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Abstract

Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within
their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on
epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine
pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory
method to investigate differences among pathogen strains in their performance in the field. The method exploits
epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative
spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with
respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested
on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to
epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host
population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if
the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to
have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease
dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical
practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our
statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on
mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.
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Introduction

Development of epidemiological models has been driven by the

need to understand and predict the dynamics, invasion, and

persistence of plant and animal diseases [1–3]. The inherent

variable nature of epidemics and heterogeneous spatial distribu-

tion of pathogens in their host populations has presented a

challenge for this work [4,5]. While variation in epidemics caused

by abiotic environmental variation is relatively well understood

[6,7], quantifying the effect of intraspecific diversity in pathogen

populations on epidemic rates has remained a challenge. This is

non-trivial as diversity in traits affecting infection and transmission

is a ubiquitous feature of pathogen populations [8].

Until recently, the scarcity of suitable genetic markers has

impeded the study of variation in pathogen populations [9,10].

However, with the development of Next Generation Sequencing,

genetic tools are becoming increasingly available for parasites

[11–13]. Molecular tracking of pathogen strains has the poten-

tial to identify disease transmission pathways across a variety of

geographic scales [14]. At the very fine-scale of within host

populations, molecular tools can reveal heterogeneities in

transmission generated by differences in infectivity and subsequent

growth and reproduction of different parasite strains [8], and their

interactions with their hosts (genotype-by-genotype interactions;

[15,16]) and environment (genotype-by-environment interactions;

[17,18]).

Linking genetic pathogen data to epidemiological dynamics

allows unraveling the role of pathogen intraspecific diversity in

disease dynamics but this is currently limited by the availability of

suitable analytical tools. Among the challenges to overcome in the

development of these tools are: (i) The scarcity of data required to

fit multi-strain dynamical models; (ii) The change of scale in the

resolution from epidemiological data to the resolution of pathogen

genetic data; and (iii) The ambiguity in the effect of the

heterogeneity in pathogen strains, as discussed above. Here, we

present an exploratory analysis tool based on data transformation,

linear regression and kernel smoothing to assign ranks to different

pathogen strains with respect to epidemiological spread, and we

analyze whether this ranking is significant. The linear regression

links epidemiological data (response variable) to genetic data

(explanatory variables), and the kernel smoothing allows the scale

of genetic data to be matched with the scale of epidemiological
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data. We apply our model to (i) data obtained under a statistical

stochastic model, (ii) data obtained under a multi-strain mecha-

nistic model (original model), and (iii) fine-scale within-season

epidemiological data and genetical characterization of pathogen

samples collected for the powdery mildew naturally infecting

Plantago lanceolata in the archipelago of Finland. A recently

developed protocol for field sampling of pathogen strains and

Single Nucleotide Polymorphism (SNP) genotyping panel [19]

allows a multilocus characterization of genetic content and

subsequent distinction of different pathogen strains co-occurring

within the same natural epidemic in this pathosystem.

Materials and Methods

Example of Field Data
Studied pathosystem. Podosphaera plantaginis (Castagne; U.

Braun & S. Takamatsu) is a fungal pathogen specific to the ribwort

plantain Plantago lanceolata. This species has been studied in the

Åland archipelago (southwestern Finland), with long-term data

evidencing metapopulation dynamics [20,21]. Po. plantaginis

belongs to the family of powdery mildews (Erysiphales, Ascomy-

cete). These obligate pathogens develop conspicuous white-greyish

mycelia on the surface of their host leaves and only penetrate the

host tissue through feeding structures named haustoria. Contin-

uous production of asexual spores named conidia leads to the

succession of various overlapping asexual cycles during the

summer (generation time varying between one and two weeks

under controlled conditions). The powdery mildew population

crashes during the winter due to a lack of living host tissue, but re-

initiation of the epidemics in the following spring is enabled by the

germination of sexual resting structures named chasmothecia.

