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Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely

destroy the crop. Therefore, for the past 160 years, late blight has been the most important

potato disease worldwide. The identification of cultivars with high and durable field resis-

tance to P. infestans is an objective of most potato breeding programs. This type of resis-

tance is polygenic and therefore quantitative. Its evaluation requires multi-year and location

trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a

negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resis-

tance to late blight not compromised by late maturity is very limited. It is however essential

for developing diagnostic DNA markers that facilitate the efficient combination of superior

resistance alleles in improved cultivars. We used association genetics in a population of

184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs)

that are associated with maturity corrected resistance (MCR) to late blight. The population

was genotyped for almost 9000 SNPs from three different sources. The first source was

candidate genes specifically selected for their function in the jasmonate pathway. The sec-

ond source was novel candidate genes selected based on comparative transcript profiling

(RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P.
infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array
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available in potato for genome wide association studies (GWAS). Twenty seven SNPs from

all three sources showed robust association with MCR. Some of those were located in

genes that are strong candidates for directly controlling quantitative resistance, based on

functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-

hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein

(terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance

to P. infestans from the wild potato species Solanum venturii. The candidate gene approach

and GWAS complemented each other as they identified different genes. The results of this

study provide new insight in the molecular genetic basis of quantitative resistance in potato

and a toolbox of diagnostic SNP markers for breeding applications.

Introduction
Since the potato famine in Ireland and central Europe in the middle of the 19th century, the
oomycete Phytophthora infestans causing this catastrophe remained the worldwide most
important pathogen in potato cultivation [1]. Accordingly, the improvement of genetic resis-
tance of the cultivated potato was and still is an important objective in most potato breeding
programs during the last hundred years. The difficulty in achieving this objective in a sustain-
able way lies in the genetic flexibility of P. infestans, which so far defeated every single gene for
resistance (R gene) that was introgressed in the cultivated potato from wild relatives [1].
Besides R gene mediated resistance there is quantitative or field resistance to P. infestans [2].
Quantitative resistance is polygenic and partial. These properties increase the number of muta-
tions required in the pathogen to defeat host resistance and decrease the selection pressure on
pathogen populations. Quantitative resistance is therefore considered more durable than R
gene mediated resistance [3]. However, high quantitative resistance to P. infestans is correlated
with late plant maturity, a negative trait at least in zones with a temperate climate [3–5]. Plant
maturity is a complex character influenced by day length. It defines the duration of the plant’s
annual life cycle from sprouting, shoot growth, tuber initiation and flowering to tuber matura-
tion and senescence. The difficulty in developing improved cultivars with high levels of quanti-
tative resistance lies in breaking the correlation between plant resistance and late maturity, and
in the combination of a yet unknown number of resistance factors with other agronomic quali-
ties such as high yield, nutritional qualities and culinary traits. Phenotypic selection of such
cultivars requires multi-year and location trials and is hampered by the lack of knowledge of
the genes that underlie quantitative resistance. Breeding for resistance could be greatly facili-
tated by diagnostic DNA markers. Diagnostic DNAmarkers are either directly derived from
allelic variation in genes that control quantitative resistance or are in strong linkage disequilib-
rium (LD) with those genes. The identification and validation of diagnostic markers requires
association analysis [6] in populations of elite cultivars.

Numerous linkage studies between DNA markers and resistance to P. infestans have been
conducted in experimental, bi-parental and mostly diploid mapping populations, which identi-
fied at least twenty four quantitative resistance loci (QRL) on the twelve potato chromosomes
[7]. Thanks to these genetic studies there is no shortage of DNA markers linked with QRL in
specific genetic backgrounds. However, very few markers have been demonstrated by associa-
tion analysis to be diagnostic in populations of tetraploid potato varieties and advanced breed-
ing materials, which originate from multiple parents. DNA markers specific for the R1 gene for
resistance to P. infestans [8], which is linked with a major QRL on potato chromosome V [9,
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10] were diagnostic for increased quantitative resistance to late blight in three different variety
panels in different geographical regions. This association was not independent from the matu-
rity phenotype though [11–13]. Recently, StCDF1 which is physically closely linked with R1,
was identified as the gene that controls day length dependent tuberization. StCDF1 is therefore
a strong candidate for underlying a major QTL for plant maturity on potato chromosome V
[14–18]. Two further markers derived from unknown genes with structural similarity to R
genes showed association with field resistance to late blight in a panel of Dutch varieties [19].
The genomic position and the relationship of these markers with plant maturity has not been
reported. The diagnostic markers with the so far strongest effect on quantitative resistance to P.
infestans that was not confounded by late plant maturity, were identified by association map-
ping in a population of 184 tetraploid breeding clones [5]. In particular, two single nucleotide
polymorphisms (SNPs) in the coding sequence of allene oxide synthase 2 (StAOS2) on potato
chromosome XI explained approximately one third of the genetic variance of maturity cor-
rected resistance (MCR) to late blight. AOS is a key enzyme in the biosynthesis of jasmonates,
phytohormones that play important roles as signaling molecules in the plant defense response
against pests and pathogens [20, 21]. Functional analyses of natural StAOS2 alleles suggested
that the StAOS2 locus is one of the genetic factors controlling quantitative resistance to P. infes-
tans [22, 23]. A SNP in a second allene oxide synthase gene, StAOS1 on chromosome IV, also
showed association with MCR, although with much smaller effect than StAOS2 [5]. Recently,
five additional genes were identified which were associated with MCR. Based on their annota-
tion they function in the biosynthesis of phytosterols, lipids and chlorophyll, modify the cell
wall or are involved in the response to fungal elicitors [24]. In view of the number of QRL
against P. infestansmapped in potato, additional loci must contribute to quantitative
resistance.

The first diagnostic markers for quantitative resistance to P. infestans were identified via the
candidate gene approach. The basis was the assumption that natural DNA variation in genes
functional in pathogen recognition (e. g. R genes), signal transduction (e. g. metabolism of sig-
naling molecules such as jasmonates, ethylene and salicylic acid) and defense responses (e. g.
pathogenesis-related genes such as glucanases, chitinases, proteases and protease inhibitors) is
responsible for the quantitative variation of resistance. The candidate gene approach targets
specific genes or gene classes and is biased toward existing knowledge of gene function, which
is mostly obtained from functional studies in model organisms. Untargeted approaches such as
comparative transcript, protein and metabolite profiling of resistant versus susceptible plants
have the potential to discover novel candidate genes and pathways that were previously not
considered in the context of pathogen resistance [23–27]. The most unbiased and comprehen-
sive approach to discover diagnostic DNAmarkers are genome wide association studies
(GWAS), which are based on thousands of SNPs distributed over the whole genome [28].
GWAS in potato became possible with the advent of a first generation 8.3 k SNP genotyping
chip [29–32].

Here we report the results of three approaches to identify novel functional candidate genes
for controlling quantitative resistance to P. infestans, which is not compromised by late plant
maturity: first, a candidate gene approach targeted specifically at the jasmonate pathway and
second, comparative transcript profiling as an unbiased source of functional candidate genes.
SNPs in genes identified by these two approaches were evaluated for association with resistance
to P. infestans. The third approach was untargeted GWAS using the 8.3k SolCAP SNP genotyp-
ing array. All three approaches were complementary and identified SNPs associated with
MCR. The associated SNPs were located in genes that might have a functional role in quantita-
tive resistance to P. infestans and possibly other plant pathogens.
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Results

Targeted approach: Candidate genes from the jasmonate pathway
We have shown previously that SNPs in two genes encoding allene oxide synthase, a key
enzyme in the biosynthesis of jasmonic acid and other oxylipins, were associated with MCR [5,
22]. To test whether other genes in the same pathway could also contribute to quantitative
resistance, we selected for association analysis seven additional, cloned and characterized genes
with functions in jasmonate biosynthesis: five lipoxygenases (LOX), allene oxide cyclase (AOC)
and 12-oxophytodienoate reductase (OPR). Furthermore two genes involved in jasmonate sig-
naling (Coi1 and Jaz1) were selected according to the literature [20, 21] (Table 1). The genomic
positions of these genes are included in Figs 1 and 2 (maps ‘a’). Locus identifier, physical posi-
tion and annotation are provided in S3 File. Three of the nine genes were differentially
expressed in a transcript profiling experiment performed previously by serial analysis of gene
expression (SuperSAGE), either in response to infection with P. infestans (Jaz1) or between
genotype pools with contrasting mean levels of MCR (LoxH1) or both (Potlx3) [23] (Table 1).
The association panel consisted of 184 tetraploid potato cultivars (referred to as PIN184 popu-
lation), for which the relative area under disease progress curve (rAUDPC), plant maturity
(PM) and maturity corrected resistance (MCR) have been quantified based on replicated field
trials [5]. Sequences of the corresponding potato genes were retrieved from GeneBank entries
and the potato genome sequence [33]. The numerous sequences available for potato lipoxy-
genases were grouped according to sequence similarity and five representative LOX genes were
selected. Amplicons comprising mainly exons of the nine genes were generated from the 184
individuals in the PIN184 population and sequenced (S1 File). One hundred and seventy one
SNPs and two insertion/deletion polymorphisms (indels) were scored in approximately 2000
amplicon sequences (Table 1). A posteriori analysis showed that six of these SNPs (for SNP
identification see S1 File) in four genes had different allele frequencies in the genotype pools R8
and S8 in RNA-Seq analysis (see below). The genotype pools R8 and S8 consisted of eight

Table 1. Genes with functions in the jasmonate pathway that were tested for association with MCR, rAUDPC and PM.

Gene
acronym

Chr. Locus identifier
PGSC0003

No. of SNPs/
indels scored

Encoded protein Locus selected in
RNA-Seq e

Locus selected in
SuperSAGE

References

LoxH1 I DMG400032155 18/1 (2) d 13-lipoxygenase Yes Yes a [35]

AOC II DMG401012679 8 (0) Allene oxide cyclase No No [36]

LoxH3 III DMG400022894 19 (2) 13-lipoxygenase Yes No [35]

Coi1 V Not annotated 36 (0) Coronatine insensitive 1 - - [37]

OPR3 VII DMG400030890 11 (1) 12-oxophytodienoate
reductase 3

Yes No [38]

Plox1 VIII DMG400020999 23 (0) 9-lipoxygenase No No [39, 40]

Potlx3 VIII DMG400010859 20 (0) 9-lipoxygenase No Yes a,b [40, 41]

Lox1St2 IX DMG400031809 22 (1) 9-lipoxygenase Yes No [40, 42]

Jaz1 XII DMG400002930 14/1 (0) Jasmonate-zim domain
protein 1

Yes Yes c [43]

a Differential expression between quantitative resistant and susceptible genotype pools was found in SuperSAGE [23]
b The transcript was up regulated upon infection with P. infestans in SuperSAGE [23]
c The transcript was down regulated upon infection with P. infestans in SuperSAGE [23]
d The number of SNPs scored that showed different allele frequencies in pools R8 and S8 in RNA-Seq analysis is shown in parenthesis (see S7 File for

details).
e Selection criterion: the locus contained SNPs with different allele frequencies (q < 0.01) in genotype pools R8 and S8.

doi:10.1371/journal.pone.0156254.t001
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Fig 1. Physical maps of the potato chromosomes I to VI (pseudomolecules v4.03).Maps ‘a’ show to the
left of the central bar (representing the chromosome) the positions of markers that were previously shown to
be linked with P. infestansQRL in potato and the highly syntenic tomato (Solanum lycopersicum). Markers
linked to P. infestansQRL in tomato are underlined (for physical positions and references see S8 File). The
candidate loci tested for association with MCR, rAUDPC and PM in the PIN184 population previously [5, 11,

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight
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genotypes each that were selected for high (R) versus low (S) field resistance to late blight (see
Materials and Methods). Association analysis using four statistical models (K1, K2, K2Q and S,
see Materials and Methods) resulted in 15, 11 and 23 SNPs that were associated with MCR,
rAUDPC and PM, respectively, with an error probability p< 0.01 in any of the association
models (S4–S6 Files). Discounting redundant associations due to strong linkage disequilibrium
(LD) between associated SNPs (r2 > 0.64) reduced the numbers to eleven (MCR), seven
(rAUDPC) and sixteen (PM) marker-trait associations in seven, six and seven genes, respec-
tively. Most consistent were the associations with late blight resistance (rAUDPC and/or
MCR) in the loci AOC, OPR3, Plox1 and Lox1st2, which were supported by three or four asso-
ciation models (Table 2). The most significant SNPs (p< 10−4) were Plox1_SNP8089 (in
nearly complete LD with Plox1_SNP8344, S4 and S5 Files), which explained 15% to 16% of the
phenotypic variation of MCR, and Lox1St2_SNP6571, which explained 5% to 6%. In both
cases the minor frequency SNP alleles were associated with increased resistance. There was lit-
tle overlap between marker associations with resistance and plant maturity. Consistent associa-
tion with PM across three models was only observed for Coi1_SNP470 (Table 2, S6 File).

Untargeted approach: Novel candidate genes from comparative
transcriptome sequencing (RNA-Seq)
Four normalized cDNA libraries were constructed from the leaf RNA samples R8-T0,
R8-T1T2, S8-T0 and S8-T1T2, and sequenced. Each sample was composed of eight tetraploid,
heterozygous genotypes before (T0), one (T1) and two (T2) days after controlled infection with
P. infestans (Materials and Methods). Sequencing yielded 69.8, 63.4, 60.6 and 55.6 million
paired-end reads for sample R8-T0, R8-T1T2, S8-T0 and S8-T1T2, respectively. The raw
sequences are available in GeneBank under the Bioproject number PRJNA294975 (accessions
SAMN04044570, SAMN04044571, SAMN04044572, SAMN04044573). In order to maximize
the chance to detect significantly different SNP allele frequencies between quantitative resistant
(R8) and susceptible (S8) genotype pools (Fig 3) irrespective of transcriptional induction or
repression by P. infestans infection, we combined the reads from samples R8-T0 (uninfected
plants with lower mean rAUDPC) and R8-T1T2 (infected plants with lower mean rAUDPC),
and from samples S8-T0 (uninfected plants with higher mean rAUDPC) and S8-T1T2
(infected plants with higher mean rAUDPC). Thus two data sets R8 and S8 were generated

24, 34] and in this paper (S3 File) are shown to the right of maps ‘a’. Nine major genes for resistance to P.
infestans (R1, R2, R3, Rpi-blb1/RB, Rpi-blb2, Rpi-blb3, Rpi-vnt1, Rpi-abpt, Ph-3) and the StCDF1 locus
controlling day length dependent tuberization are also included in maps ‘a’ (physical positions and references
in S8 File). Loci harboring DNA variants associated with MCR, rAUDPC and/or PM are labelled with green,
blue and red stars, respectively. Maps ‘b’ show the positions of the SolCAP SNPs that were associated with
MCR (green bars), rAUDPC (blue bars) and PM (red bars) in the PIN184 population, on the left according to
the association model without correction for population structure (model S) and on the right according to the
association models correcting for population structure with different methods (K1, K2 and K2Q, see Materials
and Methods). SolCAP SNPs associated with at least one trait with p < 10−4 were included. The length of the
horizontal bars is proportional to the p-value. The dotted vertical lines indicate–Log10(P) = 4. Maps ‘c’ show
on the right (blue dots) the positions of candidate genes that (i) harbor SNPs with different allele frequencies
in the R8 and S8 genotype pools with high (R) and low (S) resistance to late blight (Materials and Methods),
and (ii) had differential transcript levels between three genotype pools with different MCR levels in
SuperSAGE analysis [23]. The green dots on the left of maps ‘c’ show the positions of candidate genes that
(i) harbor SNPs with different allele frequencies in the R8 and S8 genotype pools, (ii) had differential
transcript levels between the three genotype pools with different MCR levels in SuperSAGE, and (iii) were up
or down regulated upon infection with P. infestans in SuperSAGE (for details see S7 File). Maps ‘d’ show the
distribution of 42,688 SNPs with different allele frequencies in the R8 and S8 genotype pools (q < 0.01) on the
potato pseudomolecules. The scale [number of SNPs per Mbp] is shown horizontally on top of each
chromosome. SNP density peaks which overlapped with genomic segments harboring QTL for MCR or PM
based on GWAS are indicated by numbers 1 to 8.

doi:10.1371/journal.pone.0156254.g001
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Fig 2. Physical maps of the potato chromosomes VII to XII (pseudomolecules v4.03). Legend as in Fig 1.

doi:10.1371/journal.pone.0156254.g002
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Table 2. SNPs in candidate genes showing association with rAUDPC, MCR and/or PM in three or four association models with -Log10(P) > 2. Full
data are available in S4–S6 Files.

