate λa (i.e., when the equilibrium state is reached) is the dominant
eigenvalue of the Leslie matrix for each management action a�A. A species has a positive
growth rate when λa is greater than 1; otherwise it is negative (λa <1) or stable (λa = 1). Since
weed populations are disturbed as a result of, for example, herbicide applications or soil surface
preparation, we also explored the deviation between the long-term and the transient popula-
tion growth rates by computing the damping ratio (see S3 File for more details), which mea-
sures the speed of convergence to the asymptotic growth rate. Finally, the relative contribution
of LHT (σa, sa, φa) on species growth rates was quantified by a random forest analysis per-
formed for each species and type of crop (randomForest R package).

Results

Model predictive efficiency assessment by cross-validation
For each species, the predictive efficiency of the model varied between 93% and 100%
(mean = 96.83%) for predicting the absence of species. However, the model tended to overesti-
mate the abundance class 1, i.e., the absence of weed species. As a direct consequence, better
estimates were obtained for situations with no weed species than for situations with few or

Hidden Markov Models andWeed Life History Traits
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many weeds (Table 1). Consequently, the prediction efficiency for the presence of species var-
ied between 0% and 67% (mean = 19.72%) (Table 1) and was slightly correlated with the spe-
cies occurrence in the botanical records (ρ = 0.42, P-value = 0.083).

Differences between the predicted and the observed abundance classes were typically of one
abundance class (1.18 abundance class on average, Table 1). When the species was absent and
incorrectly predicted, the model tended to predict an abundance class 2 (1 to 2 ind/m²) and,
conversely, when the species was present and incorrectly predicted, its abundance class was
generally underestimated by one abundance class (Table 1).

Detailed parameter distribution estimates (probability distribution of seed bank states at
t = 0 and LHT) obtained over the whole dataset by the Gibbs sampler for the 18 weed species
are presented in the Supplementary Material (S3 and S4 Tables, S2 and S3 Figs).

Table 1. Predictive efficiency and class attribution error.

EPPO
Code

Latin Name Field
occurrence
(n = 329)

Record
occurrence
(n = 1191)

Average
predictive
efficiency for
absence

Average
predictive
efficiency for
presence

Average class
error for
absence

Average class
error for
abundance

ALOMY Alopecurus
myosuroides
Huds.

39.8% 20.8% 0.96 0.27 1.48 (0.10) -1.24 (0.06)

ANGAR Anagallis arvensis
L.

43.1% 15.4% 1 0 n.a.a -1.17 (0.03)

CHEAL Chenopodium
album L.

74.1% 46.0% 0.93 0.67 1.67 (0.08) -0.58 (1.07)

FUMOF Fumaria officinalis
L.

32.2% 12.7% 1 0 n.a.a -1.14 (0.04)

GALAP Galium aparine L. 59.5% 30.8% 0.96 0.17 1.08 (0.05) -1.20 (0.03)

MERAN Mercurialis annua
L.

41.6% 23.8% 0.97 0.37 1.23 (0.09) -1.06 (0.07)

PAPRH Papaver rhoeas L 45.5% 20.9% 0.98 0.12 1 (0) -1.16 (0.03)

POAAN Poa annua L 38.9% 19.9% 0.98 0.24 1.62 (0.125) -1.31 (0.07)

POLAV Polygonum
aviculare L

54.7% 27.2% 0.99 0.04 1 (0) -1.34 (0.04)

POLCO Fallopia
convolvulus L

44.9% 20.8% 0.96 0.17 1.10 (0.06) -1.19 (0.06)

SENVU Senecio vulgaris L 66.5% 35.0% 0.95 0.10 1.12 (0.07) -1.15 (0.02)

SINAR Sinapis arvensis L. 37.3% 19.8% 0.97 0.27 1.12 (0.08) -1.13 (0.05)

SOLNI Solanum nigrum L. 56.5% 26.7% 0.93 0.53 1 (0) -1.37 (0.05)

SONAS Sonchus asper L. 50.7% 22.0% 0.99 0.03 1 (0) -1.08 (0.03)

SONOL Sonchus
oleraceus L.

27.0% 10.6% 1 0 n.a.a -1.08 (0.03)

STEME Stellaria media L. 48.6% 25.6% 0.96 0.18 1.29 (0.09) -1.42 (0.05)

VERHE Veronica
hederifolia L.

52.2% 25.2% 0.94 0.28 1.02 (0.03) -1.29 (0.04)

VERPE Veronica persica
L.