Epidemiological data. Small-scale data were collected

during the summer 2011 within one Pl. lanceolata meadow (ID

609) located in the Eckero part of the Åland archipelago (Neither

the host plant nor the pathogen is protected species and Finnish

legislation (Jokamiehenoikeus) allows the sampling of wild species

to everyone). This Pl. lanceolata population (approx. 2400 m2) was

visited weekly between July 18 and August 25 (week 29 to 34),

except on week 33 (five observations in total). Pattern of infection

within host populations is known to be highly aggregated in this

pathosystem [22]. Consequently, the survey was performed by

dividing the studied location into 122 squared grid cells of 9 m2.

Every week, each cell was visually inspected, and the number of

host leaves infected by the powdery mildew was recorded.

Genetic data. On the last day of the survey (last week of

August), 45 infected leaves were sampled for genetic character-

ization. Samples were chosen from the different infected cells so

that, in each cell, the number of collected samples was

approximately related to the disease intensity. Genotyping of the

fungal pathogen for 27 SNP markers was performed as described

in [19]. This methodology consists of direct genotyping (no

purification step) of the total fungal material found on one infected

leaf and allows to detect whether infection of the leaf was caused

by a unique vs multiple fungal strains [19]. Clear multilocus data

obtained from unique infections were used to define the different

fungal strains circulating within the population and to attribute

each sample to a particular fungal strain. Most of the mixed-

genotype infections could be assigned to a mix of two identified

strains whereas few remained unattributed and were removed

from the dataset.

Regression Model for the Analysis of Strain Contributions
Consider a host population covering a spatial domain divided

into I similar grid cells. The cells are labelled by i [ f1, . . . ,Ig.

Two types of observations are made: epidemiological observations

and pathogen genetic observations. The epidemiological data are

pathogen intensities Yi(t) in cells i [ f1, . . . ,Ig at times t [ ft1,t2g.
The pathogen genetic data observed at time t2 are J samples

randomly collected in the grid cells and classified into a set of S

strains. The label j[f1, . . . ,Jg is used to identify the samples. The

label s [ f1, . . . ,Sg is used to identify the strains. For each sample

j, ij is the cell where j was collected and sj is the strain of j, and

I~fij : j~1, . . . ,Jg5f1, . . . ,Ig is the set of cells containing

genetic samples. We introduce the variable Zi satisfying:

Zi~ log
1zYi(t2)

1zYi(t1)

� �
: ð1Þ

Zi is built to characterize the growth of the epidemic in cell i

between times t1 and t2 (the growth can be negative; see

Discussion for other Zi’s constructions). We assume that Zi

depends on the strains that are locally present at time t2 in the

following way:

Zi~
XS

s~1

pi(s)z(s)

 !
zgi, ð2Þ

where pi(s) [ ½0,1� is the proportion of strain s in cell i, z(s) [ is

the intrinsic growth rate of strain s (z(s) ~ fZijpi(s) ~ 1g is the

expectation of Zi if only strain s is in cell i), and gi is a centered

normal random noise (g1, . . . ,gI are assumed to be independent).

The model (2) can be viewed as a regression linear model where

Zi is the response variable, fpi(1), . . . ,pi(S)g is the vector of

explanatory variables and fz(1), . . . ,z(S)g are the regression

coefficients. Ranking the pathogen strains with respect to their

contributions to field epidemics is achieved by ranking the

coefficients z(s), s~1, . . . ,S.

Approximation of the Regression Model
In model (2), the explanatory variables pi(s) (i~1, . . . ,I ,

s~1, . . . ,S) are not observed. However, using the pathogen

genetic data and a kernel smoothing technique, the proportions

pi(s) can be estimated and plugged in Equation (2). Let p̂pi(s) be an

unbiased estimate of pi(s), i.e. fp̂pi(s)g~pi(s), we replace the

model (2) by the following approximate regression model:

Zi~
XS

s~1

p̂pi(s)z(s)

 !
zei, ð3Þ

where ei is a centered normal random noise with variance s2

(e1, . . . ,eI are assumed to be independent). The term ei is a noisy

version of gi because of the difference between pi(s) and p̂pi(s). We

ignore the eventual dependence in the ei to keep the model simple

(since it is only used like an exploratory tool) but such a

dependence could be taken into account; see Discussion. In the

model (3), we used the following weighted estimate of pi(s):

p̂pi(s)~

P
i0[I wii0p

obs
i0 (s)P

i0[I wii0
, ð4Þ

where wii0 is the weight of pathogen samples collected in cell i0 to

estimate the proportion of strain s in cell i, pobs
i0 (s) is the observed

proportion of strains s in cell i0 [ I ,

Regression-Based Ranking of Pathogen Strains
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pobs
i0 (s)~