Locus Chr. SNP ID SNP alleles
phu/tbr

Frequency (MFA)
direction of effect c

MCR—Log10
(P) (R2) model d

rAUDPC—Log10
(P) (R2) model d

PM—Log10(P)
(R2) model d

arpP1a a I arpP1a_SNP791 b A/C 0.24 (C) " 2,57 (0.10) K2Q,
K2,S

< 2.00 < 2.00

arpP1a I arpP1a_SNP781 A/T 0.35 (T) " < 2.00 < 2.00 2.72 (0.11) K2,
K1,S

Pen1 a I PEN1_SNP313 T/A 0.18 (A) # 2.54 (0.10) K2Q,
K1,K2,S

< 2.00 < 2.00

AOC II AOC_SNP152 G/A 0.06 (A) # < 2.00 2.18 (0.04) K2,
K2Q,K1,S

< 2.00

Smp24 a III Smp24_SNP674 b T/C 0.30 (T) " 2.12 (0.07) K2,S 3.33 (0.10) K2,
K2Q,S

3.69 (0.11) K2,
S

DnaJ8 a III DnaJ8_SNP172 b C/A 0.20 (A) # < 2.00 2.92 (0.09) K2,
K2Q,S

2.14 (0.06) K2

DnaJ8 III DnaJ8_SNP277 A/C 0.13 (C) " 2.58 (0.09) K2Q,
K2,S

< 2.00 < 2.00

DH4 a IV DH4_SNP5893 b T/G 0.06 (G) # < 2.00 < 2.00 3.06 (0.11) K2,
K1,S

DHN a IV DHN_SNP9817 b A/T 0.36 (T) # 2.32 (0.09) K2,
K1,S

< 2.00 < 2.00

HMGCR IV HMGCR_SNP455 C/T 0.38 (T) " 3.98 (0.13) K2Q,
K2,K1,S

4.25 (0.14) K2Q,
K2,K1,S

< 2.00

HMGCR IV HMGCR_SNP567 C/G 0.45 (G) # 4.12 (0.14) K2,
K1,K2Q,S

3.75 (0.13) K2,K1,
K2Q,S

< 2.00

HMGCR IV HMGCR_SNP636
(solcap_c2_10566)

C/T 0.30 (T) # 7.6 (0.19) K1,K2,
K2Q,S

6.05 (0.15) K1,K2,
K2Q,S

< 2.00

GT8 V GT8_SNP266 T/C 0.44 (T) " < 2.00 3.54 (0.15) K2,K2Q 4.70 (0.19) K2,
K2Q,K1,S

GT8 V GT8_SNP296 b C/T 0.05 (C) " < 2.00 2.37 (0.07) K1,S 3.22 (0.12) K2,
K1,K2Q,S

ATPase V ATPase_SNP7981 b A/G 0.37 (G) # < 2.00 3.24 (0.13) K2,
K2Q,K1,S

8.20 (0.27) K2,
K2Q,K1,S

ATPase V ATPase_SNP8102 b C/T 0.26 (T) # < 2.00 2.44 (0.11) K2,
K2Q,K1,S

4.58 (0.18) K2,
K2Q,K1,S

ATPase V ATPase_SNP8176 b C/T 0.23 (T) # < 2.00 2.68 (0.09) K1,K2,
K2Q,S

4.13 (0.16) K1,
K2,K2Q,S

ATPase V ATPase_SNP8218 b C/T 0.18 (T) # < 2.00 2.60 (0.11) K2,
K2Q,S

5.60 (0.20) K2,
K2Q,K1,S

ATPase V ATPase_SNP8491 T/C 0.11 (C) # 2.47 (0.07) K1,
K2Q,K2,S

4.64 (0.13) K1,
K2Q,K2,S

3.41 (0.06) K1,
K2Q,K2,S

Coi1 V Coi1_SNP1690 A/G 0.10 (G) # < 2.00 2,29 (0.04) S 3.07 (0.09) K2,
K2Q,S

StGP28 a VI StGP28_SNP957 T/G 0.37 (T) # 3.24 (0.14) K1,
K2Q,S

< 2.00 < 2.00

StTL15A a VI StTL15A_SNP59972 b T/G 0.07 (T) # 2.41 (0.06) K2,
K2Q,S

< 2.00 < 2.00

OPR3 VII OPR3_SNP713 A/G 0.24 (A) # < 2.00 3.38 (0.11) K2Q,
K2,S

2.10 (0.06) K2Q

CAB13 a VII CAB13_SNP980 C/A 0.22 (A) " < 2.00 < 2.00 2.40 (0.06)
K2Q,K2,S

psaD a VIII psaD_SNP2932 G/A 0.47 (A) 2.86 (0.06) S " c < 2.00 3.40 (0.11) K2,
K1,S # c

Plox1 VIII Plox1_SNP8089 A/C 0.01 (C) # 5.85 (15.3) K2Q,
K2,K1,S

4.02 (11.2) K2Q,
K2,K1,S

< 2.00

(Continued)

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 8 / 36



with 133 and 116 million paired-end reads, respectively, of which 48% and 43% mapped to the
reference potato genome sequence DM [33, 44] under the chosen parameters (Materials and
Methods).

The comparison of the SNP allele frequencies between R8 and S8 genotype pools resulted in
42 688 differential SNPs of total 566 805 SNPs (7.5%) when using q< 0.01 as cut-off value (S7
File). For simplicity we refer to the SNP allele of the reference Solanum phureja genome as the
phu allele and to the alternative SNP allele as the tbr (S. tuberosum) allele, although the alterna-
tive allele could also originate from introgressions of Solanum species other than S. tuberosum.
The majority of the tbr alleles of the significant SNPs were the minor frequency allele in both
the R8 and S8 data sets, as shown by the frequency distributions skewed toward frequencies
below 0.25. The frequency distribution of the non-significant tbr alleles was slightly different,
with a maximum around 0.10 and a higher portion of alleles with frequencies above 0.8 (Fig 4).

Table 2. (Continued)

Locus Chr. SNP ID SNP alleles
phu/tbr

Frequency (MFA)
direction of effect c

MCR—Log10
(P) (R2) model d

rAUDPC—Log10
(P) (R2) model d

PM—Log10(P)
(R2) model d

CYP71D11
a

VIII CYP71D11_SNP346 b C/T 0.07 (T) # 5.05 (0.14) K2,
K2Q,K1,S

2.77 (0.08) K2,
K2Q,K1,S

< 2.00

CYP71D11 VIII CYP71D11_SNP706 A/G 0.05 (G) # 4.56 (0.10) K1,
K2Q,K2,S

3.47 (0.07) K1,
K2Q,K2,S

< 2.00

HSP70 a IX HSP70_SNP8990 C/T 0.20 (T) # 2.05 (0.08) K2Q,
K2,K1,S

< 2.00 < 2.00

Lox1St2 IX Lox1St2_SNP6571 C/T 0.12 (T) # 3.37 (0.06) K1,
K2Q,K2,S

4.22 (0.06) K1,
K2Q,K2,S

< 2.00

Lox1St2 IX Lox1St2_SNP6744 A/T 0.25 (T) " 2.89 (0.07) K1,
K2,S

< 2.00 < 2.00

Lox1St2 IX Lox1St2_SNP6762 A/T 0.08 (T) 2.28 (0.05) K1,
K2,S " c

< 2.00 2.54 (0.05)
S # c

Rpi-vnt1 IX Rpi-vnt1_SNP440
(solcap_snp_c2_47952)

T/C 0.22 (C) 5.35 (0.16) K2,
K2Q,K1,S # c

2.74 (0.09) K2,
K2Q,K1 # c

2.10 (0.04)
S " c

Rpi-vnt1 IX Rpi-vnt1_SNP539 A/G 0.35 (G) 2.75 (0.05) K1,
K2,K2Q,S # c

< 2.00 2.96 (0.10) K2,
S " c

Rpi-vnt1 IX Rpi-vnt1_SNP544 C/T 0.20 (T) # 3.56 (0.09) K2Q,
K2,S

3.00 (0.09) K2Q,
K2,S

< 2.00

CaM-10 a X CaM-10_SNP7247 G/T 0.30 (G) # < 2.00 3.04 (0.10) K2,
K2Q,S

5.21 (0.15) K2,
S

BSDR4 XI BSDR4_SNP339 C/T 0.36 (T) # 2.74 (0.09) K2,
K2Q,S

3.28 (0.11) K2,K2Q 6.10 (0.18) K2,
K1,S

BSDR4 XI BSDR4_SNP444 A/T 0.07 (T) # 2.42 (0.08) K2,
K2Q,S

2.67 (0.08) K2Q < 2.00

BSDR4 XI BSDR4_SNP469 G/T 0.22 (T) " 2.92 (0.07) K2Q,
K2,S

2.15 (0.05) K2Q,
K2,S

< 2.00

BSDR4 XI BSDR4_SNP454 b A/G 0.35 (G) " 2.52 (0.09) K2,S < 2.00 2.85 (0.09) K2,
K1,S

KiTH-2 a XI KiTH-2_SNP3806 T/A 0.04 (A) # 2.06 (0.08) K2,S 3.85 (0.13) K2Q,
K2,S

2.79 (0.08) K2Q

a Differential transcript levels were detected in SuperSAGE, see also Table 4.
b The SNP showed differential allele frequency (q < 0.01) in RNA-Seq analysis
c The arrows indicate the direction of effect of the minor frequency alleles (MFA): # decreasing mean values for rAUDPC, MCR and PM, indicating greater

resistance or later maturity; " increasing mean values for rAUDPC, MCR and PM, indicating greater susceptibility or earlier maturity.
d P and R2 values are shown for the first of the models listed.

doi:10.1371/journal.pone.0156254.t002
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The 42 688 differential SNPs were unequally distributed on the physical maps of the twelve
potato chromosomes [44] (S13 File). The SNP density (number of SNPs per physical interval)
increased toward the distal parts of the chromosome arms corresponding to gene rich euchro-
matic regions as compared to central, gene poor heterochromatic regions. On top of this

Fig 3. Boxplots of the rAUDPC values of eight quantitative resistant (R8) and susceptible (S8)
tetraploid potato genotypes used to construct the samples for RNA-Seq analysis.

doi:10.1371/journal.pone.0156254.g003

Fig 4. Frequency distribution of the tbr (S. tuberosum) SNP alleles with different allele frequencies (q < 0.01) in the R8 and S8 genotype
pools (significant SNPs) and without significant differences (q > 0.01, non-significant SNPs).

doi:10.1371/journal.pone.0156254.g004
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general distribution distinct peaks were observed, most pronounced on chromosomes II, III,
VI and XI (Figs 1 and 2, maps ‘d’). The SNPs StAOS2-SNP691 and StAOS2-SNP692 in the
StAOS2 coding sequence on chromosome XI, which showed the strongest association with
MCR [5], have been used to assign plants to the R8 or S8 genotype pool (Materials and Meth-
ods). The genomic frequency of the tbr haplotype StAOS2-G691G692 in the R8 and S8 genotype
pool was 0.12 and 0.78, respectively (Table 3). Differential allele frequencies for these two SNPs
were therefore expected in the RNA-Seq analysis. Indeed, SNPs StAOS2-SNP691 and
StAOS2-SNP692 were found as highly differential SNPs at position 41832747 and 41832748,
respectively (S7 File), under the peak with the highest SNP density on the short arm of chromo-
some XI (873 differential SNPs in 55 genes between 41 and 42 Mbp, Fig 2, chromosome XId).
The observed frequency of the tbr haplotype in the corresponding StAOS2 transcripts was 0.03
in genotype pool R8 and 0.81 in genotype pool S8 (S7 File). The second largest peaks (400–800
differential SNPs per Mbp) were on chromosomes II, III, VI and XI in the intervals 34–35 Mbp
(58 genes), 0–1 Mbp (50 genes), 57–58 Mbp (66 genes) and 43–44 Mbp (49 genes), respectively
(Figs 1 and 2, maps ‘d’). The peak on chromosome III could be largely attributed to a cluster of
ten genes encoding chlorophyll a-b binding proteins (S7 File).

The differential SNPs were located in 9854 annotated genes, which represented approxi-
mately one quarter of all annotated potato genes [33]. The function of 18.3% of these genes is
unknown. The number of differential SNPs per gene varied from 1 to 60. Forty nine percent
(4829) of the genes contained only one or two differential SNPs (Fig 5). Twenty genes had 40
to 60 differential SNPs. Ten of these genes were annotated as chloroplastic proteins (six chloro-
phyll a-b binding proteins, RuBisCO large subunit-binding protein subunit alpha, pyruvate
phosphate dikinase, 41 kD chloroplast nucleoid DNA binding protein, GcpE [45]). The
remaining ten genes were annotated as a miraculin, an anthocyanidine rhamnosyl-transferase,
a cytochrome P450 protein, a beta-galactosidase, a nucleoredoxin, myosin heavy chain, an

Table 3. StAOS2 SNP genotypes and late blight resistance phenotypes of the potato plants used to compose the samples for RNA-Seq analysis.

Genotype F1 family StAOS2 -SNP691 StAOS2 -SNP692 rAUDPC 2009 rAUDPC 2010 Mean rAUDPC Pool

BL114 1 AAAA CCCC 0.22 0.28 0.25 R8

BL196 1 AAAG CCCG 0.29 0.44 0.33 R8

BL201 1 AAAG CCCG 0.28 0.36 0.32 R8

BL426 2 AAAG CCCG 0.23 0.25 0.24 R8

BL499 2 AAAG CCCG 0.22 0.27 0.24 R8

SL155 3 AAAA CCCC 0.33 - a 0.33 R8

SL312 4 AAAA CCCC 0.32 0.14 0.23 R8

SL194 3 AAAA CCCC 0.41 0.52 0.46 R8

μ = 0.29 μ = 0.32 μ = 0.31

BL013 1 GGGG GGGG 0.47 0.60 0.53 S8

BL024 1 AGGG CGGG 0.48 0.58 0.53 S8

BL141 1 AGGG CGGG 0.46 0.51 0.49 S8

BL238 1 AGGG CGGG 0.52 0.59 0.55 S8

SL317 4 AGGG CGGG 0.53 - a 0.53 S8

SL316 4 AGGG CGGG 0.57 0.66 0.61 S8

SL314 4 AGGG CGGG 0.63 0.61 0.62 S8

SL433 4 AGGG CGGG 0.55 0.64 0.59 S8

μ = 0.53 μ = 0.60 μ = 0.56

a Due to virus infection this clone had to be excluded from field evaluation in 2010

doi:10.1371/journal.pone.0156254.t003
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ATP binding protein, a F-box and wd40 domain containing protein, a EF hand family protein
and an unknown gene.

The large number of genes with differential SNPs, their genome wide distribution and the
high SNP density particularly around the StAOS2 locus suggested that factors other than con-
trasting levels of late blight resistance also contributed to the observed differential SNP allele
frequencies, such as unbalanced genetic background between R8 and S8 genotype pools and
linkage drag. We therefore used additional filtering criteria to select genes that might be genu-
inely involved in resistance to P. infestans. The 9854 genes detected in RNA-Seq analysis were
compared via their locus identifier in the annotated potato genome
(PGSC0003DMG40�������) with genes that were differentially expressed upon infection with
P. infestans and/or in genotype pools with high and low levels of maturity corrected resistance
(MCR) to late blight. These genes have been identified previously based on comparative tran-
script profiling by SuperSAGE. SuperSAGE was performed with 29 tetraploid genotypes that
were combined in three genotype pools with contrasting levels of MCR [23]. The SuperSAGE
experiment had six genotypes in common with the 16 genotypes used for the RNA-Seq analysis
reported here. Controlled infection experiments with P. infestans and tissue sampling were per-
formed under the same conditions in both types of transcriptome experiments. SuperSAGE
had identified 2034 transcripts which were consistently up or down regulated in three genotype
pools in response to infection with P. infestans. These transcripts matched to approximately
1830 potato loci, 1480 of which had a locus identifier. 1144 of the genes differentially expressed
upon infection with P. infestans were identical with loci detected in RNA-Seq analysis (loci
highlighted yellow in S7 File). This number was significantly higher than expected by chance
(Fisher’s exact test for overrepresentation: p = 8.18−20). Furthermore, 806 transcripts derived
from approximately 720 genes had shown differential transcript levels between the three geno-
type pools compared in the SuperSAGE experiment. Six hundred and thirty seven genes had a

Fig 5. Number of genes containing from 1 to 60 SNPs with different allele frequency in the R8 and S8
genotype pools.

doi:10.1371/journal.pone.0156254.g005
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locus identifier, 513 of which showed SNPs with differential allele frequency in the RNA-Seq
analysis (loci highlighted blue in S7 File) (Fisher’s exact test for overrepresentation:
p = 9.79−13). Finally, 261 genes that had shown differential transcript levels in response to
infection with P. infestans as well as between genotype pools in the SuperSAGE experiment,
were also represented with differential SNPs in the RNA-Seq experiment (loci highlighted
green in S7 File). The positions of the 261 ‘green’ and 252 ‘blue’ candidate genes on the physical
map are shown in Figs 1 and 2 (maps ‘c’). The genomic distribution of these 513 candidate
genes followed a similar general pattern as the differential SNPs, showing higher gene density
in distal chromosomal regions. Particularly high densities of candidate genes were observed on
the ‘South’ arms of chromosomes I, II, III, VI, VII, IX and XII, and on the ‘North’ arms of chro-
mosomes III, IX, X and XII (Figs 1 and 2, maps ‘c’). In order to integrate the genomic distribu-
tion of candidate genes with the positions of genetically mapped quantitative resistance loci to
P. infestans, we collected 149 DNA markers reported to be linked with P. infestansQRL in six-
teen linkage mapping studies in potato [4, 9, 15, 16, 46–57] and two in the highly syntenic
tomato [58, 59] (S8 File). These markers, as well as eight cloned potato R genes for resistance to
P. infestans [8, 60–66], the recently cloned tomato late blight resistance gene Ph-3 [67] and
StCDF1, the gene proposed to underlie a major QTL for plant maturity [14] were anchored to
the potato physical map (Figs 1 and 2, maps ‘a’). The distribution of QRL linked markers corre-
sponded by and large to the distribution of candidate genes. Clustering of QRL linked markers
within the distal 10–20 Mbp was observed on most chromosome arms.