51.6% 24.1% 0.96 0.11 1.21 (0.08) -1.24 (0.04)

Mean 48% 23.7% 0.97 0.19 1.19 (0.057) -1.17 (0.1)

This table gives the average predictive efficiencies for the absence and presence of species, the average class error for absence class (class 1) and for

abundance classes (class 2 to 4) when using estimated LHT parameters and estimated distribution of the seed bank state at t = 0. Field occurrence and

record occurrence are the percentages of fields and of botanical records in which the species was recorded, respectively. Values in parentheses give the

standard average class error.
a Data were not available.

doi:10.1371/journal.pone.0139278.t001
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Relationships between life history traits and indicator values and seed
functional traits
We observed the expected relationships between the estimated values of LHT and both the
indicator values (IndVal) and the functional traits. For all crop types, the relative establishment
rate of the species was highly positively correlated with the species IndVal (Figs 2 and 3). The
estimated average seed production (φa) was not correlated with seed mass (Spearman’s correla-
tion unilateral test, n = 18, ρ = -0.31, P-value = 0.104). Conversely, the estimated average seed
survival rate (sa) was positively correlated with the seed coat thickness (Spearman’s correlation
unilateral test, n = 9, ρ = 0.73, P-value = 0.015) even though the sample size was small (seed
coat thickness values were only available for half of the species; S4 Fig).

Life History Strategies
There were high interspecific and intraspecific variations between LHT estimates and growth
rates and none of the 18 species had similar LHT values in the four crop types (see Figs 3 and 4,
built from S2 and S3 Figs). Of the 18 species, onlyMercurialis annua L. had a positive asymp-
totic growth rate in all four crop types. Eight species had a positive growth rate in at least one
crop type, while ten species had a negative growth rate in the four crop types. The highest num-
ber of species with a positive growth rate included winter cereals and sunflower (4). Conversely,
around 90% of the species (17) showed negative growth rates with maize (Fig 4). The damping
ratio (S5 Table) revealed that most of the species had a low convergence speed to the asymp-
totic growth rate, suggesting that these weed populations are not yet in the equilibrium state
and exhibit long transient dynamics. This was expected due to the high disturbance regimes in
arable fields. However, few species populations, mostly in winter cereals, seemed closer to the
equilibrium (e.g., damping ratio of 256 for Solanum nigrum L. in winter cereals; S5 Table).

Fig 2. Relationship between relative germination rates and IndVal indicator values for each species
with different crop types. Symbols indicate the crop type. Positive correlations were highly significant.
Winter cereals = circle (Spearman’s correlation unilateral test, ρ = 0.93, P-value < 2.2e-16), Oilseed
rape = cross (ρ = 0.88, P-value < 2.2e-16), Maize = square (ρ = 0.88, P-value < 2.2e-16) and
Sunflower = triangle (ρ = 0.91, P-value < 2.2e-16).

doi:10.1371/journal.pone.0139278.g002
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Within a crop type, different combinations of LHTs showed positive growth for various spe-
cies. For example,M. annua and Senecio vulgaris L. showed positive growth rates with sun-
flower but with different combinations of LHTs (Fig 3). A comparative analysis of species
growth rates for crop types (Fig 4) and the mean species LHTs for crop types (Fig 3) showed
that different combinations of LHTs could lead to similar growth rates, revealing variations in
life history strategies between crop types for a given species and between species for a given
crop type. Growth rates were positively correlated with germination rates in maize (ρ = 0.92, P-
value< 2.2e-16) and with seed survival rates in winter cereals (Spearman’s correlation bilateral
test, ρ = 0.69, P-value = 1.96e-3). Furthermore, random forest and regression tree analysis
revealed that the survival rate (sa) was the most important LHT for determining the species
growth rate for a given crop type.

All LHT values for a given species varied between crop types. The highest variations were
observed for species seed production (φa) and germination rates (σa), which varied significantly
between crop types, ranging from values close to 0 to a maximum seed production or germina-
tion rate depending on the crop type (Fig 3). Relative species germination rates were not

Fig 3. Life history traits and IndVal of weed species with the four crop types. Species survival rates (s),
germination rates (σ) and seed production per plant (φ) are presented by black, red and green polygons for
four crop types, respectively (WC = winter cereals, OR = oilseed rape, M = maize and SF = sunflower).
Values are scaled by dividing each value by the maximum value with the four crop types. For each species,
each scaled Life History Trait (LHT) varies between 0 and 1 and the polygon is shifted in the direction of the
crop(s) where it has its highest estimated success. Dashed polygons represent values equal to 1 for the three
life history traits, i.e., maximum value for all species for each LHT. Blue polygons represent the indicator
values (IndVal) of species with the four crop types (scaled by the maximum value of species with the four crop
types).

doi:10.1371/journal.pone.0139278.g003
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correlated with relative seed production rates in winter cereals (Spearman correlation test,
ρ = - 0.39, P-value = 0.103), oilseed rape (ρ = -0.32, P-value = 0.185), and sunflower (ρ = -0.40,
P-value = 0.094), but were negatively correlated in maize (ρ = -0.76, P-value = 3.34e-4) (Fig 5).
Overall, no species had maximum values of all LHTs in all four crop types (Fig 3).