PJ
j~1 (ij~i0 and sj~s)PJ

j~1 (ij~i0)
,

and is the indicator function ( (E)~1 if event E holds, zero

otherwise). The denominator in Equation (4) ensures that the sum

of the estimated proportions p̂pi(s) over s is equal to one. We used a

kernel form for wii0 to give positive weights to samples collected in

neighbor cells:

wii0~K
d(i,i0)

b

� �
ð5Þ

where d(i,i0) is the distance between the centers of cells i and i0, K

Figure 1. Numbers of test rejections for simulations performed under the mechanistic model with dispersal parameter c = 0.2. Grey
bars: number of times that the null hypothesis was rejected and that the alternative was true; White bars: number of times that the null hypothesis
was rejected and that the alternative was wrong. The rejection threshold was fixed at 0.05/3 (using Bonferroni’s correction). The number of sampling
sites and the differences in the fitness coefficients are given under the x-axis of the top panels. Moreover, between each consecutive ticks, there are
three bars corresponding, from left to right, to 1, 5 and 10 collected samples per sampling site. The results are provided for the bandwidth values
b~0 (top left), b~1 (top right), b~2 (bottom left) and b~3 (bottom right).
doi:10.1371/journal.pone.0086591.g001

Regression-Based Ranking of Pathogen Strains
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is the quadratic kernel K(u)~(1{u2) (0ƒuƒ1), and b is a

bandwidth determining the extent of the kernel and, consequently,

the number of observed proportions pobs
i0 (s) used to estimate each

true proportion pi(s). By convention, under the case b~0, wii0~1
if i~i0 and zero otherwise.

In kernel smoothing, the choice of the bandwidth b corresponds

to a trade-off between bias and variance of the estimates [23,24].

Smaller the bandwidth, smaller the bias and larger the variance.

Larger the bandwidth, larger the bias and smaller the variance. In

the context that we are considering here, a too small bandwidth

with respect to the amount of information available in the data

may lead to strongly varying estimates of the strain proportions

and, therefore, to state that a difference in the parameters z(s) is

significant whereas it is not. Conversely, when the bandwidth is

increased, the estimated proportions of strains tend to be

homogeneous in space and, therefore, we will not be able to

Figure 2. Numbers of test rejections for simulations performed under the mechanistic model with dispersal parameter c = 0.5. Grey
bars: number of times that the null hypothesis was rejected and that the alternative was true; White bars: number of times that the null hypothesis
was rejected and that the alternative was wrong. The rejection threshold was fixed at 0.05/3 (using Bonferroni’s correction). The number of sampling
sites and the differences in the fitness coefficients are given under the x-axis of the top panels. Moreover, between each consecutive ticks, there are
three bars corresponding, from left to right, to 1, 5 and 10 collected samples per sampling site. The results are provided for the bandwidth values
b~0 (top left), b~1 (top right), b~2 (bottom left) and b~3 (bottom right).
doi:10.1371/journal.pone.0086591.g002

Regression-Based Ranking of Pathogen Strains
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detect any differences between the parameters z(s). Testing the

method on simulations will help us in assessing the effect of the

bandwidth b for a given amount of information.

Ranking of Pathogen Strains
We use the approximate regression model (3) to rank the

pathogen strains in their contributions to natural epidemics. In this

model, Zi is the response variable, fp̂pi(1), . . . ,p̂pi(S)g is the vector

of explanatory variables and fz(1), . . . ,z(S)g are the regression

coefficients. A simple linear regression is then carried out (e.g.

using the lm() function of the R statistical software) to obtain point

estimates ẑz(s) of the coefficients z(s), s~1, . . . ,S. Then, the

coefficients z(s) can be ranked by using their estimated values.