Thirty five genes were selected for association analysis from the RNA-Seq experiment based
on various criteria such as high number of differential SNPs per gene, very low q-values for dif-
ferential SNP allele frequency, functional annotation and genomic position (overlap with
QRL). Four additional genes (PC, DHN,HMGCR and Rpi-vnt1) were selected based on the
results of GWAS (see below) (Table 4). Miraculin (PGSC0003DMG400010170), a member of a
large family of protease inhibitors located in a prominent QRL region on the long arm of chro-
mosome III (Fig 1), was one of the most outstanding candidate genes. It contained 47 SNPs
with very low frequency of the tbr allele in the R8 genotype pool and a dramatic increase in the
S8 pool (S7 File) plus differential transcript levels between genotype pools in SuperSAGE. Sur-
prisingly, no DNA polymorphism was detected for this gene in the PIN184 population. For the
remaining 38 genes we collected genotypic data of 483 SNPs and 11 indels by sequencing
approximately 6500 amplicons in the PIN184 population (S1 File). One hundred and sixty
seven of these SNPs (34%) showed different allele frequencies in the R8 and S8 genotype pools
(Table 4). Association analysis using the models K1, K2, K2Q and S identified 62, 47 and 89
putative associations (p< 10−2) with MCR, rAUDPC and PM, respectively (S4–S6 Files). Dis-
counting redundant associations of SNPs in strong LD with each other (r2 > 0.64) reduced the
numbers to 49, 34 and 62 marker-trait associations at 21 (MCR), 18 (rAUDPC) and 26 (PM)
candidate loci, respectively. Table 2 shows 34 SNP-trait associations at 19 loci that were sup-
ported by three or four association models. Thirteen of these (38%) were among the SNPs with
different allele frequencies in R8 and S8 genotype pools in RNA-Seq analysis. The most robust
associations with MCR (significant with all association models) were observed for ten SNPs at
the loci Pen1,HMGCR, ATPase, CYP71D11, HSP70 and Rpi-vnt1. Most significant (p< 10−4)
were five SNPs at the loci HMGCR, CYP71D11 and Rpi-vnt1 on chromosome IV, VIII and IX,
respectively (Table 2). The total variance of MCR explained by SNPs at these loci varied,
depending on the association model and the SNP, between 10% and 21% (S4 File). SNPs at the
loci GT8 and ATPase on chromosome V showed the most robust and significant associations
with plant maturity (Table 2, S6 File). One SNP in the ATPase gene, ATPase_SNP8491, was
associated with MCR besides rAUDPC and PM (Table 2). The minor frequency allele of the
associated SNPs was in 28 cases (82%) the tuberosum allele and in only six cases the phureja
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Table 4. Candidate genes with differential SNPs in RNA-Seq analysis that were selected for association analysis in the PIN184 population.

Gene ID Chr. Locus
PGSC0003

No. of SNP/
indelsscored

Annotation Gene selected in
SuperSAGE

Reference

Ank I DMG400019975 8 (4) a Ankyrin repeat-containing protein No [68]

arpP1a I DMG400032190 5 (3) Acidic ribosomal protein P1a Yes b [69]

Pen1 I DMG400021331 23 (1) Penetration1, syntaxin Yes d [70]

DIR1 I DMG400011323 11 (5) Defective in induced resistance 1 protein No [71, 72]

TMP14 I DMG400000204 4 (3) Tylakoid membrane phosphoprotein 14
kDa

Yes b, c [73]

EIF3 II DMG400029694 9 (8) Eukaryotic translation initiation factor 3
subunit D-like

No [74] http://www.uniprot.
org/uniprot/O15371

PQ-lr III DMG400013431 10 (2) PQ-loop repeat family protein; lysosomal
cystine transporter family protein

No [75]

StTinI III DMG400016749 16 (15) TMV-induced protein I Yes d [76]

smp24 III DMG400019959 5 (2) 24 kDa seed maturation protein Yes d [77]

KT-InvInh III DMG400010146 14/1 (1) Kunitz-type tuber invertase inhibitor No [78, 79]

SPI III DMG400010170 0 (0) Miraculin, serine protease inhibitor Yes b [80, 81]

DnaJ8 III DMG400014210 8/1 (2) Heat shock protein binding protein 8 Yes b [82, 83]

D4H IV DMG400029517 14 (7) Desacetoxyvindoline 4-hydroxylase Yes d [84]

PC IV DMG400041620 20 (7) Plastocyanin Yes b, c [85]

DHN IV DMG400009968 11/2 (2) 25 kD dehydrin Yes b, c [86]

HMGCR IV DMG400009924 10 (0) 3-hydroxy-3-methylglutaryl coenzyme A
reductase

No [87]

GT8 V DMG400000827 14 (3) Glycosyltransferase, CAZy family GT8 No [88]

TPARL V DMG400000829 14 (5) Transmembrane protein No [89] http://www.uniprot.
org/uniprot/Q4V899

ATPase V DMG400031271 17/2 (15) AAA-type ATPase No [90]

StGP28 VI DMG402016495 15 (7) Stem 28 kDa glycoprotein Yes b, c [91]

RPS27 VI DMG401028933 6 (4) Ribosomal protein S27 Yes b [92]

ICE2 VI DMG401028788 11 (4) Inducer of CBF expression 2 protein
(ICE), transcription factor

No [93]

EXO VI DMG402005942 12 (3) Endo-alpha-1,4-glucanase, beta-D-
glucan exohydrolase

No [94]

StTL15A VI DMG400034939 12 (8) Thylakoid lumenal 15 kDa protein 1 Yes b [95]

CAB13 VII DMG400019248 17 (7) Chlorophyll a-b binding protein 13 Yes b, c [96]

THI VII DMG400019257 9 (3) Chloroplast thiazole biosynthetic protein Yes b [97]

PSBR VII DMG400022241 10 (0) Photosystem II 10 kDa polypeptide Yes b [98]

psaD VIII DMG400005805 18 (0) Photosystem I reaction center subunit Yes b, c http://www.uniprot.org/
uniref/UniRef100_
P49107

CYP71D11 VIII DMG400020809 12 (4) Cytochrome P450 71D11 Yes d [99]

HSP70 IX DMG400008917 14 (2) Heat shock protein 70kDa Yes b,d [100]

Rpi-vnt1 IX DMG400020587 16/1 (1) Gene for resistance to P. infestans from
S. venturii

No [65]

VAMP X DMG400028151 13 (4) Vesicle associated membrane protein
SEC22

Yes b [101]

CaM-10 X DMG400007205 9 (3) Calmodulin Yes b [102]

BSDR4 XI DMG40003147 15 (4) Bacterial spot disease resistance protein
4

No [103]

KiTH-2 XI DMG400008101 20/2 (0) Kiwellin Yes d [104]

RuBisCo_bp XI DMG400001148 20 (7) RuBisCo large subunit-binding protein
alpha subunit

Yes c [105]

(Continued)
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allele. In the majority of cases the minor frequency SNP allele was associated with increased
resistance and/or later maturity (decreased mean values for rAUDPC, MCR and PM) (Table 2,
S4–S6 Files). There were a few exceptions though, where the effects on resistance and maturity
had the opposite direction. Most remarkable in this respect were the minor frequency SNP
alleles Rpi-vnt1_C440 and Rpi-vnt1_G539, which were both associated with increased resistance
and earlier plant maturity, although the effects on PM were small and only supported by one
or two association models.

Untargeted approach: Genome wide association study (GWAS)
The PIN184 population was genotyped for 8303 SolCAP SNPs, which yielded 6286 polymorphic
SNPs. LD and LD decay per chromosome were estimated using the physical map positions of 5600
SolCAP SNPs. The proportion of pair wise r2 values> 0.1 (loci in LD) and> 0.8 (loci in nearly
complete LD) was 1.57 and 0.01 percent, respectively. The nonlinear regression curve in the plot of
r2 values versus physical distance (not shown) reached the threshold of r2 = 0.1 between 270 and
280 base pairs, the same value as obtained previously with a small set of 36 potato varieties [32].

Association analysis using the four models K1, K2, K2Q and S (Materials and Methods)
identified 281 SolCAP SNPs in 53, 53 and 172 loci (significant at p< 10−4) that were putatively
associated with MCR, rAUDPC and PM, respectively (Table 5, S9–S11 Files). Twenty one of
these loci were not annotated in the potato genome sequence. Annotations for most of those
were retrieved from the orthologous loci in the highly syntenic tomato genome [108] (http://
www.sgn.cornell.edu/). The majority of the annotated loci was represented in the RNA-Seq
analysis by SNPs with different allele frequencies in R8 and S8 genotype pools. Some of these
SNPs were even identical with associated SolCAP SNPs (Table 5, S9–S11 Files). Most conspicu-
ous in this respect were three SNPs (solcap_snp_c1_11709, solcap_snp_c1_11710, sol-
cap_snp_c2_39606) associated with MCR (S9 File), which are located in PGSC0003DMG

Table 4. (Continued)

Gene ID Chr. Locus
PGSC0003

No. of SNP/
indelsscored

Annotation Gene selected in
SuperSAGE

Reference

CaM-11 XI DMG400027384 12/1 (7) Calmodulin Yes b [102]

LapN XII DMG400007831 11/1 (1) Leucine aminopeptidase N No [106]

ATPD XII DMG400016959 18 (13) ATP synthase delta chain, chloroplastic Yes b [107]

a The number of SNPs with different allele frequencies in R8 and S8 genotype pools (RNA-Seq) is shown in parenthesis (details in S1 File).
b Differential transcript levels between quantitative resistant and susceptible genotype pools in SuperSAGE [23].
c The transcript was down regulated upon infection with P. infestans in SuperSAGE [23].
d The transcript was up regulated upon infection with P. infestans in SuperSAGE [23].

doi:10.1371/journal.pone.0156254.t004

Table 5. Number of SolCAP SNPs and corresponding loci showing putative associations with MCR,
rAUDPC and PM based on different ranking criteria.

MCR rAUDPC PM

No of SolCAP SNPs significant (p < 10−4) with 1 to 4 models 60 62 197

No of corresponding loci 53 53 172

No of loci with differential SNPs in RNA-Seq analysis 38 38 105

No of loci with differential expression in SuperSAGE 8 10 13

No of significant differential SolCAP SNPs in RNA-Seq analysis 7 9 20

No of SNPs significant (p < 10−4) with at least two association models 27 17 80

No of corresponding loci 24 16 67

doi:10.1371/journal.pone.0156254.t005
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400023590 encoding a 14-3-3 protein. Transcripts of this gene were upregulated upon infection
with P. infestans [23]. Additional loci also showed differential expression in SuperSAGE
(Table 5, S9–S11 Files).

Figs 1 and 2 (maps ‘b’) shows the positions of the SolCAP SNPs showing putative associa-
tions on the potato physical map (details in S9–S11 Files). As expected, the simple association
model without correction for population substructure (model S) revealed the highest number
of associations, particularly for PM (Figs 1 and 2, left side of maps ‘b’). Many of those were not
detected with the models K1, K2 and K2Q, which corrected for substructure with different
methods. The results of the K1, K2 and K2Q models (Figs 1 and 2, right side of maps ‘b’) dif-
fered with respect to p-values for the same SNP as well as number and identity of significant
SNPs. The results of models K2 and S were similar, whereas models K1 and K2Q detected fewer
associations, mostly with higher p values than models K2 and S. In many cases where different
SNPs were significant with different association models, these SNPs mapped nevertheless to
the same genomic segment (S9–S11 Files, Figs 1 and 2, maps ‘b’). Q-Q plots of the p-values
obtained with models K1, K2, K2Q and S (S12 File) showed that K1 was the best fitting associa-
tion model for all three traits, followed by the K2Q model for rAUDPC and PM. Q-Q plots for
models K2 and S were similar for all traits.

One hundred and sixteen SolCAP SNPs in 98 loci were associated with MCR, rAUDPC
and/or PM in at least two association models (S9–S12 Files). Five, five and seven SolCAP SNPs
were associated with MCR, rAUDPC and PM, respectively, in three or four association models
(Table 6). Taking into consideration the number of associated SNPs that mapped to a particu-
lar genomic segment, the significance and the robustness of the associations, we propose eleven
genomic segments that harbor QRL for MCR based on GWAS (Table 7). Seven of those geno-
mic segments overlapped with SNP density peaks from RNA-seq analysis (Table 7, Figs 1 and
2) The amount of variance explained by single SNPs in these regions varied between 8 and 18
percent (S9 File). The best candidate genes in these genomic segments were selected based on
number and significance of the corresponding SolCAP SNPs, differential expression in Super-
SAGE [23] and representation of the gene by differential SNPs in RNA-Seq analysis (Table 7).
The two genes on chromosome I encoded an unknown gene (PGSC0003DMG400001190, 11.7
Mbp) and ‘Glycosyltransferase QUASIMODO1’ (PGSC0003DMG400014677, 88.3 Mbp). The
four genes on chromosome II encoded ‘Cold regulated 314 thylakoid membrane 2’ (PGSC000
3DMG400003083, 30.4 Mbp), ‘Transcription elongation factor 1 homolog’ (PGSC0003DMG
400031773, 33.1 Mbp), ‘Xyloglucan endotransglucosylase-hydrolase XTH7’ (PGSC0003DMG
400021398, 43.3 Mbp) and ‘Serine carboxypeptidase-like 25’ (PGSC0003DMG400001455, 45.6
Mbp). The candidate gene on chromosome III encoded ‘Hydroxycinnamoyl transferase’
(PGSC0003DMG400014152, 57.4 Mbp). The best candidate gene on chromosome IV was
3-hydroxy-3-methylglutaryl coenzyme A reductase HMGCR (PGSC0003DMG400009924,
71.95 Mbp).HMGCR and two additional candidate genes located at 71.25 Mbp (plastocyanin,
PC) and 71.45 mbp (25 kDa protein dehydrin, DHN) were subsequently tested for association
with MCR by amplicon sequencing (see above). The strongest association with MCR was
observed for solcap_snp_c2_10566 in HMGCR, which was in nearly complete LD with sol-
cap_snp_c1_3476 in the same gene. The latter SNP was represented with differential allele fre-
quency in RNA-Seq (S9 File). Compared with the SNPs inHMGCR, the SNPs in the physical
closely linked genes PC and DHN showed only minor associations with MCR (Table 2). The
QRL on chromosome VII was detected with solcap_snp_c2_35100 by all four association mod-
els. This SNP is located in a C3HL domain class transcription factor (PGSC0003DMG40003
2829, 49.46 Mbp). The QRL on chromosome IX was identified by solcap_snp_c2_47952 in a
homolog of Rpi-vnt1, a major gene for resistance to late blight from the wild species S. venturii
[65]. The association with MCR was detected by all four models. Sequencing an amplicon
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including this SNP confirmed the association with MCR and detected additional associated
SNPs (Table 2). Finally, the candidate gene on chromosome XII encoded a homolog of the
polypyrimidine tract binding protein RBP50 that has been characterized in pumpkin [109]
(PGSC0003DMG400018824, 22.90 Mbp).

Associations with rAUDPC and PM were detected mainly by twelve SolCAP SNPs in nine
genes located between 3.0 and 5.5 Mbp on chromosome V (Fig 1, S10 and S11 Files). The best
candidate genes for rAUDPC were ‘Fructose-bisphosphate aldolase’ (PGSC0003DMG40003
0565, 3.7 Mbp) and ‘Bacterial spot disease resistance protein 4’ (PGSC0003DMG400018429,
4.6 Mbp) (Table 7). The strongest association with both rAUDPC and PM was observed with
solcap_snp_c2_50302 located in a methyltransferase gene (PGSC0003DMG400031262, 5.05
Mbp). This SNP explained, depending on the association model, up to 35 percent of the total

Table 6. SolCAP SNPs associated with MCR, rAUDPC and/or PM in three or four association models (-Log10(P) > 4). Full data are available in S9–
S11 Files.