Discussion
This study showed that even in the absence of observation of the seed bank, it is possible to
build a model that makes it possible to characterise and distinguish weed dynamics under dif-
ferent crop and weed management practices. The model is a hidden Markov model where the
influence of the hidden stage, the seed bank, is described by three Life History Trait (LHT)
parameters. This simple model is not dedicated to prediction (extension would be required as
discussed below) but to the study of the qualitative variations of the LHT estimates under dif-
ferent management practices.

The time series dataset that was used to estimate the three LHTs of the HMM- seed survival,
plant establishment and seed production—and for identification of weed life history strategies
in the four crop types is a contribution to weed science and ecology. The data enables research-
ers to provide qualitative information about life history traits and strategies and how they vary

Fig 4. Growth rates of seed banks with the four major crop types. Red polygons represent the growth
rates of the weed species with the four crop types (WC = winter cereals, OR = oilseed rape, M = maize and
SF = sunflower), as indicated by the bottom right polygon. For each species, the dashed polygon represents
a growth rate equal to 1 and the centre corresponds to a growth rate equal to zero. Blue polygons represent
the mean growth rates of the 18 species in each crop type. Species names are indicated by EPPO codes.

doi:10.1371/journal.pone.0139278.g004
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between crops and species. It is particularly helpful when empirical data is missing or derived
from standardised experimental conditions that may differ from management conditions and
include only limited contrasting environmental conditions.

Correlations were found between the estimated LHTs and functional traits and between the
estimated LHTs and ecological characteristics. Consistent with Gardarin et al. [24], we found a
significant correlation between seed coat thickness and seed survival in the seed bank. This
conclusion was in accordance with an expected trade-off between seed size and number [26].
Moreover, a significant negative correlation between estimated seed production and germina-
tion rate was observed. Such a pattern may reveal two strategies. First, species with higher seed
production have small seeds, which generally have high seedling mortality due to a lower com-
petition ability. Second, species with a lower seed production but with heavier seeds may have
a better chance to germinate and/or establish themselves. However, part of this trade-off may
come from the indirect effect of management practices. Farmers generally adapt their weed
control strategies to deal with the most abundant, pernicious weed species. Weed species with
low abundance may not be targeted by mechanical or chemical treatment, which results in
them escaping with an increased capacity to complete their life cycle by producing seeds. Their
low density and good access to nutrients are also advantageous.

Another result was that indicator species for a crop type, i.e., those with high indicator val-
ues (IndVal), generally had higher germination rates. This result is consistent with previous
studies (e.g., Gunton et al. 2011 [14]) that showed the importance of synchrony between weed
and crop germinations. Within the ephemeral environment of an arable field with a short win-
dow for growth, successful weeds normally germinate around the time the crop is sown and
complete their reproductive efforts before the crop is harvested. The approach based on an
explicit model of the seed bank dynamics is complementary to the IndVal values, which are

Fig 5. Relationship between the relative germination rate and relative seed production per plant in
each crop type. Symbols indicate the crop type (winter cereals = circle, oilseed rape = cross,
maize = square, sunflower = triangle). Relative germination rates were not correlated with the relative seed
production rates in winter cereals (Spearman correlation test, ρ = -0.39, P-value = 0.103), oilseed rape (ρ =
-0.32, P-value = 0.185), maize (ρ = -0.76, P-value = 3.34e-4) and sunflower (ρ = -0.40, P-value = 0.094), but
were negatively correlated in maize.

doi:10.1371/journal.pone.0139278.g005
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calculated for emerged plants without any reference to seed bank dynamics, and gives a better
picture of the role of crop sequences on weed abundance.

Another interesting result obtained from the LHT estimates is that different combinations
of LHT values can provide a positive growth rate. This pattern was observed across species,
suggesting that more than one strategy can be beneficial within the weed community in
response to particular agricultural practices as well as within species with different strategies
that depend on the crop type. This pattern might be explained by intraspecific weed variation,
which has been previously shown within and between fields [27]. LHT estimates could be fur-
ther used to simulate and test weed population dynamics according to specific crop sequences
by computing the population asymptotic growth rate and the damping ratio. The HMM there-
fore has an interesting explanatory power for studying the above-ground population dynamics
of weeds in agroecosystems, especially since it accounts for the contribution of the hidden seed
bank.