To assess whether the ranking in the coefficients z(s) is

significant, we adopted a permutation approach [25]. For B

different independent random permutations, say permb

(b~1, . . . ,B), of the indices i[f1, . . . ,Ig for which the proportions

p̂pi(s) can be computed, we estimated the coefficients

fzb(s) : s~1, . . . ,Sg of the following model:

Zi~
XS

s~1

p̂ppermb(i)(s)zb(s)

 !
zei:

Let ẑzb(s) denote the estimate of zb(s) obtained by fitting the

previous model. Then, for two strains s and s0 (s=s0), the p-value

of the unilateral difference permutation test z(s)~z(s0) versus

z(s)wz(s0) is: 1
B

PB
b~1 fẑzb(s){ẑzb(s0)§ẑz(s){ẑz(s0)g:

Because several pairwise tests can be carried out when there are

more than two strains, the usual significance level 0.05 for a p-

value is too high [26]. The simple Bonferroni’s correction that

consists of dividing the significance level by the number of tests

should be very conservative for the null hypothesis because the

ranking tests are dependent. However, we will apply this

correction and test it on simulations.

Test Data Sets Obtained Under the Regression Model
Our method consists of performing a linear regression with

noisy explanatory variables. Thus, the convergence results of

classical linear regression do not hold [27]. To assess the effect of

using noisy explanatory variables, namely the estimated propor-

tions p̂pi(s), we applied the method to simulated data sets obtained

under the regression model (2) but analyzed with the model (3).

The technical details and the detailed results are provided in File

S1 (Sec. A).

Figure 3. Powdery mildew data and growth variable in a patch of Plantago lanceolata in the Åland islands. In all the panels the grey
squares represent the grid cells covering the host population. Top panels: number of infected leaves in 9m2 square cells at weeks 32 (left) and 34
(right) of year 2011 (dot size proportional to number of infected leaves that ranges between 0 and 137). The axis scales indicate the number of the
cell from the most bottom-left cell. Bottom left: Growth variable Zi (dot size linear in Zi that ranges between 21.01 and 4.93). Bottom right: sites
where samples were collected (46 samples in 22 sites; diamond: strain 1; plus: strain 2; triangle: strain 3; circle: strain 4; cross: strain 5).
doi:10.1371/journal.pone.0086591.g003

Regression-Based Ranking of Pathogen Strains
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Test Data Sets Obtained Under a Mechanistic Model
In practice, our method will be applied to data generated under

mechanistic processes that are more complex than model (2). To

assess the effect of using a regression model for the analysis instead

of the true mechanistic model, we applied the method to simulated

data sets obtained under an original mechanistic model detailed in

File S1 (Sec. B). In this model, the epidemic spreads over a 10|10
square grid with inter-node distance equal to one (I~100), and at

discrete integer times t~1,2, . . . ,T~7. The epidemic is the sum

of S~3 sub-epidemics corresponding to S strains. The S sub-

epidemics are mutually independent. Each sub-epidemic is

randomly initiated in time and in intensity. The growth and the

spread of the sub-epidemics are governed by Poisson distributions

and an exponential dispersal kernel. The spread depends on a

dispersal parameter c that is the same for the S strains. The

growth depends on a coefficient bs that represents the fitness of

strain s. The coefficients bs in the mechanistic model are the

counterparts of the coefficient z(s) in the regression model (2).

We carried out 1,600 simulations of the mechanistic model; 800

with the dispersal parameter c equal to 0.2 (short dispersal

distances; see illustration in File S1, Sec. B, Figures S4 and S6),

800 with c~0:5 (longer dispersal distances; see illustration in File

S1, Sec. B, Figure S8). Among each series of 800 simulations, 200

were made with equal coefficients: (b1,b2,b3)~(2:0,2:0,2:0), 200

with slight differences in the coefficients: (b1,b2,b3)~(1:9,2:0,2:2),
200 with intermediate differences: (b1,b2,b3)~(1:5,2:0,3:0), and

200 with large differences: (b1,b2,b3)~(1:0,2:0,4:0). To study the

effect of the sampling effort, different sample sizes were considered

for the genetic data: we used different numbers of sampling sites

(10, 20 and 30) and different numbers of samples per sampling site

(1, 5 and 10); see details in File S1 (Sec. B). For each simulation

and each sampling effort, we tested the hypothesis of no difference

in the coefficients for each pair of strains (1 and 2; 2 and 3; 1 and

3) by using the unilateral permutation test orientated with respect

to the estimated coefficients (e.g. if ẑz(1)wẑz(2), we tested

z(1)~z(2) versus z(1)wz(2)). Then, in each case, we counted

the numbers of adequate and inadequate rejections of the null

hypothesis among 200 repetitions.