Chr. Position
[Mbp]

SNP identifier SNP alleles
phu/tbr

Frequency (MFA)
direction of effect d

MCR—Lg10(P)
(R2) model e

rAUDPC—Log10(P)
(R2), model e

PM—Log10(P)
(R2) model e

I 45.8 solcap_snp_c2_40105 a T/C 0.20 (C) # < 4.00 < 4.00 4.23 (0.11) K1,
K2, S

II 33.0 solcap_snp_c2_13051 a A/C 0.11 (C) # 4.79 (0.14) K2,

K1,S
< 4.00 < 4.00

II 45.6 solcap_snp_c1_4849 a A/G 0.16 (G) # 4.80 (0.10) K1,S 4.69 (0.15) K2,K1,S < 4.00

III 48.0 solcap_snp_c2_53699 a C/T 0.34 (T) # < 4.00 < 4.00 4.85 (0.19) K1,
K2,S

IV 71.9 solcap_snp_c1_3476 a,b T/C 0.29 (C) # 5.12 (0.16) K2,
K1,S

4.40 (0.09) S < 4.00

V 3.7 solcap_snp_c2_11924 a,c G/A 0.17 (A) # < 4.00 4.78 (0.14) K2,K1,S < 4.00

V 4.0 solcap_snp_c2_11829 a A/G 0.20 (A) " < 4.00 4.40 (0.09) S 8.22 (0.22) K2,
K2Q,K1,S

V 4.6 solcap_snp_c2_22990 a T/A 0.17 (T) # < 4.00 6.15 (0.15) K2,K1,
K2Q,S

< 4.00

V 4.6 solcap_snp_c2_22989 a C/T 0.18 (C) " < 4.00 4.74 (0.11) K2 11.87 (0.26) K2,
K1,K2Q,S

V 5.0 solcap_snp_c2_50312 A/G 0.34 (A) " < 4.00 4.20 (0.09) S 6.05 (0.17) K2,
K1,S

V 5.0 solcap_snp_c2_50302 a T/C 0.19 (T) " < 4.00 7.21 (0.18) K2,K1,
K2Q,S

15.45 (0.34) K2,
K1,K2Q,S

V 5.0 solcap_snp_c2_50298 a T/A 0.29 (A) # < 4.00 7.00 (0.19) K2,K1,
K2Q,S

4.35 (0.13) K2,S

VII 49.5 solcap_snp_c2_35100 C/A 0.08 (A) # 5.72 (0.13) K2Q,
K2,K1,S

4.14 (0.08) S < 4.00

IX 19.2 solcap_snp_c2_1918 a T/A 0.14 (A) # < 4.00 < 4.00 8.08 (0.17) K2,
K1,S

IX 59.6 solcap_snp_c2_47952 a T/C 0.18 (C) # 6.60 (0.18) K1,
K2,K2Q,S

5.45 (0.10) K1 < 4.00

XII 22.9 solcap_snp_c1_3326 a C/T 0.06 (T) # 6.70 (0.14) K2,
K2Q,S

< 4.00 < 4.00

a The corresponding locus was present with differential SNPs in RNA-Seq analysis
b The corresponding locus was down regulated upon infection with P. infestans in SuperSAGE [23]
c The corresponding locus was up regulated upon infection with P. infestans in SuperSAGE [23]
d The arrows indicate the direction of effect of the MFA: # decreasing mean values for rAUDPC, MCR and PM, indicating greater resistance or later

maturity; " increasing mean values for rAUDPC, MCR and PM, indicating greater susceptibility or earlier maturity.
e P and R2 values are shown for the first of the models listed.

doi:10.1371/journal.pone.0156254.t006
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variation of PM and up to 18 percent of the total variation of rAUDPC (Table 6). The methyl-
transferase gene and the ATPase candidate gene that was also strongly associated with PM and
rAUDPC (Table 2), are separated by only 12 kbp. Both genes map approximately 510 kbp
proximal to the StCDF1 locus (at 4.54 Mbp). The gene pair annotated as ‘Bacterial spot disease
resistance protein 4’ (PGSC0003DMG400018429 and PGSC0003DMG400018428, 4.6 Mbp)
was physically most closely linked with StCDF1 (distance 51 kbp). Solcap_snp_c2_22989 in
PGSC0003DMG400018428 was associated with PM, whereas solcap_snp_c2_22990 in
PGSC0003DMG400018429 was associated with rAUDPC (Table 6). Several additional geno-
mic regions harbored QTL for PM with smaller effects and to less extent for rAUDPC (Table 6,
Figs 1 and 2, maps ‘b’).

The highest density peaks of SNPs with differential allele frequency in RNA-Seq analysis on
chromosomes III, VI and XI (Figs 1 and 2, maps ‘d’) did not overlap with the QTLfor late blight
resistance identified by GWAS.

Discussion

Complementarity of approaches
The candidate gene approach for detecting marker-trait associations with quantitative resis-
tance to late blight was first targeted at a specific pathway. After that, comparative transcript
profiling was used for the unbiased discovery of novel candidate genes. A very small portion of

Table 7. Genomic segments harboring QTL for MCR, rAUDPC and PM based on GWAS.

Genomic segment
[Mbp]

Traits Overlap with SNP density
peak No. a

Best candidate locus
PGSC0003

Locus selected in
RNA-Seq b

Locus selected in
SuperSAGE c

Chr01: 11.5–12.5 MCR,
rAUDPC

no DMG400001190 yes no

Chr01: 88.0–89.0 MCR 1 DMG400014677 yes no

Chr02: 27.0–31.0 MCR,
rAUDPC

2 DMG400003083 yes yes d

Chr02: 33.0–34.0 MCR 3 DMG400031773 yes no

Chr02: 41.0–43.5 MCR,
rAUDPC

no DMG400021398 yes yes d

Chr02: 45.0–47.5 MCR,
rAUDPC

4 DMG400001455 yes no

Chr03: 56.5–57.5 MCR no DMG400014152 yes no

Chr04: 71.0–72.5 MCR,
rAUDPC

5 DMG400009924 yes yes d

Chr05: 3.0–5.5 rAUDPC 6 DMG400030565 yes yes e

rAUDPC 6 DMG400018429 yes no

PM,
rAUDPC

6 DMG400031262 yes no

Chr07: 49.0–50.0 MCR 7 DMG400032829 no no

Chr09: 59.0–60.0 MCR,
AUDPC

8 DMG400020587 yes no

Chr12: 22.0–23.0 MCR no DMG400018824 yes no

a The numbers identify the peaks in Fig 1, maps ‘d’
b Selection criterion: the locus contained SNPs with different allele frequencies (q < 0.01) in genotype pools R8 and S8.
c Selection criterion: the locus was consistently up or down regulated upon infection with P. infestans in three different genotype pools [23].
d The transcript was down regulated upon infection with P. infestans.
e The transcript was up regulated upon infection with P. infestans.

doi:10.1371/journal.pone.0156254.t007
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those was subsequently tested for association with the traits MCR, rAUDPC and PM. The
GWAS approach was untargeted and unbiased. All three approaches were complementary in
that they identified different loci associated with maturity corrected resistance to late blight in
the PIN184 population. However, none of the new SNP-MCR associations described here sur-
passed the effect of the two SNPs in the StAOS2 gene, which were discovered previously with a
candidate gene approach [5, 22, 110]. The QTL effect of StAOS2 was neither detected by
GWAS nor by twenty physically tightly linked SNPs in the RuBisCo_bp candidate gene from
the RAD-Seq experiment, which is located right next to StAOS2 within 14 kbp. This suggests
that linkage disequilibrium in the PIN184 population did not extend much beyond the StAOS2
locus, at least in this region of the potato genome. This is in line with the threshold of 270 to
280 base pairs for genome wide LD decay that was obtained by LD analysis of 5600 SolCAP
SNPs in the PIN184 population, and provides further evidence that StAOS2 is one of the genes
that directly control MCR [22]. It further shows that the genome coverage of the 8.3 k SolCAP
SNP array was insufficient for tagging all QTL for MCR in tetraploid potato. Nonetheless,
GWAS based on this SNP array discovered several genes such as HMGCR, a C3HL domain
class transcription factor and Rpi-vnt1 that are considered as strong candidates for directly
controlling MCR. These three genes were not detectable or not conspicuous in the RNA-Seq
analysis.

Assessment and ranking of marker-trait associations
Association analysis of 654 SNPs in 48 candidate genes and 6286 genome wide SolCAP SNPs
was performed with four different statistical models. Models K1 and K2 corrected with different
methods for kinship, K2Q corrected for kinship as well as population structure and the simple
model S did not include any correction. As expected, model S resulted in the highest number of
SNP-trait associations, many of which are likely false positives. However, several of those asso-
ciations obtained with SolCAP SNPs were supported by different allele frequencies of the SNP
in the R8 and S8 genotype pools (RNA-Seq analysis) or by differential expression of the corre-
sponding gene in response to infection with P. infestans [23]. Association studies in the
PIN184 and other, independent populations of tetraploid potato varieties and breeding clones
have shown that there is no severe population structure in the central European germplasm
pool of cultivated tetraploid potato [5, 32, 111–114], likely due to the breeding system. Potato
breeding consists of intercrossing highly heterozygous, tetraploid parents and selecting supe-
rior genotypes in the segregating F1 generation, which are propagated vegetative. This system
does not favor the formation of distinct heterotic groups as known in maize, for example. We
therefore considered also the results of the simple model S when assessing the reliability of
SNP-trait associations. Models K1 and K2 produced not the same results although the kinship
matrices were calculated with the identical marker information. Based on Q-Q plots, model K1

provided the best fit of the four models. The results of model K2 were more similar to the sim-
ple model, indicating that the correction for population structure by model K2 was less strin-
gent compared to model K1. The addition of population structure (K2Q model) improved the
association model for the traits rAUDPC and PM but not for MCR. Despite the differences
between the association models with respect to number and identity of associated SNPs and
their p-values, these SNPs were frequently located in the same gene in the case of candidate
genes, or in the case of GWAS, mapped to the same locus or the same physical region (Figs 1
and 2). As not all physically closely linked SNPs were in strong LD with each other and there-
fore redundant, it seems unlikely that multiple marker-trait associations tagging the same
genomic region are false positives. SNP-trait associations were ranked, therefore, besides by
error probability (p-value) according to the number of association models detecting the same
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SNP and the number of associated SNPs mapping to the same locus or genomic region. We
considered as most reliable the SNP-trait associations detected by three or four models includ-
ing model S (Tables 2 and 6) and the loci and physical regions that included several associated
SNPs. Stand-alone SNP-trait associations were not considered reliable by whatever statistical
model they were identified.

Loci associated with quantitative resistance to P. infestans not
compromised by late plant maturity
Association analysis of 171 SNPs in nine genes functional in the jasmonate pathway identified
robust associations of SNPs with MCR and/or rAUDPC but not plant maturity, in the biosyn-
thetic genes Plox1, Lox1St2, AOC and OPR3 (Table 2, S4 and S5 Files). Most interesting for
breeding applications are the rare haplotype Plox1-C8089G8344 (frequency 1.4%), which had the
greatest positive effect on MCR and rAUDPC, and the minor frequency allele Lox1St2_T6571,
which was also associated with increased resistance (Table 2). Both genes encode 9-lipoxy-
genases, which suggests that oxylipins other than jasmonic acid might have a role in MCR [21,
40]. The minor association with rAUDPC of a SNP in OPR3 (OPR3_SNP713) is supported by
an independent QTL linkage mapping experiment in diploid potato, where a restriction frag-
ment length polymorphism in the OPR3 coding sequence (not identical with OPR3_SNP713)
was linked with a small effect QTL for late blight resistance [115].

Comparative transcript profiling of the genotype pools R8 and S8 having contrasting phe-
notypic means of resistance to P. infestans as well as contrasting genotypes at the StAOS2 locus
resulted in 42 688 differential SNPs in 9854 genes, corresponding to one quarter of all anno-
tated potato genes [33]. Differential SNPs could theoretically arise only from different allele fre-
quencies in pools R8 and S8, as the sequenced cDNA libraries were normalized. A portion of
the differential SNPs likely resulted also from different expression levels due to incomplete
transcript normalization. The sixteen F1 genotypes used for pool construction represented the
genetic diversity of seven tetraploid, heterozygous parents, representing 28 genome haplotypes.
This number was probably not sufficient for complete homogenization of the background
genetic variation between the pools. Large haplotype blocks due to relatedness among the F1
genotypes causing linkage drag and the naturally very high DNA polymorphism in potato with
one SNP every 20 to 30 base pairs [116] also generated random noise in the comparison
between R8 and S8 pools. The assembly of the genotype pools was limited however by the fact
that only 76 genotypes were available for selecting phenotypic and genotypic strongly contrast-
ing genotypes. The large number of genes with differential SNPs made the rational selection of
candidate genes for association analysis difficult. In retrospect, neither p-values nor number of
differential SNPs per gene nor co-localization with genetically mapped QRL guarantied an effi-
cient selection of our target genes, namely those which control quantitative resistance directly
and would therefore show association of allelic DNA variation with the phenotypic variation of
resistance to P. infestans. Despite the handicap associated with the genetic material used for
RNA-Seq analysis, we identified by this approach genes such as CYP71D11 that might be genu-
inely involved in quantitative resistance and provide novel diagnostic SNPs for breeding
applications.

SNPs in twelve of 35 candidate genes selected based on RNA-Seq analysis showed robust asso-
ciations with MCR and/or rAUDPC and none or only minor association with PM (Table 2, S4
and S5 Files). Except ATPase and BSDR4, these genes were differentially expressed either in
response to infection with P. infestans (PEN1, smp24, KiTH-2,HSP70, CYP71D11) or between
genotype pools with contrasting MCR levels (arp1a,DnaJ8, StTL15A, Cam-10) or both (StGP28)
(Table 4) [23]. The functional annotation of PEN1 and BSDR4 links these genes directly with
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plant responses to pathogens triggered by R genes [70, 103]. The expression of KiTH-2 (Kiwellin)
was strongly up regulated upon infection with P. infestans and reached higher transcript levels in
more resistant plants. KiTH-2 is one of six clustered Kiwellin genes located 511 kbp proximal to
the StAOS2 locus on chromosome XI. LD was not observed between the haplotypes KiTH-
2-T3689A3806G3987 and StAOS2-A691C692 both associated with greater resistance, which indicates
that the effects on resistance observed at the two loci were independent. The role of KiTH-2 in
pathogen resistance is unknown. DnaJ8,HSP70 and smp24 have putative functions in general
stress responses [77, 82, 100]. The closest Arabidopsis homolog ofDnaJ8 is chloroplastic
AT1G80920, which plays a role in stabilizing photosynthetic complexes and in oxidative stress
responses [83]. StTL15A encodes a 15kD protein of unknown function in the thylakoid lumen
[95]. Two SNPs in the same gene, but different from StTL15A_SNP59972 identified in this study,
were associated with resistance to P. infestans in a panel of diploid S. phureja clones evaluated in
Colombia (Álvarez et al. submitted). Cam-10 (calmodulin) is a component of the Calcium signal-
ing pathway, which plays important roles in plant development and pathogen interactions [102,
117]. Arp1a encodes one of the numerous ribosomal genes that were differentially expressed in
plants with contrasting MCR levels [23]. The annotation of StGP28, ATPase and CYP71D11 is
highly unspecific and their possible role in host-pathogen interactions is unknown [90, 91, 118].
In the case of CYP71D11 however, which encodes a cytochrome P450-dependent monooxygen-
ase (CYP) on chromosome VIII, the genomic context suggests a function of this particular gene
in terpene biosynthesis. The locus PGSC0003DMG400001948, which maps 36 kbp distal to
CYP71D11, is annotated as 8-hydroxy-copalyl diphosphate synthase [119] and is a member of
the terpenoid synthase (TS) superfamily. This gene was also represented with a single differential
SNP in the RNA-Seq results (S7 File). TS’s and CYP’s are both encoded by multi gene families.
They are key enzymes in terpene biosynthesis and determine the tremendous diversity of this
largest class of plant secondary metabolites [99]. Both genes were up regulated upon infection
with P. infestans [23]. Recently it was demonstrated that distinct pairs of TS and CYP genes are
found together in several plant species within 50 kbp genomic sequence far more commonly than
expected by chance, thus forming functional clusters. CYP71D11 and copalyl diphosphate
synthase were one of seven such CYP/TS gene pairs that were discovered in the potato genome
[99]. Fourty eight SNPs with differential allele frequency were found in CYP71D11, which placed
it among the top twenty genes with 40 to 60 differential SNPs per gene that were identified by
RNA-Seq analysis. Three SNPs in strong LD with each other, one of those differential in RNA-
Seq analysis, showed the most significant and robust associations with rAUDPC andMCR from
all 35 genes tested. The SNPs explained between 6 and 21 percent of the phenotypic variation,
depending on SNP and association model. The low frequency haplotype CYP71D11-T346G505C548

was associated with greater resistance. Allelic variation in this CYP and the neighboring TS gene
could affect the quantity of specific secondary metabolites that inhibit P. infestans growth [120].

GWAS revealed 32 loci putatively associated with MCR and/or rAUDPC but not plant
maturity, which were supported by at least two association models (S9 and S10 Files). The
majority of these loci (72%) were supported in the RNA-Seq analysis by SNPs with different
allele frequencies in genotype pools R8 and S8, which were genetically different from the
PIN184 population. The genotype pools R8 and S8 represented the genetic diversity of 28
parental genome haplotypes, whereas the diversity of the PIN184 population representing 736
genome haplotypes (4 x 184) was much larger. SNPs in eight loci were identified by three to
four association models (Table 6). In all cases the minor frequency allele was associated with
greater resistance. Increasing the frequency of these alleles in breeding populations should
improve the average resistance level. The putative function of these eight genes is discussed
below.
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The first locus PGSC0003DMG400031773 (solcap_snp_c2_13051) encodes a homolog of
transcription elongation factor 1 (TEF1). Four SNPs in this gene were differential in the RNA-
Seq analysis. TEF’s control the transcript elongation of subsets of genes in the chromatin con-
text thus contributing to the control of gene expression [121]. The second locus PGSC0003
DMG400001455 (solcap_snp_c1_4849) is annotated as ‘Serine carboxypeptidase-like 25’, a
class of proteins with unclear biochemical function, not necessarily proteolysis [122]. Four SNPs,
one identical with solcap_snp_c1_4849, showed different allele frequencies in R8 and S8 geno-
type pools. Both genes are located on the long arm of chromosome II, where QTL for late blight
resistance have been repeatedly mapped in various genetic backgrounds (Fig 1, maps ‘a’).