The HMM developed relies on several assumptions. The first one is that seeds in the bank
are indistinguishable, with the consequence that all seeds have the same probability to survive
from one year to the next, regardless of when they enter the seed bank. The consequence is a
potential overestimation of a weed’s lifetime. However, removing this assumption would be
complex: it would lead to a non-Markovian model that would be much more complex to esti-
mate. The following two assumptions, which are easily broadened, can explain why the quality
of prediction of the presence of weeds remains low. First, by construction, the conditional dis-
tribution of abundance classes of emerged weeds was unimodal. However, observations of
absence of a species (class 1) were over-represented in the dataset and classes 1 and 2 were
probably too close to be distinguished (especially from heterogeneous fields). When training
the model, this leads to overfitting the abundance class 1 while other classes are underesti-
mated. This problem could be tackled using zero-inflated distributions instead of Poisson and
Binomial distributions for counts in the underlying HMM. The second strong hypothesis of
the model is that is does not account for weed dispersal from neighbouring fields or semi-natu-
ral habitats. However, several studies have shown that weed dispersal occurs frequently beyond
the crop field scale [15, 28]. Ignoring spatial weed dispersal in the HMM is probably (only
partly) compensated for by overestimating the seed bank. Biases in parameter estimation (colo-
nisation and extinction rate) were recently observed when not taking account of the seed bank
in a recent study using a HMM to explore plant population dynamics [17]. Therefore, if spatial
dispersion is not taken into account it may lead to a similar bias. A spatial version of the HMM
would make it possible to compare the relative importance of spatial dispersal and the seed
bank (temporal dispersal) on weed dynamics. Spatial dispersal could be modelled using
Dynamic Bayesian Networks [29] that describe a network of interacting crop fields, as in Peyr-
ard et al. (2007) [30] or Tixier et al. (2013) [31].

Conclusions
This study proposes a method to account for the influence of the hidden seed bank on weed
dynamics in the absence of seed bank data, using HMM. This approach can be useful in
increasing the knowledge about species ecology. It can also provide an easy access to LHT esti-
mates, which is of high biological value for capturing the dynamics of weeds but could also be
applied to many plant and animal species with an unobservable life form that have remained
poorly understood because of the lack of suitable methodological approaches.

The HMM approach could also be used to design sustainable management policies. Indeed,
an interesting feature of the HMM is that the simulation is easy, making it possible to exten-
sively explore possible management scenarios, as has already been successfully done in the
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ecological conservation literature [32]. Social, environmental and economic consequences of
each scenario could then be compared. To do so, the HMMmodel should be extended with a
quantification of the impact of weeds and weed dynamics on crop production and biodiversity,
and a model of the value the different stakeholders attribute to the different configurations of
the triplet, “crops × weeds × practices”. Beyond the design by simulation of a limited set of sce-
narios, we could also use the HMM to design management strategies by optimization, which
would make it possible to search a larger space of possible strategies. This could be done by
embedding the model into a framework for sequential decision under uncertainty. The result-
ing extension of the HMM would be a Partially Observed Markov Decision Process (POMDP)
([33], [34]). This framework has already been successfully applied in the ecological conserva-
tion literature [32] and would be relevant for testing or optimizing various weed management
strategies, while taking the influence of the seed bank into account.

Supporting Information
S1 Fig. Locations of the fields in which weeds were surveyed by the French Biovigilance
Network.
(TIF)

S2 Fig. Distribution of parameters obtained with the Gibbs sampler algorithm for the 18
studied species in the four crop types. Seed bank distribution. Yk stands for the probability
that the seed bank is in class k at t = 0 (WC = winter cereals, OR = oilseed rape, M = maize and
SF = sunflower).
(TIF)

S3 Fig. Distribution of parameters obtained with the Gibbs sampler algorithm for the 18
studied species in the four crop types. Life history traits (WC = winter cereals, OR = oilseed
rape, M = maize and SF = sunflower).
(TIF)

S4 Fig. Relationship between average LHT values of species and functional traits. The aver-
age seed production tends to be negatively correlated to the average seed mass of the species
(Spearman’s correlation unilateral test, n = 18, ρ = -0.31, P-value = 0.104), and the average seed
survival rate of a species is positively correlated to the average seed coat thickness of the species
(Spearman’s correlation unilateral test, n = 9, ρ = 0.73, P-value = 0.015).
(TIF)

S1 Table. Percentage of fields used for the estimation of life history trait values. Values cor-
respond to the proportion of fields where the crop type (WC = winter cereals, OR = oilseed
rape, M = maize and SF = sunflower) has been sown at least once and the species has been
observed at least once in the crop sequence. The species in bold print were those that were
retained for our study.
(PDF)

S2 Table. Current knowledge about weed species. Ind_WC, Ind_OR, IND_M and Ind_SF
represent the indicator values (Indval) of species in winter cereals (WC), oilseed rape (OR),
maize (M) and sunflower (SF), respectively.
(PDF)

S3 Table. Estimated distribution of seed bank states at t = 0. Yk stands for the probability
that the seed bank is in class k at t = 0. Means and standard deviations are reported. These
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SF = sunflower.
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