Computer Code
An R package entitled StrainRanking containing the ranking

method, the real data and generators of data under the regression

and mechanistic models is available in the CRAN package

repository. In this package, the ranking is carried out with the

function entitled ranking.strains().

Results

Application to Simulations
The application of the method to simulations performed under

the regression model is shown in File S1 (Sec. A; Figures S1, S2,

S3; Tables S1, S2). The following general conclusions can be

drawn. (i) One rarely rejects the null hypothesis for the wrong

alternative hypothesis. (ii) The larger differences between the

coefficients z(s) are more often detected than the smaller ones. (iii)

Increasing the bandwidth leads to a more powerful test but slightly

increases the number of times that the wrong alternative is

accepted. (iv) More importantly, the ranking method is efficient

despite the use of noisy explanatory variables.

Then, the method was applied to simulations under the

mechanistic model. In this case, the model used to analyze the

data is definitely different from the model used to simulate the

data, but, with our ranking method, we expect to detect a

signature of the variation in strain fitness (the signature is the

ranking). The contributions of the pathogen strains to the

epidemics are measured with the coefficients (b1,b2,b3) in the

mechanistic simulation model, and with the coefficients

(z(1),z(2),z(3)) in the regression analysis model. The rankings of

(b1,b2,b3) and (z(1),z(2),z(3)) should be the same. Here, we

consider two values (0.2 and 0.5) of the dispersal parameter c to

see in which situation the method is able to detect the variation in

strain fitness.

The application of the method to three simulations performed

under the mechanistic model (with equal or different coefficients

(b1,b2,b3) and with two different values of c) is detailed in File S1

(Sec. B; Figures S4, S5, S6, S7, S8, S9; Tables S3, S4, S5) where

examples of simulated multi-strain dynamics are also displayed.

Here, we only provide the results obtained for the series of

simulations. For each bandwidth b (0, 1, 2, 3), each sampling effort

and each dispersal parameter c (0.2, 0.5), Figures 1 and 2 show the

numbers of times among 200 repetitions that the null hypothesis

(z(s)~z(s0)) was rejected. The rejection threshold was fixed at

0.05/3, using Bonferroni’s correction.

The following conclusions can be drawn. When the dispersal

parameter c is 0.2 (short dispersal), the conclusions are similar to

those drawn with the regression model: (i) one rarely rejects the

null hypothesis for the wrong alternative hypothesis (white bars);

(ii) the larger differences between the coefficients z(s) are more

often detected than the smaller ones; (iii) increasing the bandwidth

slightly increases the number of times that the wrong alternative is

accepted. When the dispersal parameter is 0.5 (long dispersal), the

test is less powerful and increasing the bandwidth increases the risk

of accepting the wrong alternative hypothesis. Besides, when the

differences between the strains are large, the power to detect

differences between strain 1 (the less fit) and the other strains is

very low. The reason is that, most often, strain 1 has a relatively

negligible intensity and is not sampled.

Table 1. Results of the ranking of pathogen strains observed
within a natural epidemic of powdery mildew in Plantago
lanceolata.

Strain 1 2 3 4 5

Number of
samples

1 11 13 16 5

z(1) z(2) z(3) z(4) z(5)

Estimated
value

28.16 1.29 1.43 1.88 4.42

z(2).z(1) z(3).z(1) z(4).z(1) z(5).z(1)

p-value 0.007 0.010 0.008 0.011

z(3).z(2) z(4).z(2) z(5).z(2)

p-value 0.446 0.294 0.078

z(4).z(3) z(5).z(3)

p-value 0.238 0.038

z(5).z(4)

p-value 0.064

The table provides frequencies of strains in the whole sample, estimated values
of coefficients z(s), and test p-values indicating the significance of the ranking
between the pathogen strains. The strains were ordered with respect to the
estimated values of z(s).
doi:10.1371/journal.pone.0086591.t001
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Application to Powdery Mildew of Plantago lanceolata
The ranking method was applied to the field data of powdery