PGSC0003DMG400009924 on chromosome IV encodes a 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR), the expression of which was down regulated after infection
with P. infestans compared with uninfected plants [23]. One of two differential SNPs in the
RNA-Seq analysis was identical with solcap_snp_c2_10566. The association of this SNP with
MCR was confirmed by amplicon sequencing, which identified additional associated SNPs.
The physically closely linked genes PC and DHN (within 100 kbp fromHMGCR) were strong
candidates based on differential expression in SuperSAGE as well as different SNP allele fre-
quencies in R8 and S8 genotype pools (S7 File). Both genes showed nonetheless only minor
associations compared with HMGCR. HMGCR is a key enzyme in the mevalonate pathway,
which provides precursors for isoprenoid or triterpene biosynthesis. It might be part of the
same metabolic network as CYP71D11 for the synthesis of antifungal secondary metabolites.
This particular gene is homologous but not identical with three HMGCR cDNA clones hmg1,
hmg2 and hmg3 that have been isolated and characterized from potato tubers [123, 124]. The
HMGCR on chromosome IV is therefore a novel, uncharacterized member of the potato
HMGCR gene family. The expression of tuber hmg’s was differentially regulated by methyl jas-
monate, the fungal elicitor arachidonic acid, by wounding and infection with P. infestans [123,
124], thus providing a link to the jasmonate signaling pathway.

The fourth locus PGSC0003DMG400030565 (solcap_snp_c2_11924) on chromosome V
encodes one of seven fructose-bisphosphate aldolase (FBA) genes, functional in the primary
metabolic pathways of glycolysis, gluconeogenesis and Calvin cycle. Arabidopsis FBA’s showed
differential expression patterns in response to abiotic stress [125]. This particular FBA gene
was represented with eleven differential SNPs in the RNA-Seq result. Its transcript level
increased upon infection with P. infestans in SuperSAGE. The fifth locus PGSC0003DMG
400018429 (solcap_snp_c2_22990) is one of two genes duplicated within 30 kbp on chromo-
some V. The loci PGSC0003DMG400018429 (StBs4-1) and PGSC0003DMG400018428
(StBs4-2) encode potato homologs of the tomato ‘bacterial spot disease resistance protein 4’
(Bs4) that is located in the syntenic genome segment on tomato chromosome 5 [103, 126].
Both loci were represented with differential SNPs in the RNA-Seq results, StBs4-1 with 23 and
StBs4-2 with 16 SNPs (S7 File). Interestingly, solcap_snp_c2_22990 in StBs4-1 was associated
with rAUDPC, whereas solcap_snp_c2_22989 in StBs4-2 was strongly associated with PM
(Table 6). The two SNPs showed very little LD with each other (r2 = 0.13), whilst sol-
cap_snp_c2_22990 was in LD with solcap_snp_c2_11924 in FBA (r2 = 0.35) which is located
900 kbp distal from StBs4-1. Both FBA and StBs4 are included in the genome segment on chro-
mosome V which contains the major QTL for plant maturity (see below). The fact that effects
on resistance and maturity were detected by different, independent SNP markers suggests that
both traits are controlled, at least in part, by different alleles of the same or physically closely
linked genes.

The sixth locus PGSC0003DMG400032829 (solcap_snp_c2_35100) on chromosome VII
encodes a C3HL domain class transcription factor (C3HL-TF) which was not detected by
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comparative transcript profiling, neither by SuperSAGE nor by RNA-Seq analysis. The poten-
tial role of this gene in resistance remains to be elucidated.

The seventh locus PGSC0003DMG400020587 (solcap_snp_c2_47952) on chromosome IX
encodes a homolog of Rpi-vnt1, a major gene for resistance to P. infestans that has been cloned
and characterized from the wild potato species S. venturii [65, 127]. This particular gene
belongs to a huge cluster of putative resistance genes located between 59.3 and 61.0 Mbp on
chromosome IX. The functionally characterized Ph-3 gene for resistance to P. infestans from
the wild tomato species S. pimpinellifolium is a member of the same gene family. It is located in
the syntenic genomic region on tomato chromosome 9 [67] (Fig 2). The late blight resistance
genes R8 and R9a from S. demissum also map to the tip of chromosome IX [128, 129]. The S.
tuberosum homolog of Rpi-vnt1 was represented with three differential SNPs in the RNA-Seq
results (S7 File). Amplicon sequencing confirmed the association of solcap_snp_c2_47952 with
MCR and identified additional associated SNPs (Table 2). In an independent association study
in a population of 103 Latin American tetraploid potato cultivars, solcap_snp_c2_56418
(chr09:60182931) which is physically tightly linked with solcap_snp_c2_47952 (chr09:5956
0440), was associated with quantitative resistance to P. infestans [130]. The most distal segment
of the long arm of potato chromosome IX is evolving as one of several hot spots for pathogen
resistance in the Solanaceae, which contains several loci conferring qualitative and quantitative
resistance to different pathogens. Taken together, our data strongly suggest that one or more
members of the resistance gene families located at the tip of the long arm of chromosome IX
directly contribute to quantitative resistance to late blight not confounded by late maturity.

Finally, the eighth locus PGSC0003DMG400018824 on chromosome XII (solcap_snp_c1_
3326) was annotated as RNA binding protein 50 (RBP50). RNA binding proteins are integral
components of ribonucleoprotein complexes and play a central role in RNA processing [109].
This particular gene was detected in RNA-Seq analysis with three differential SNPs.

Loci associated with plant maturity
Major effects on plant maturity and rAUDPC were detected by eighteen SNPs in the candidate
genes G8T, TPARL and ATPase and twelve SolCAP SNPs in nine genes located on chromo-
some V in the genome segment between 3.0 and 5.5 Mbp (Fig 1, Tables 2 and 6, S5 File, S10
and S11 Files). Genes associated with PM were not exempt from detection in the RNA-Seq
experiment because the genotype pools R8 and S8 were constructed based on the evaluation of
rAUDPC which was not corrected for plant maturity. This genomic region contains the func-
tionally characterized StCDF1 locus which controls tuberization under long day conditions
[14]. The StCDF1 locus itself was neither represented on the SolCAP genotyping array nor in
the RNA-Seq results. The highest significance and portion of the total variance of PM
explained (22% to 35%) (Table 6) was obtained with solcap_snp_c2_50302 in the locus
PGSC0003DMG400031262 annotated as methyltransferase or methylase, which mapped 510
kbp proximal to StCDF1. This and the other SNPs in this locus did not show strong LD with
any other SolCAP SNP physically closer to StCDF1 and also associated with PM. The effect on
PM of this particular methylase gene cannot be explained therefore by LD with StCDF1. This
suggests that StCDF1 is not the only gene responsible for the major QTL for plant maturity on
potato chromosome V [4, 15–17]. Interestingly, a single SNP in the ATPase candidate gene
(ATPase_SNP8491) showed a minor but robust effect on MCR (Table 2), which is in line with
earlier observations that the major QTL for resistance to late blight on chromosome V is not
completely explained by the maturity QTL [4, 17]. ATPase was selected because it was with 30
differential SNPs one of the top sixty candidate genes resulting from RNA-Seq analysis. Other
candidates for the observed effects on resistance are the R1 gene for resistance to P. infestans
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[8] and other putative resistance genes located in the same genome segment, such as ‘Bacterial
spot disease resistance protein 4’ (solcap_snp_22990) (Fig 1, S11 File) (see above).

Additional small to moderate effects on PM were observed for SNPs in 21 candidate genes
and by SolCAP SNPs in at least 60 loci on virtually every chromosome. Most of those were
detected by the S and K2 association models with the worst fit in the Q-Q plot for PM, indicat-
ing many of these loci could be false positives. The trait plant maturity itself might be a major
determinant of population structure in European potato, where varieties are principally catego-
rized according to plant maturity as very early, early, mid-early, mid-late and very late. The
genomic regions most densely populated with possibly false positive associations with PM
(between 40 and 51 Mbp on chromosome III, 6 and 10 Mbp on chromosome IV, 46 and 49
Mbp on chromosome VIII and between 59 and 60 Mbp on chromosome X) might be those
that are under human selection for maturity type (Figs 1 and 2). The segments on chromo-
somes IV and VIII overlap with QTL for plant maturity that were detected in experimental F1
families of diploid and tetraploid potato [4, 15]. Except for the major QTL on chromosome V,
the majority of SNPs associated with plant maturity were different from the SNPs associated
with resistance, even when located in the same gene. Examples are arpP1a, DNAJ8, Plox1 and
CYP71D11, where the SNPs associated with PM did not show an effect on MCR and vice versa
(Table 2). This suggests that the same or different, but physically tightly linked loci influence
plant maturity and resistance but with different alleles. This is promising news for the possibil-
ity to break the correlation between resistance to P. infestans and late maturity by choosing the
right SNPs for marker-assisted selection.

Conclusions
Including this paper, the PIN184 population has been intensively genotyped for more than
1000 SNPs at 83 candidate loci and for more than 6000 genome wide SolCAP SNPs [5, 24, 34].
As a result, SNPs at ten loci, StAOS2 [5, 34], BCCP [24],HMGCR, StGP28, Plox1, CYP71D11,
Rpi-vnt1, TEF1, C3HL-TF and RBP50 (this paper) showed strong associations (R2 > 10%) with
MCR. These ten loci are considered most suitable for the application as diagnostic markers in
breeding programs. The ten genes encode enzymes functional in the jasmonate and oxilipin
pathway (StAOS2, Plox1), in the biosynthesis of lipids (BCCP, biotin carboxyl carrier protein)
and secondary terpene metabolites (HMGCR, CYP71D11), have unknown functions (StGP28)
or function in pathogen recognition (Rpi-vnt1) or transcriptional regulation (TEF1, C3HL-TF,
RBP50). They are strong candidates for (i) being directly involved in the control of quantitative
resistance to late blight that is not compromised by late plant maturity, (ii) for further func-
tional characterization and (iii) for validation of diagnostic power in different breeding popula-
tions and environments.

Materials and Methods

Plant material and phenotypic assessment of late blight resistance
Sixteen tetraploid breeding clones (SL, BL) were used for comparative RNA-Seq analysis. SL
and BL clones originated from the breeding programs of SaKa Pflanzenzucht (Windeby, Ger-
many) and Böhm-Nordkartoffel Agrarproduktion (Ebstorf, Germany), respectively. They were
selected from 76 F1 genotypes (39 SL, 37 BL clones) originated from four crosses between
seven tetraploid, heterozygous parents (two were half sib families) based on two criteria: first,
the genotype of the SNPs StAOS2-SNP691 and StAOS2-SNP692 at the StAOS2 locus and sec-
ond, resistance to late blight evaluated in the field (Table 3). Eight clones (R8) were homozy-
gous or triplex for the haplotype StAOS2-A691C692 associated with increased resistance,
whereas the other eight (S8) were homozygous or triplex for the haplotype StAOS2-G691G692
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associated with increased susceptibility. In addition, the R8 and S8 plants were selected for con-
trasting levels of field resistance (Fig 3), which was evaluated in 2009 and 2010 as described
previously [4, 5, 23]. The mean value of the relative area under the disease progress curve
(rAUDPC) in two years was 0.31 and 0.56 for R8 and S8 plants, respectively. rAUDPC [131]
was evaluated as described [5].

A population of 184 tetraploid breeding clones described previously [5] was used for the
association analysis. We refer to this population as ‘PIN184’. The PIN184 population has been
evaluated in replicated field trials for the ‘area under disease progress curve’ (AUDPC) and for
plant maturity (PM). PM was scored from 1 to 9, where 1 indicates very late and 9 very early
maturity. From the data for AUDPC and PM the traits rAUDPC and ‘maturity corrected resis-
tance’ (MCR) were calculated as described [5]. As the results for AUDPC and rAUDPC were
very similar, we report only results obtained with the rAUDPC data.

Preparation of samples for RNA-Seq analysis
SL and BL plants were infected in a controlled environment (16h light, 22°C, 8h dark, 20°C)
with a mixture of P. infestans isolates that overcame all known R genes. Leaflets of similar size
were collected from the 4th and 5th compound leaf just before inoculation (T0), one (T1) and
two (T2) days post inoculation, immediately frozen in liquid nitrogen and stored at– 70°C
until use. Further details of growing the plants, inoculum preparation, infection procedure and
tissue sampling were described in [23]. The infection experiment was repeated five times with
different batches of plants and inoculum. Three experiments were selected for sample prepara-
tion. One leaflet each of eight quantitative resistant (R8) and susceptible (S8) genotypes
(Table 3) were pooled for each infection time point and each of three infection experiments.
Total RNA from 18 pooled tissue samples (two genotype pools, three time points, three infec-
tion experiments) was extracted, purified and quantified as described [23] and stored at -70°C.
Then four RNA samples were generated by pooling equal amounts of total RNA:

1. Sample R8-T0: RNA of the R8 genotype pool before inoculation (T0), pooled from three
infection experiments.

2. Sample R8-T1T2: RNA of the R8 genotype pool after inoculation (T1 and T2), pooled from
three infection experiments.

3. Sample S8-T0: RNA of the S8 genotype pool before inoculation (T0), pooled from three
infection experiments.

4. Sample S8-T1T2: RNA of the S8 genotype pool after inoculation (T1 and T2), pooled from
three infection experiments.

Construction of normalized cDNA libraries and sequencing
Four normalized cDNA libraries were custom synthesized from 2 μg total RNA each of the
samples R8-T0, R8-T1T2, S8-T0 and S8-T1T2 by GenXPro GmbH (Frankfurt, Germany),
pooled and custom sequenced by Solexa/Illumina technology on an Illumina GAII instrument
(Illumina, Inc., USA). In brief, polyadenylated transcripts were captured using biotinylated
Oligo-dT-primers (Dynal, Thermofisher). cDNA was generated by first- and second strand
synthesis using Superscript II (Invitrogen) as reverse transcriptase. The cDNA was hereafter
normalized [132] using double-strand specific nuclease (Evrogen). The normalized cDNA was
fragmented to an average size of 350 bp and p5 and p7 adapters for Illumina sequencing were
ligated, followed by PCR with 12 cycles.
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SNP genotyping using the 8.3k SolCAP potato SNP array
The PIN184 population was genotyped for 8303 SNPs using the 8.3k SolCAP potato genotyp-
ing array [29]. Custom genotyping was performed by the Department of Genomics, Life &
Brain Center Bonn (Germany), on an Illumina iScan system using the Infinium assay. Geno-
types AAAA, AAAB, AABB, ABBB or BBBB were called for 6286 SNPs and each individual
using FitTetra software [133]. For association analysis genotypes were converted in the numer-
ical values 0 (BBBB), 1 (ABBB), 2 (AABB), 3 (AAAB) and 4 (AAAA).

SNP genotyping by amplicon sequencing
Plants selected for RNA-Seq analysis were genotyped for the SNP markers StAOS2-SNP691
and StAOS2-SNP692 by amplicon sequencing as described [5]. Amplicons for the candidate
genes selected from the jasmonate pathway and the RNA-seq analysis were generated as fol-
lows: Primers were designed based on the potato (DM, S. phureja) genome sequence [33] using
NCBI Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) in such a way that
approximately 500–1000 base pair fragments were amplified by PCR (polymerase chain reac-
tion). Primer and amplicon sequences, annealing temperatures, positions and alleles of SNPs
are shown in S1 File. Standard PCR reactions were performed in 25 μl PCR buffer (Ampliqon
A/S, Odense Denmark) containing 1.5–2.5 mMMgCl2, 0.2 mM dNTPs, 0.25–0.50 μM of each
primer, 50 ng template DNA and 1 U Taq polymerase (Ampliqon). Cycling conditions were:
1min initial denaturation at 94°C, then 35 cycles of denaturation for 30sec at 93°C, annealing
for 45sec at Ta (S1 File), elongation for 1min at 72°C, final elongation for 10min at 72°C. PCR
products were examined for uniformity and band singularity on agarose gels and purified with
illustra™ ExoStar™ (GE Healthcare Europe, Freiburg, Germany). Amplicons were sequenced at
the Max-Planck-Genome-Center Cologne using the dideoxy chain-termination method, an
ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit and an ABI PRISM 3730
automated DNA Sequencer (Applied Biosystems, Weiterstadt, Germany). SNP and insertion-
deletion (indel) detection and scoring including SNP allele dosage was performed as described
[5]. For association analysis SNP genotypes were converted in numerical values 0, 1, 2, 3 and 4
as above.

RNA-Seq data analysis
A total of 133.2 million paired-end reads from the R8 genotype pool and 116.2 million paired-
end reads from the S8 genotype pool were mapped to the S phureja reference genome sequence
(version 4.03) using Tophat v2 with the parameter settings ‘max-insertion-length’ = 12, ‘max-
deletion-length’ = 12, g = 1, m = 1, ‘read-gap-length’ = 12, ‘read-edit-dist’ = 12, ‘read-mis-
matches’ = 12, ‘read-realign-edit-dist’ = 0, ‘no-coverage-search’, ‘segment-mismatches’ = 3
[134]. From these, 64 and 49,9 million reads, respectively, were uniquely mapped to the refer-
ence genome and further analysed. In order to detect polymorphisms between the R8 and S8
genotype pools, we first used default settings in Picard (http://broadinstitute.github.io/picard/)
to remove duplicated reads, and in GATK (Genome Analysis Toolkit) to realign indels and call
variants between samples [135]. This analysis resulted in an initial set of 4 380 958 variants.
For further analysis we considered a total of 566 806 bi-allelic SNPs located in annotated
exons, which had a phred quality score greater than 30 and were covered by at least ten reads
in each genotype pool. For each variant we determined significant differences in allele frequen-
cies between the R8 and S8 genotype pools using Benjamini and Hochberg adjusted p values
(q) from a Fisher’s exact test on the number of reads supporting each allele in each genotype
pool.

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 26 / 36

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://broadinstitute.github.io/picard/


Association analysis
The adjusted entry means for MCR, rAUDPC and PM have been calculated previously [5] and
were used for all association models. Kinship and population structure were analyzed based on
the genotypes of 241 SolCAP SNPs that were selected for equal distribution on all chromo-
somes, a minor allele frequency (MAF)� 10% and having no missing data (S2 File). Associa-
tion analysis was performed with four different models. The simplest model without correction
for population structure (model S) was a linear regression model that tests association of each
marker with the trait, and assumes that genotypes are independent. This model can be written
as phenotype = marker + error, where marker is a fixed effect. Model K1 is a model that cor-
rects for kinship between cultivars. We used a linear mixed effects model on each SNP marker
(random effects are underlined):

y ¼ mþMaþ Gbþ e;

where y is a vector with trait values, μ is the mean effect, M is a vector containing the SNP dos-
age of each cultivar, taking a value between 0 and 4, and α is the fixed additive effect of the
SNP. G is a factor that identifies the cultivar corresponding to each observation in y. Vector β
is a vector of random polygenic background effects, such that Var(β) = σ2GK, and K is a n x n
kinship matrix calculated as a function of the accumulated euclidean distance between marker
genotypes, the latter expressed on a scale from 0 to 4 [136]. Finally e is the vector of residuals,
such that Var(e) = σ2e]. Models S and K1 were fitted using Genstat version 17 [137]. The third
model K2 was similar to K1, except that kinship between pairs of genotypes was calculated
according to [138], using SPAGeDi software [139]. Negative kinship values between genotypes
were automatically set to zero. The fourth model K2Q included the kinship structuring matrix
from K2 as well as an additional fixed correction for population structure [24]. Groups were
identified by the Bayesian clustering approach implemented in the STRUCTURE software
[140]. Burn-in time and iteration number were set to 100000 with ten repetitions, testing the
probability of up to twenty subpopulations. An admixture model with correlated allele frequen-
cies was used. The results were uploaded to the software STRUCTURE HARVESTER [141] at
http://taylor0.biology.ucla.edu/structureHarvester/ and the most likely number of subpopula-
tions K = 2 was determined with the Evanno method [142]. The K2Q model has the form:
y = Xb + Qv + u + e, where y is the vector of the phenotypic values, X is the vector of SNP
marker genotypes, b is the vector of marker fixed effects to be estimated, Q is population struc-
ture (derived from STRUCTURE analysis), v is a vector of fixed effects due to population struc-
ture, u is the vector of random effects due to the K matrix and e is the vector of residuals.
Models K2 and K2Q were fitted using TASSEL version 2.1 [143], which can accommodate the
five possible genotypes (AAAA, AAAB, AABB, ABBB and BBBB) for a bi-allelic marker of tet-
raploid potato. For SNPs in candidate genes that were selected based on biological function
and/or differential expression, marker trait associations with p< 10−2 (- Log10(P) = 2) are
reported. In the genome wide scan with SolCAP SNPs, a correction for multiple testing was
used following the method of Li and Ji [144], implemented in procedure QTHRESHOLD in
Genstat. This procedure produced a threshold of–log10(P) = 4.54 for testing a single marker
with a genome wide error type I α = 0.05. We report marker-trait associations with p< 10−4 (–
log10(P) = 4.00). Associations of SNPs with minor allele frequency (MAF) less than 1% and
more than 30% missing data were not considered further.

Linkage disequilibrium (LD) and LD decay were analysed as described [32], based on 5600
SolCAP SNPs, except that LD and LD decay were calculated per chromosome using the physi-
cal positions of the SolCAP SNPs. P values were corrected for multiple testing using the R
package ‘qvalue’ according to [145].

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 27 / 36

http://taylor0.biology.ucla.edu/structureHarvester/


Supporting Information
S1 File. Amplicon sequences, SNP positions on the potato physical map (version 4.03),
SNP alleles, primers and annealing temperatures of candidate genes.
(DOCX)

S2 File. SolCAP SNPs selected for kinship and population structure analysis.
(XLSX)

S3 File. Information on the candidate loci tested for association with rAUDPC, PM and
MCR in the PIN184 population in this paper and in previous papers.
(XLSX)

S4 File. SNPs in candidate genes associated with MCR (p< 0.01) in any of the four associa-
tion models K1, K2, K2Q and S.
(XLSX)

S5 File. SNPs in candidate genes associated with rAUDPC (p< 0.01) in any of the four
association models K1, K2, K2Q and S.
(XLSX)

S6 File. SNPs in candidate genes associated with PM (p< 0.01) in any of the four associa-
tion models K1, K2, K2Q and S.
(XLSX)

S7 File. Information on 42 688 SNPs with differential allele frequency (q< 0.01) between
R8 and S8 genotype pools.
(XLSX)

S8 File. Positions in the potato genome and corresponding references of DNAmarkers
linked with P. infestans QRL in potato and tomato.
(XLSX)

S9 File. SolCAP SNPs associated with MCR (p< 0.0001) in any of the four association
models K1, K2, K2Q and S.
(XLSX)

S10 File. SolCAP SNPs associated with rAUDPC (p< 0.0001) in any of the four association
models K1, K2, K2Q and S.
(XLSX)

S11 File. SolCAP SNPs associated with PM (p< 0.0001) in any of the four association mod-
els K1, K2, K2Q and S.
(XLSX)

S12 File. Q-Q plots of the p-values of SolCAP SNPs obtained with association models K1,
K2, K2Q and S for MCR, rAUDPC and PM.
(JPG)

S13 File. Distribution of the SNPs with different allele frequencies in genotype pools R8
and S8 on the potato physical map
(XLSX)

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 28 / 36

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0156254.s013


Acknowledgments
Part of this work was carried out in the Department for Plant Breeding and Genetics headed by
Maarten Koornneef. The authors thank Fred van Eeuwijk and Maarten Koornneef for critically
reading and commenting the manuscript.

Author Contributions
Conceived and designed the experiments: CG TMMFA SS. Performed the experiments: TM
MFA SS AD BW. Analyzed the data: JMJ-G MJP MSM JL (seventh author) AH. Contributed
reagents/materials/analysis tools: JL (tenth author) JS ET H-RH. Wrote the paper: CG. Orga-
nized and performed phenotypic evaluation of plant material under field conditions: JL (tenth
author) JS ET H-RH.

References
1. Fry W. Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol. 2008; 9(3):385–

402. doi: 10.1111/j.1364-3703.2007.00465.x PMID: 18705878

2. Wastie RL. Breeding for resistance. Adv Plant Pathol. 1991; 7:193–224.

3. Colon LT, Turkensteen LJ, Prummel W, BD J., Hoogendoorn J. Durable resistance to late blight (Phy-
tophthora infestans) in old potato cultivars. European J Plant Pathol. 1995; 101:387–97.

4. Bormann CA, Rickert AM, Ruiz RA, Paal J, Lübeck J, Strahwald J, et al. Tagging quantitative trait loci
for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene mark-
ers. Mol Plant Microbe Interact. 2004; 17(10):1126–38. PMID: 15497405.

5. Pajerowska-Mukhtar K, Stich B, Achenbach U, Ballvora A, Lübeck J, Strahwald J, et al. Single nucleo-
tide polymorphisms in the Allene Oxide Synthase 2 gene are associated with field resistance to late
blight in populations of tetraploid potato cultivars. Genetics. 2009; 181(3):1115–27. doi: 10.1534/
genetics.108.094268 PMID: 19139145

6. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Gen.
2008; 1(1):5–20. doi: 10.3835/plantgenome2008.02.0089

7. Danan S, Veyrieras J-B, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis
offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC
Plant Biol. 2011; 11(1):16. doi: 10.1186/1471-2229-11-16

8. Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, et al. The R1 gene for
potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class
of plant resistance genes. Plant J. 2002; 30(3):361–71. PMID: 12000683.

9. Leonards-Schippers C, Gieffers W, Schafer-Pregl R, Ritter E, Knapp SJ, Salamini F, et al. Quantita-
tive resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous
plant species. Genetics. 1994; 137(1):67–77. PMID: 7914505.

10. Gebhardt C, Valkonen JP. Organization of genes controlling disease resistance in the potato genome.
Annu Rev Phytopathol. 2001; 39:79–102. PMID: 11701860.

11. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler K. Assessing genetic potential in
germplasm collections of crop plants by marker-trait association: a case study for potatoes with quan-
titative variation of resistance to late blight and maturity type. Mol Breed. 2004; 13(1):93–102. PMID:
ISI:000188281100009.

12. Beketova M, Drobyazina P, Khavkin E. The R1 gene for late blight resistance in early and late matur-
ing potato cultivars. Russian J Plant Physiol. 2006; 53(3):384–9. doi: 10.1134/s1021443706030149

13. Sharma R, Bhardwaj V, Dalamu D, Kaushik SK, Singh BP, Sharma S, et al. Identification of elite
potato genotypes possessing multiple disease resistance genes through molecular approaches.
Scientia Horticulturae. 2014; 179(0):204–11. http://dx.doi.org/10.1016/j.scienta.2014.09.018.

14. Kloosterman B, Abelenda JA, GomezMdMC, Oortwijn M, de Boe JM, Kowitwanich K, et al. Naturally
occurring allele diversity allows potato cultivation in northern latitudes. Nature. 2013; 495(7440):246–
50. http://www.nature.com/nature/journal/v495/n7440/abs/nature11912.html#supplementary-
information. doi: 10.1038/nature11912 PMID: 23467094

15. Collins A, Milbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, et al. QTL for
field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed.
1999; 5(5):387–98. PMID: ISI:000082528100001.

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 29 / 36

http://dx.doi.org/10.1111/j.1364-3703.2007.00465.x
http://www.ncbi.nlm.nih.gov/pubmed/18705878
http://www.ncbi.nlm.nih.gov/pubmed/15497405
http://dx.doi.org/10.1534/genetics.108.094268
http://dx.doi.org/10.1534/genetics.108.094268
http://www.ncbi.nlm.nih.gov/pubmed/19139145
http://dx.doi.org/10.3835/plantgenome2008.02.0089
http://dx.doi.org/10.1186/1471-2229-11-16
http://www.ncbi.nlm.nih.gov/pubmed/12000683
http://www.ncbi.nlm.nih.gov/pubmed/7914505
http://www.ncbi.nlm.nih.gov/pubmed/11701860
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000188281100009
http://dx.doi.org/10.1134/s1021443706030149
http://dx.doi.org/10.1016/j.scienta.2014.09.018
http://www.nature.com/nature/journal/v495/n7440/abs/nature11912.html#supplementary-information
http://www.nature.com/nature/journal/v495/n7440/abs/nature11912.html#supplementary-information
http://dx.doi.org/10.1038/nature11912
http://www.ncbi.nlm.nih.gov/pubmed/23467094
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000082528100001


16. Oberhagemann P, Chatot-Balandras C, Schafer-Pregl R, Wegener D, Palomino C, Salamini F, et al.
A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection.
Mol Breed. 1999; 5(5):399–415. PMID: ISI:000082528100002.

17. Visker M, Keizer L, Van Eck H, Jacobsen E, Colon L, Struik P. Can the QTL for late blight resistance
on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet. 2003; 106(2):317–
25. doi: 10.1007/s00122-002-1021-2 PMID: 12582858

18. Visker MHPW, Heilersig HJB, Kodde LP, Van deWegWE, Voorrips RE, Struik PC, et al. Genetic link-
age of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphy-
tica. 2005; 143(1–2):189–99. doi: 10.1007/s10681-005-3444-8

19. Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA. A mixed-model approach to association
mapping using pedigree information with an illustration of resistance to Phytophthora infestans in
potato. Genetics. 2007; 175(2):879–89. doi: 10.1534/genetics.105.054932 PMID: 17151263

20. Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta.
2012; 236(5):1351–66. doi: 10.1007/s00425-012-1705-z PMID: 23011567

21. Wasternack C, Kombrink E. Jasmonates: Structural requirements for lipid-derived signals active in
plant stress responses and development. ACS Chem Biol. 2009; 5(1):63–77.

22. Pajerowska-Mukhtar KM, Mukhtar MS, Guex N, Halim VA, Rosahl S, Somssich IE, et al. Natural varia-
tion of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resis-
tance in Arabidopsis. Planta. 2008; 228(2):293–306. PMID: 18431595. doi: 10.1007/s00425-008-
0737-x

23. Draffehn AM, Li L, Krezdorn N, Ding J, Lübeck J, Strahwald J, et al. Comparative transcript profiling
by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late
blight not compromised by late maturity. Frontiers in Plant Science. 2013; 4. doi: 10.3389/fpls.2013.
00423

24. Muktar MS, Lübeck J, Strahwald J, Gebhardt C. Selection and validation of potato candidate genes
for maturity corrected resistance to Phytophthora infestans based on differential expression combined
with SNP association and linkage mapping. Frontiers in Genetics. 2015; 6. doi: 10.3389/fgene.2015.
00294

25. Sade D, Shriki O, Cuadros-Inostroza A, Tohge T, Semel Y, Haviv Y, et al. Comparative metabolomics
and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and sus-
ceptible tomato cultivars. Metabolomics. 2015; 11(1):81–97. doi: 10.1007/s11306-014-0670-x

26. Gyetvai G, Sønderkær M, Göbel U, Basekow R, Ballvora A, Imhoff M, et al. The transcriptome of com-
patible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans
revealed by DeepSAGE analysis. PLoS ONE. 2012; 7(2):e31526. doi: 10.1371/journal.pone.0031526
PMID: 22328937

27. Kushalappa AC, Gunnaiah R. Metabolo-proteomics to discover plant biotic stress resistance genes.
Trends in Plant Science. 2013; 18(9):522–31. http://dx.doi.org/10.1016/j.tplants.2013.05.002. doi: 10.
1016/j.tplants.2013.05.002 PMID: 23790252

28. Huang X, Han B. Natural Variations and Genome-Wide Association Studies in Crop Plants. Annu Rev
Plant Biol. 2014; 65(1):531–51. doi: 10.1146/annurev-arplant-050213-035715 PMID: 24274033.