mildew epidemics displayed in Figure 3. Among the 44 collected

samples, 40 represented single-strain infections, leading to the

identification of five different strains within the pathogen

population. Among the four mixed-genotype infections, three

could be attributed to a mix of previously identified strains,

whereas one remained unattributed and was removed from the

dataset. For the analysis, we used the intermediate bandwidth

b~2 to decrease the risk of detecting false positive differences. In

addition, since there are five strains, the total number of unilateral

tests is 10 and the rejection threshold is of the order 0.05/10, using

Bonferroni’s correction. However, this threshold value is certainly

very conservative (tendency to under-reject the null hypothesis of

coefficient equality when this hypothesis is wrong).

Table 1 provides the number of samples per strain, the

estimated values of the coefficients (z(1), . . . ,z(5)) and the p-

values associated with the unilateral permutation tests. Figure 4

shows the estimated values of the coefficients and their permuta-

tion-based distributions under the null hypothesis of coefficient

equality. Based on the available data, there is no significant

difference in strain fitness at the (certainly too conservative)

rejection threshold 0.005 (the relatively low p-values concerning

strain 1 have to be considered with caution since there is only one

sample corresponding to this strain). Nevertheless, strain 5 tends to

have a higher fitness than the other strains and, to be able to

conclude in future studies about differences in strain fitness, more

genetic samples should be gathered.

Discussion

The method presented here was developed to assign ranks to

different pathogen strains with respect to their contribution to

natural epidemics. As shown with a simulation-based study, the

method can achieve this aim. Importantly, the success of the

method depends on the design of the field survey as the statistical

power of our approach depends on the sampling size (larger the

sample, better the detection of actual differences between strains)

and on the sampling scale (large dispersal distances with respect to

the spatial extent of the sampling may decrease the power of our

approach).

To reach more accurate ranking, the method could be

improved as follows. (i) Other growth variables Zi could lead to

a larger statistical power and robustness. We could especially use

multidimensional growth variables to handle different features of

pathogen spread. We could also build growth variables that

depend on the host population to take into account an eventual

limiting capacity due to low host densities. (ii) A spatially

dependent heteroscedastic and non-stationary noise could replace

the white noise in the analysis regression model to take into

account the dependence between neighbor cells due to the

dispersal of the pathogen. A residual analysis like in [28] and [29]

could be carried out to specify the noise structure. (iii) If the

observed proportions pobs
i (s) of pathogen strains are not based on

the same number of pathogen samples, then the weights wii0 could

be modified to avoid to give strong weights to strongly uncertain

observed proportions. (iv) Finally, an automatic selection of the

bandwidth b and the rejection threshold could be developed using

Figure 4. Estimated values of the coefficients z(s) for powdery mildew strains collected in a patch of Plantago lanceolata (vertical
lines) and corresponding permutation-based distributions obtained under the null hypothesis of coefficient equality (histograms).
doi:10.1371/journal.pone.0086591.g004
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cross-validation or Monte Carlo simulations performed under the

fitted regression model.

Disease ecologists commonly use experimental infections in

controlled conditions to estimate the fitness of different pathogen

strains/genotypes (see for example [17,30–36]). But how the

differences between strains found in lab-measured fitness translate

to the actual performance in the field has never been assessed to

our knowledge. In this study, we developed analytical tools to

estimate field performance of pathogen genotypes, allowing

further comparison with fitness measures of pathogen strains

estimated under controlled conditions. Simple correlations be-

tween the two measures for each pathogen genotype may however

not be expected if the pathogen genotype interacts with local host

genotypes, or with the local environment, to determine the

pathogen’s fitness [17]. However, such comparisons are useful for

estimating how complex the experimental design needs to be if

aiming at predicting the pathogen performance under natural

conditions.

Our statistical exploratory tool mainly based on regression does

not rely on mechanistic assumptions on the pathogen dynamics.

Therefore, it can be applied to a wide range of pathogens for

which epidemiological and genetic data can be collected during

natural epidemics or during experimental epidemics in crop fields.

To facilitate the application of the method to other pathogens, an

open source computer code is available. The code can be modified

and extended by the user to meet the user’s requirements.

Supporting Information

File S1 Supporting information providing methodolog-
ical details and complementary results.

(PDF)
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