29. Hamilton J, Hansey C, Whitty B, Stoffel K, Massa A, Van Deynze A, et al. Single nucleotide polymor-
phism discovery in elite north american potato germplasm. BMCGenomics. 2011; 12(1):302. doi: 10.
1186/1471-2164-12-302

30. Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE, et al. Integration of two
diploid potato linkage maps with the potato genome sequence. PLoS ONE. 2012; 7(4):e36347. doi:
10.1371/journal.pone.0036347 PMID: 22558443

31. Douches D, Hirsch CN, Manrique-Carpintero NC, Massa AN, Coombs J, HardiganM, et al. The contri-
bution of the Solanaceae coordinated agricultural project to potato breeding. Potato Research. 2015.
doi: 10.1007/s11540-014-9267-z

32. Stich B, Urbany C, Hoffmann P, Gebhardt C. Population structure and linkage disequilibrium in diploid
and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP
array. Plant Breeding. 2013; 132(6):718–24. doi: 10.1111/pbr.12102

33. PGSC. Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475(7355):189–95.
http://www.nature.com/nature/journal/v475/n7355/abs/nature10158-f1.2.html#supplementary-
information. doi: 10.1038/nature10158 PMID: 21743474

34. Odeny DA, Stich B, Gebhardt C. Physical organization of mixed protease inhibitor gene clusters, coor-
dinated expression and association with resistance to late blight at the StKI locus on potato chromo-
some III. Plant Cell Env. 2010; 33(12):2149–61. doi: 10.1111/j.1365-3040.2010.02213.x

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 30 / 36

http://www.ncbi.nlm.nih.gov/pubmed/ISI:000082528100002
http://dx.doi.org/10.1007/s00122-002-1021-2
http://www.ncbi.nlm.nih.gov/pubmed/12582858
http://dx.doi.org/10.1007/s10681-005-3444-8
http://dx.doi.org/10.1534/genetics.105.054932
http://www.ncbi.nlm.nih.gov/pubmed/17151263
http://dx.doi.org/10.1007/s00425-012-1705-z
http://www.ncbi.nlm.nih.gov/pubmed/23011567
http://www.ncbi.nlm.nih.gov/pubmed/18431595
http://dx.doi.org/10.1007/s00425-008-0737-x
http://dx.doi.org/10.1007/s00425-008-0737-x
http://dx.doi.org/10.3389/fpls.2013.00423
http://dx.doi.org/10.3389/fpls.2013.00423
http://dx.doi.org/10.3389/fgene.2015.00294
http://dx.doi.org/10.3389/fgene.2015.00294
http://dx.doi.org/10.1007/s11306-014-0670-x
http://dx.doi.org/10.1371/journal.pone.0031526
http://www.ncbi.nlm.nih.gov/pubmed/22328937
http://dx.doi.org/10.1016/j.tplants.2013.05.002
http://dx.doi.org/10.1016/j.tplants.2013.05.002
http://dx.doi.org/10.1016/j.tplants.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23790252
http://dx.doi.org/10.1146/annurev-arplant-050213-035715
http://www.ncbi.nlm.nih.gov/pubmed/24274033
http://dx.doi.org/10.1186/1471-2164-12-302
http://dx.doi.org/10.1186/1471-2164-12-302
http://dx.doi.org/10.1371/journal.pone.0036347
http://www.ncbi.nlm.nih.gov/pubmed/22558443
http://dx.doi.org/10.1007/s11540-014-9267-z
http://dx.doi.org/10.1111/pbr.12102
http://www.nature.com/nature/journal/v475/n7355/abs/nature10158-f1.2.html#supplementary-information
http://www.nature.com/nature/journal/v475/n7355/abs/nature10158-f1.2.html#supplementary-information
http://dx.doi.org/10.1038/nature10158
http://www.ncbi.nlm.nih.gov/pubmed/21743474
http://dx.doi.org/10.1111/j.1365-3040.2010.02213.x


35. Royo J, Vancanneyt G, Pérez AG, Sanz C, Störmann K, Rosahl S, et al. Characterization of three
potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regu-
lated expression patterns. J Biol Chem. 1996; 271(35):21012–9. doi: 10.1074/jbc.271.35.21012
PMID: 8702864

36. Farmaki T, Sanmartín M, Jiménez P, Paneque M, Sanz C, Vancanneyt G, et al. Differential distribu-
tion of the lipoxygenase pathway enzymes within potato chloroplasts. J Exp Bot. 2007; 58(3):555–68.
doi: 10.1093/jxb/erl230 PMID: 17210991

37. Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, et al. The tomato homolog of CORONA-
TINE-INSENSITIVE1 is required for the maternal control of seed maturation, Jasmonate-signaled
defense responses, and glandular trichome development. The Plant Cell Online. 2004; 16(1):126–43.
doi: 10.1105/tpc.017954

38. Díaz M, Polanco V, Ramírez I, Peña-Cortés H. Molecular cloning and expression analysis of 12-oxo-
phytodienoate reductase cDNA by wounding in Solanum tuberosum. Electronic J Biotech. 2012; 15
(1). doi: 10.2225/vol15-issue1-fulltext-3

39. Fidantsef AL, Bostock RM. Characterization of potato tuber lipoxygenase cDNAs and lipoxygenase
expression in potato tubers and leaves. Physiol Plant. 1998; 102(2):257–71. doi: 10.1034/j.1399-
3054.1998.1020214.x

40. Marcos R, Izquierdo Y, Vellosillo T, Kulasekaran S, Cascón T, Hamberg M, et al. 9-Lipoxygenase-
derived oxylipins activate brassinosteroid signaling to promote cell wall-based defense and limit path-
ogen infection. Plant Physiol. 2015. doi: 10.1104/pp.15.00992

41. Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ. A leaf lipoxygenase of potato induced
specifically by pathogen infection. Plant Physiol. 2000; 124(3):1121–30. PMID: PMC59211.

42. Basso B, Giribaldi MG, Mizzi L, Righi M. Cloning and sequencing of the genomic locus for a novel
potato lipoxygenase (Accession No. U24232). Plant Physiol. 1996; 110:714.

43. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, et al. JAZ repressor proteins are targets of
the SCFCOI1 complex during jasmonate signalling. Nature. 2007; 448(7154):661–5. http://www.
nature.com/nature/journal/v448/n7154/suppinfo/nature05960_S1.html. PMID: 17637677

44. Sharma SK, Bolser D, de Boer J, Sønderkær M, AmorosW, Carboni MF, et al. Construction of refer-
ence chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and
physical maps. G3: Genes|Genomes|Genetics. 2013; 3(11):2031–47. doi: 10.1534/g3.113.007153
PMID: 24062527

45. Kollas A- K, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, et al. Functional characterization
of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Let-
ters. 2002; 532(3):432–6. doi: 10.1016/s0014-5793(02)03725-0 PMID: 12482607

46. Rauscher G, Simko I, Mayton H, Bonierbale M, Smart C, Grünwald N, et al. Quantitative resistance to
late blight from Solanum berthaultii cosegregates with R Pi-ber: insights in stability through isolates
and environment. Theor Appl Genet. 2010; 121(8):1553–67. doi: 10.1007/s00122-010-1410-x PMID:
20689906

47. Simko I, Costanzo S, Ramanjulu V, Christ BJ, Haynes KG. Mapping polygenes for tuber resistance to
late blight in a diploid Solanum phureja × S. stenotomum hybrid population. Plant Breeding. 2006; 125
(4):385–9. doi: 10.1111/j.1439-0523.2006.01232.x

48. Ewing E, Šimko I, Smart C, Bonierbale M, Mizubuti EG, May G, et al. Genetic mapping from field tests
of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Sola-
num tuberosum and Solanum berthaultii. Mol Breed. 2000; 6(1):25–36. doi: 10.1023/
a:1009648408198

49. Costanzo S, Simko I, Christ BJ, Haynes KG. QTL analysis of late blight resistance in a diploid potato
family of Solanum phureja × S. stenotomum. Theoret Appl Genetics. 2005; 111(3):609–17. doi: 10.
1007/s00122-005-2053-1

50. Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E. Tagging QTLs
for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum
tuberosum) background. Theor Appl Genet. 2007; 115(1):101–12. PMID: 17468842.

51. Sandbrink JM, Colon LT, Wolters PJCC, StiekemaWJ. Two related genotypes of Solanummicrodon-
tum carry different segregating alleles for field resistance to Phytophthora infestans. Mol Breed. 2000;
6:215–25.

52. Bradshaw J, Hackett C, Lowe R, McLean K, Stewart H, Tierney I, et al. Detection of a quantitative trait
locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on
chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl
Genet. 2006; 113(5):943–51. PMID: 16845519

53. Bradshaw JE, Pande B, Bryan GJ, Hackett CA, McLean K, Stewart HE, et al. Interval mapping of
quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 31 / 36

http://dx.doi.org/10.1074/jbc.271.35.21012
http://www.ncbi.nlm.nih.gov/pubmed/8702864
http://dx.doi.org/10.1093/jxb/erl230
http://www.ncbi.nlm.nih.gov/pubmed/17210991
http://dx.doi.org/10.1105/tpc.017954
http://dx.doi.org/10.2225/vol15-issue1-fulltext-3
http://dx.doi.org/10.1034/j.1399-3054.1998.1020214.x
http://dx.doi.org/10.1034/j.1399-3054.1998.1020214.x
http://dx.doi.org/10.1104/pp.15.00992
http://www.ncbi.nlm.nih.gov/pubmed/PMC59211
http://www.nature.com/nature/journal/v448/n7154/suppinfo/nature05960_S1.html
http://www.nature.com/nature/journal/v448/n7154/suppinfo/nature05960_S1.html
http://www.ncbi.nlm.nih.gov/pubmed/17637677
http://dx.doi.org/10.1534/g3.113.007153
http://www.ncbi.nlm.nih.gov/pubmed/24062527
http://dx.doi.org/10.1016/s0014-5793(02)03725-0
http://www.ncbi.nlm.nih.gov/pubmed/12482607
http://dx.doi.org/10.1007/s00122-010-1410-x
http://www.ncbi.nlm.nih.gov/pubmed/20689906
http://dx.doi.org/10.1111/j.1439-0523.2006.01232.x
http://dx.doi.org/10.1023/a:1009648408198
http://dx.doi.org/10.1023/a:1009648408198
http://dx.doi.org/10.1007/s00122-005-2053-1
http://dx.doi.org/10.1007/s00122-005-2053-1
http://www.ncbi.nlm.nih.gov/pubmed/17468842
http://www.ncbi.nlm.nih.gov/pubmed/16845519


maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics. 2004;
168(2):983–95. PMID: 15514069.

54. Li J, Lindqvist-Kreuze H, Tian Z, Liu J, Song B, Landeo J, et al. Conditional QTL underlying resistance
to late blight in a diploid potato population. Theor Appl Genet. 2012; 124(7):1339–50. doi: 10.1007/
s00122-012-1791-0 PMID: 22274766

55. Ghislain M, Trognitz B, del R. Herrera M, Solis J, Casallo G, Vásquez C, et al. Genetic loci associated
with field resistance to late blight in offspring of Solanum phureja and S.tuberosum grown under short-
day conditions. Theor Appl Genet. 2001; 103(2):433–42.

56. Sørensen KK, Madsen MH, Kirk HG, Madsen DK, Torp AM. Linkage and quantitative trait locus map-
ping of foliage late blight resistance in the wild species Solanum vernei. Plant Breeding. 2006; 125
(3):268–76. doi: 10.1111/j.1439-0523.2006.01219.x

57. Villamon FG, Spooner DM, Orrillo M, Mihovilovich E, PérezW, Bonierbale M. Late blight resistance
linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theor
Appl Genet. 2005; 111(6):1201–14. doi: 10.1007/s00122-005-0053-9 PMID: 16133311

58. Brouwer DJ, Jones ES, St. Clair DA. QTL analysis of quantitative resistance to Phytophthora infes-
tans (late blight) in tomato and comparisons with potato. Genome. 2004; 47(3):475–92. doi: 10.1139/
g04-001 PMID: 15190365

59. Brouwer DJ, St. Clair DA. Fine mapping of three quantitative trait loci for late blight resistance in
tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet. 2004; 108(4):628–38. doi:
10.1007/s00122-003-1469-8 PMID: 14586504

60. Lokossou AA, Park T-h, van Arkel G, Arens M, Ruyter-Spira C, Morales J, et al. Exploiting knowledge
of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato
linkage group IV. Mol Plant-Microbe Interact. 2009; 22(6):630–41. doi: 10.1094/MPMI-22-6-0630
PMID: 19445588

61. Park T- H, Gros J, Sikkema A, Vleeshouwers VGAA, Muskens M, Allefs S, et al. The late blight resis-
tance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on
chromosome 4 of potato. Mol Plant-Microbe Interact. 2005; 18(7):722–9. doi: 10.1094/mpmi-18-0722
PMID: 16042018

62. van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, et al. The Rpi-blb2
gene from Solanum bulbocastanum is anMi-1 gene homolog conferring broad-spectrum late blight
resistance in potato. The Plant Journal. 2005; 44(2):208–22. PMID: 16212601

63. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, et al. Gene RB cloned from
Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci
USA. 2003; 100(16):9128–33. doi: 10.1073/pnas.1533501100 PMID: 12872003

64. Van Der Vossen E, Sikkema A, Hekkert BtL, Gros J, Stevens P, Muskens M, et al. An ancient R gene
from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phy-
tophthora infestans in cultivated potato and tomato. Plant J. 2003; 36(6):867–82. PMID: 14675451

65. Pel MA, Foster SJ, Park T-H, Rietman H, van Arkel G, Jones JDG, et al. Mapping and cloning of late
blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol
Plant-Microbe Interact. 2009; 22(5):601–15. doi: 10.1094/MPMI-22-5-0601 PMID: 19348577.

66. Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, et al. Compara-
tive genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 2005;
42:251–61. PMID: 15807786

67. Zhang C, Liu L, Wang X, Vossen J, Li G, Li T, et al. The Ph-3 gene from Solanum pimpinellifolium
encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor Appl Genet.
2014; 127(6):1353–64. doi: 10.1007/s00122-014-2303-1 PMID: 24756242

68. Becerra C, Jahrmann T, Puigdomènech P, Vicient CM. Ankyrin repeat-containing proteins in Arabi-
dopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane pro-
teins. Gene. 2004; 340(1):111–21. http://dx.doi.org/10.1016/j.gene.2004.06.006. PMID: 15556299

69. Tchórzewski M, Boguszewska A, Dukowski P, Grankowski N. Oligomerization properties of the acidic
ribosomal P-proteins from Saccharomyces cerevisiae: effect of P1A protein phosphorylation on the
formation of the P1A-P2B hetero-complex. Biochimica et Biophysica Acta (BBA)—Molecular Cell
Research. 2000; 1499(1–2):63–73. http://dx.doi.org/10.1016/S0167-4889(00)00108-7.

70. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, et al. SNARE-protein-medi-
ated disease resistance at the plant cell wall. Nature. 2003; 425(6961):973–7. http://www.nature.com/
nature/journal/v425/n6961/suppinfo/nature02076_S1.html. PMID: 14586469

71. LascombeM- B, Bakan B, Buhot N, Marion D, Blein J- P, Larue V, et al. The structure of “defective in
induced resistance” protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein.
Protein Science. 2008; 17(9):1522–30. doi: 10.1110/ps.035972.108 PMID: 18552128

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 32 / 36

http://www.ncbi.nlm.nih.gov/pubmed/15514069
http://dx.doi.org/10.1007/s00122-012-1791-0
http://dx.doi.org/10.1007/s00122-012-1791-0
http://www.ncbi.nlm.nih.gov/pubmed/22274766
http://dx.doi.org/10.1111/j.1439-0523.2006.01219.x
http://dx.doi.org/10.1007/s00122-005-0053-9
http://www.ncbi.nlm.nih.gov/pubmed/16133311
http://dx.doi.org/10.1139/g04-001
http://dx.doi.org/10.1139/g04-001
http://www.ncbi.nlm.nih.gov/pubmed/15190365
http://dx.doi.org/10.1007/s00122-003-1469-8
http://www.ncbi.nlm.nih.gov/pubmed/14586504
http://dx.doi.org/10.1094/MPMI-22-6-0630
http://www.ncbi.nlm.nih.gov/pubmed/19445588
http://dx.doi.org/10.1094/mpmi-18-0722
http://www.ncbi.nlm.nih.gov/pubmed/16042018
http://www.ncbi.nlm.nih.gov/pubmed/16212601
http://dx.doi.org/10.1073/pnas.1533501100
http://www.ncbi.nlm.nih.gov/pubmed/12872003
http://www.ncbi.nlm.nih.gov/pubmed/14675451
http://dx.doi.org/10.1094/MPMI-22-5-0601
http://www.ncbi.nlm.nih.gov/pubmed/19348577
http://www.ncbi.nlm.nih.gov/pubmed/15807786
http://dx.doi.org/10.1007/s00122-014-2303-1
http://www.ncbi.nlm.nih.gov/pubmed/24756242
http://dx.doi.org/10.1016/j.gene.2004.06.006
http://www.ncbi.nlm.nih.gov/pubmed/15556299
http://dx.doi.org/10.1016/S0167-4889
http://www.nature.com/nature/journal/v425/n6961/suppinfo/nature02076_S1.html
http://www.nature.com/nature/journal/v425/n6961/suppinfo/nature02076_S1.html
http://www.ncbi.nlm.nih.gov/pubmed/14586469
http://dx.doi.org/10.1110/ps.035972.108
http://www.ncbi.nlm.nih.gov/pubmed/18552128


72. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. A putative lipid transfer protein
involved in systemic resistance signalling in Arabidopsis. Nature. 2002; 419(6905):399–403. http://
www.nature.com/nature/journal/v419/n6905/suppinfo/nature00962_S1.html. PMID: 12353036

73. Khrouchtchova A, Hansson M, Paakkarinen V, Vainonen JP, Zhang S, Jensen PE, et al. A previously
found thylakoid membrane protein of 14kDa (TMP14) is a novel subunit of plant photosystem I and is
designated PSI-P. FEBS Letters. 2005; 579(21):4808–12. http://dx.doi.org/10.1016/j.febslet.2005.07.
061. PMID: 16109415

74. Singh B, Chauhan H, Khurana JP, Khurana P, Singh P. Evidence for the role of wheat eukaryotic
translation initiation factor 3 subunit g (TaeIF3g) in abiotic stress tolerance. Gene. 2013; 532(2):177–
85. http://dx.doi.org/10.1016/j.gene.2013.09.078. doi: 10.1016/j.gene.2013.09.078 PMID: 24084365

75. Yuan M, Wang S. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms.
Molecular Plant. 2013; 6(3):665–74. doi: 10.1093/mp/sst035 PMID: 23430047

76. Cornelissen BJC, Hooft van Huijsduijnen RAM, Bol JF. A tobacco mosaic virus-induced tobacco pro-
tein is homologous to the sweet-tasting protein thaumatin. Nature. 1986; 321(6069):531–2. PMID:
3713832

77. Dhaubhadel S, Kuflu K, Romero MC, Gijzen M. A soybean seed protein with carboxylate-binding
activity. J Exp Bot. 2005; 56(419):2335–44. PMID: 16061511

78. Fischer M, Schreiber L, Colby T, Kuckenberg M, Tacke E, Hofferbert H-R, et al. Novel candidate
genes influencing natural variation in potato tuber cold sweetening identified by comparative proteo-
mics and association mapping. BMC Plant Biol. 2013; 13(1):113. doi: 10.1186/1471-2229-13-113

79. Glaczinski H, Heibges A, Salamini F, Gebhardt C. Members of the Kunitz-type protease inhibitor gene
family of potato inhibit soluble tuber invertase in vitro. Potato Research. 2002; 45:163–76.

80. Brenner ED, Lambert KN, Kaloshian I, Williamson VM. Characterization of LeMir, a root-knot nema-
tode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol. 1998;
118(1):237–47. doi: 10.1104/pp.118.1.237 PMID: 9733543

81. Mondego J, Duarte M, Kiyota E, Martínez L, de Camargo S, De Caroli F, et al. Molecular characteriza-
tion of a miraculin-like gene differentially expressed during coffee development and coffee leaf miner
infestation. Planta. 2011; 233(1):123–37. doi: 10.1007/s00425-010-1284-9 PMID: 20931223

82. Miernyk JA. The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family
of chaperones. Cell Stress & Chaperones. 2001; 6(3):209–18.

83. Chen K-M, HolmstromM, Raksajit W, Suorsa M, Piippo M, Aro E-M. Small chloroplast-targeted DnaJ
proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant
Biol. 2010; 10(1):43. doi: 10.1186/1471-2229-10-43

84. Vazquez-Flota FA, De Luca V. Developmental and light regulation of desacetoxyvindoline 4-hydroxy-
lase inCatharanthus roseus (L.) G. Don.: Evidence of a multilevel regulatory mechanism. Plant Phy-
siol. 1998; 117(4):1351–61. doi: 10.1104/pp.117.4.1351 PMID: 9701591

85. Qiao Y, Li HF, Wong SM, Fan ZF. Plastocyanin transit peptide interacts with Potato virus X coat pro-
tein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom
severity in host plants. Mol Plant-Microbe Interact. 2009; 22(12):1523–34. doi: 10.1094/mpmi-22-12-
1523 PMID: 19888818

86. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance. Plant
Signaling & Behavior. 2011; 6(10):1503–9. doi: 10.4161/psb.6.10.17088

87. Yang Z, Park H, Lacy GH, Cramer CL. Differential activation of potato 3-hydroxy-3-methylglutaryl
coenzyme A reductase genes by wounding and pathogen challenge. The Plant Cell Online. 1991; 3
(4):397–405. doi: 10.1105/tpc.3.4.397

88. Yin Y, Mohnen D, Gelineo-Albersheim I, Xu Y, Hahn MG. Glycosyltransferases of the GT8 family. Ann
Plant Rev: Wiley-Blackwell; 2010. p. 167–211.

89. Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, et al. TMEM165 deficiency causes
a congenital disorder of glycosylation. Am J Human Genet. 2012; 91(1):15–26. doi: 10.1016/j.ajhg.
2012.05.002 PMID: PMC3397274.

90. Ogura T, Wilkinson AJ. AAA+ superfamily ATPases: common structure—diverse function. Genes to
Cells. 2001; 6:575–97. PMID: 11473577

91. Mason HS, Guerrero FD, Boyer JS, Mullet JE. Proteins homologous to leaf glycoproteins are abun-
dant in stems of dark-grown soybean seedlings. Analysis of proteins and cDNAs. Plant Mol Biol.
1988; 11(6):845–6. doi: 10.1007/BF00019524 PMID: 24272634

92. Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J. Involvement of Arabidopsis
thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress1999 1999-01-15
00:00:00. 490–9 p. PMID: 9889204

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 33 / 36

http://www.nature.com/nature/journal/v419/n6905/suppinfo/nature00962_S1.html
http://www.nature.com/nature/journal/v419/n6905/suppinfo/nature00962_S1.html
http://www.ncbi.nlm.nih.gov/pubmed/12353036
http://dx.doi.org/10.1016/j.febslet.2005.07.061
http://dx.doi.org/10.1016/j.febslet.2005.07.061
http://www.ncbi.nlm.nih.gov/pubmed/16109415
http://dx.doi.org/10.1016/j.gene.2013.09.078
http://dx.doi.org/10.1016/j.gene.2013.09.078
http://www.ncbi.nlm.nih.gov/pubmed/24084365
http://dx.doi.org/10.1093/mp/sst035
http://www.ncbi.nlm.nih.gov/pubmed/23430047
http://www.ncbi.nlm.nih.gov/pubmed/3713832
http://www.ncbi.nlm.nih.gov/pubmed/16061511
http://dx.doi.org/10.1186/1471-2229-13-113
http://dx.doi.org/10.1104/pp.118.1.237
http://www.ncbi.nlm.nih.gov/pubmed/9733543
http://dx.doi.org/10.1007/s00425-010-1284-9
http://www.ncbi.nlm.nih.gov/pubmed/20931223
http://dx.doi.org/10.1186/1471-2229-10-43
http://dx.doi.org/10.1104/pp.117.4.1351
http://www.ncbi.nlm.nih.gov/pubmed/9701591
http://dx.doi.org/10.1094/mpmi-22-12-1523
http://dx.doi.org/10.1094/mpmi-22-12-1523
http://www.ncbi.nlm.nih.gov/pubmed/19888818
http://dx.doi.org/10.4161/psb.6.10.17088
http://dx.doi.org/10.1105/tpc.3.4.397
http://dx.doi.org/10.1016/j.ajhg.2012.05.002
http://dx.doi.org/10.1016/j.ajhg.2012.05.002
http://www.ncbi.nlm.nih.gov/pubmed/PMC3397274
http://www.ncbi.nlm.nih.gov/pubmed/11473577
http://dx.doi.org/10.1007/BF00019524
http://www.ncbi.nlm.nih.gov/pubmed/24272634
http://www.ncbi.nlm.nih.gov/pubmed/9889204


93. Zarka DG, Vogel JT, Cook D, ThomashowMF. Cold induction of Arabidopsis CBF genes involves
multiple ICE (Inducer of CBF Expression) promoter elements and a cold-regulatory circuit that Is
desensitized by low temperature. Plant Physiol. 2003; 133(2):910–8. doi: 10.1104/pp.103.027169
PMID: 14500791

94. Hrmova M, Fincher GB. Structure-function relationships of beta-D-glucan endo- and exohydrolases
from higher plants. Plant Mol Biol. 2001; 47:73–91. PMID: 11554481

95. Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T. Proteomemap of the chlo-
roplast lumen of Arabidopsis thaliana. J Biol Chem. 2002; 277(10):8354–65. doi: 10.1074/jbc.
M108575200 PMID: 11719511

96. Schwartz E, Stasys R, Aebersold R, McGrath JM, Green BR, Pichersky E. Sequence of a tomato
gene encoding a third type of LHCII chlorophyll a/b-binding polypeptide. Plant Mol Biol. 1991; 17
(4):923–5. PMID: 1912506

97. Rapala-Kozik M, Wolak N, Kujda M, Banas A. The upregulation of thiamine (vitamin B1) biosynthesis
in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic
acid at the early stages of this stress response. BMC Plant Biol. 2012; 12(1):2. doi: 10.1186/1471-
2229-12-2

98. Eckes P, Rosahl S, Schell J, Willmitzer L. Isolation and characterization of a light-inducible, organ-
specific gene from potato and analysis of its expression after tagging and transfer into tobacco and
potato shoots. Mol Gen Genet. 1986; 205:14–22.

99. Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, et al. Investigation of terpene diver-
sification across multiple sequenced plant genomes. Proc Natl Acad Sci USA. 2015; 112(1):E81–E8.
doi: 10.1073/pnas.1419547112 PMID: 25502595

100. WangW, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaper-
ones in the abiotic stress response. Trends in Plant Science. 2004; 9(5):244–52. http://dx.doi.org/10.
1016/j.tplants.2004.03.006. PMID: 15130550

101. El-Kasmi F, Pacher T, Strompen G, Stierhof Y- D, Müller LM, Koncz C, et al. Arabidopsis SNARE pro-
tein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant
J. 2011; 66(2):268–79. doi: 10.1111/j.1365-313X.2011.04487.x PMID: 21205036

102. Ranty B, Aldon D, Galaud J-P. Plant calmodulins and calmodulin-related proteins: multifaceted relays
to decode Calcium signals. Plant Signaling & Behavior. 2006; 1(3):96–104. PMID: PMC2635005.

103. Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M, Baker B, et al. The tomato resistance protein
Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely
truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J. 2004; 37(1):46–60. doi: 10.1046/
j.1365-313X.2003.01937.x PMID: 14675431

104. Tamburrini M, Cerasuolo I, Carratore V, Stanziola A, Zofra S, Romano L, et al. Kiwellin, a novel protein
from Kiwi fruit. Purification, biochemical characterization and identification as an allergen*. The Pro-
tein Journal. 2005; 24(7):423–9. doi: 10.1007/s10930-005-7638-7

105. Musgrove JE, Ellis RJ. The Rubisco Large Subunit Binding Protein. Philosophical Transactions of the
Royal Society of London Series B, Biological Sciences. 1986; 313(1162):419–28.

106. Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol
Chem. 2006; 387(12):1535–44. doi: 10.1515/BC.2006.191 PMID: 17132098

107. Hermans J, Rother C, Bichler J, Steppuhn J, Herrmann RG. Nucleotide sequence of cDNA clones
encoding the complete precursor for subunit delta of thylakoid-located ATP synthase from spinach.
Plant Mol Biol. 1988; 10(4):323–30. doi: 10.1007/bf00029882 PMID: 24277563

108. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit
evolution. Nature. 2012; 485(7400):635–41. http://www.nature.com/nature/journal/v485/n7400/abs/
nature11119.html#supplementary-information. doi: 10.1038/nature11119 PMID: 22660326

109. Ham B- K, Brandom JL, Xoconostle-Cázares B, Ringgold V, Lough TJ, LucasWJ. A polypyrimidine
tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex.
The Plant Cell. 2009; 21(1):197–215. doi: 10.1105/tpc.108.061317 PMID: 19122103

110. Pajerowska KM, Parker JE, Gebhardt C. Potato homologs of Arabidopsis thaliana genes functional in
defense signaling—identification, genetic mapping, and molecular cloning. Mol Plant Microbe Inter-
act. 2005; 18(10):1107–19. PMID: 16255250.

111. Li L, Paulo MJ, Strahwald J, Lübeck J, Hofferbert HR, Tacke E, et al. Natural DNA variation at candi-
date loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor Appl
Genet. 2008; 116:1167–81. PMID: 18379755. doi: 10.1007/s00122-008-0746-y

112. Li L, Strahwald J, Hofferbert HR, Lubeck J, Tacke E, Junghans H, et al. DNA variation at the invertase
locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genet-
ics. 2005; 170(2):813–21. PMID: 15802505.

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 34 / 36

http://dx.doi.org/10.1104/pp.103.027169
http://www.ncbi.nlm.nih.gov/pubmed/14500791
http://www.ncbi.nlm.nih.gov/pubmed/11554481
http://dx.doi.org/10.1074/jbc.M108575200
http://dx.doi.org/10.1074/jbc.M108575200
http://www.ncbi.nlm.nih.gov/pubmed/11719511
http://www.ncbi.nlm.nih.gov/pubmed/1912506
http://dx.doi.org/10.1186/1471-2229-12-2
http://dx.doi.org/10.1186/1471-2229-12-2
http://dx.doi.org/10.1073/pnas.1419547112
http://www.ncbi.nlm.nih.gov/pubmed/25502595
http://dx.doi.org/10.1016/j.tplants.2004.03.006
http://dx.doi.org/10.1016/j.tplants.2004.03.006
http://www.ncbi.nlm.nih.gov/pubmed/15130550
http://dx.doi.org/10.1111/j.1365-313X.2011.04487.x
http://www.ncbi.nlm.nih.gov/pubmed/21205036
http://www.ncbi.nlm.nih.gov/pubmed/PMC2635005
http://dx.doi.org/10.1046/j.1365-313X.2003.01937.x
http://dx.doi.org/10.1046/j.1365-313X.2003.01937.x
http://www.ncbi.nlm.nih.gov/pubmed/14675431
http://dx.doi.org/10.1007/s10930-005-7638-7
http://dx.doi.org/10.1515/BC.2006.191
http://www.ncbi.nlm.nih.gov/pubmed/17132098
http://dx.doi.org/10.1007/bf00029882
http://www.ncbi.nlm.nih.gov/pubmed/24277563
http://www.nature.com/nature/journal/v485/n7400/abs/nature11119.html#supplementary-information
http://www.nature.com/nature/journal/v485/n7400/abs/nature11119.html#supplementary-information
http://dx.doi.org/10.1038/nature11119
http://www.ncbi.nlm.nih.gov/pubmed/22660326
http://dx.doi.org/10.1105/tpc.108.061317
http://www.ncbi.nlm.nih.gov/pubmed/19122103
http://www.ncbi.nlm.nih.gov/pubmed/16255250
http://www.ncbi.nlm.nih.gov/pubmed/18379755
http://dx.doi.org/10.1007/s00122-008-0746-y
http://www.ncbi.nlm.nih.gov/pubmed/15802505


113. Urbany C, Stich B, Schmidt L, Simon L, Berding H, Junghans H, et al. Association genetics in Sola-
num tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration.
BMCGenomics. 2011; 12(1):7. doi: 10.1186/1471-2164-12-7

114. D’hoop B, Paulo MJ, Kowitwanich K, Sengers M, Visser RF, van Eck H, et al. Population structure and
linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet. 2010; 121(6):1151–70. doi:
10.1007/s00122-010-1379-5 PMID: 20563789

115. Madsen D, Sørensen K, MadsenM, Kirk H. A CAPSmarker derived from tomato 12-oxophytodieno-
ate reductase shows putative co-segregation with potato late blight resistance. Am J Potato Res.
2006; 83(4):349–55. doi: 10.1007/bf02871596

116. Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, et al. First-generation SNP/InDel mark-
ers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J. 2003; 1(6):399–
410. PMID: 17134399.

117. Vadassery J, Oelmüller R. Calcium signaling in pathogenic and beneficial plant microbe interactions:
What can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant
Signaling & Behavior. 2009; 4(11):1024–7. PMID: PMC2819509.

118. Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biology. 2000; 1(6):
reviews3003.1—reviews.9. doi: 10.1186/gb-2000-1-6-reviews3003

119. Günnewich N, Higashi Y, Feng X, Choi K- B, Schmidt J, Kutchan TM. A diterpene synthase from the
clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-
copalyl diphosphate. Phytochemistry. 2013; 91:93–9. http://dx.doi.org/10.1016/j.phytochem.2012.07.
019. doi: 10.1016/j.phytochem.2012.07.019 PMID: 22959531

120. Yogendra KN, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa KA, et al. Transcription factor StWRKY1 reg-
ulates phenylpropanoid metabolites conferring late blight resistance in potato. J Exp Bot. 2015; 66
(22):7377–89. doi: 10.1093/jxb/erv434 PMID: 26417019

121. Van Lijsebettens M, Grasser KD. Transcript elongation factors: shaping transcriptomes after transcript
initiation. Trends in Plant Science. 2014; 19(11):717–26. http://dx.doi.org/10.1016/j.tplants.2014.07.
002. doi: 10.1016/j.tplants.2014.07.002 PMID: 25131948

122. Fraser CM, Rider LW, Chapple C. An Expression and Bioinformatics Analysis of the Arabidopsis Ser-
ine Carboxypeptidase-Like Gene Family. Plant Physiol. 2005; 138(2):1136–48. doi: 10.1104/pp.104.
057950 PMID: 15908604

123. Choi D, Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound- and
pathogen-responsive isoprenoid pathways in plants: Methyl jasmonate and the fungal elicitor arachi-
donic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicro-
bial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA. 1994; 91:2329–33. PMID:
11607466

124. Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methyl-
glutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachi-
donic acid. The Plant Cell. 1992; 4(10):1333–44. doi: 10.2307/3869418 PMID: 1283354

125. LuW, Tang X, Huo Y, Xu R, Qi S, Huang J, et al. Identification and characterization of fructose 1,6-
bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic
stresses. Gene. 2012; 503(1):65–74. http://dx.doi.org/10.1016/j.gene.2012.04.042. doi: 10.1016/j.
gene.2012.04.042 PMID: 22561114

126. Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, et al. Genetic map-
ping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas cam-
pestris pv. vesicatoria AvrBs4 Protein. Mol Plant-Microbe Interact. 2001; 14(5):629–38. doi: 10.1094/
mpmi.2001.14.5.629 PMID: 11332727

127. Foster SJ, Park T-H, Pel M, Brigneti G, Sliwka J, Jagger L, et al. Rpi-vnt1.1, a Tm-22 homolog from
Solanum venturii, confers resistance to potato late blight. Mol Plant-Microbe Interact. 2009; 22
(5):589–600. doi: 10.1094/MPMI-22-5-0589 PMID: 19348576.

128. Jo K- R, Visser RGF, Jacobsen E, Vossen JH. Characterisation of the late blight resistance in potato
differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 2 homologs
on chromosome IX. Theor Appl Genet. 2015; 128(5):931–41. doi: 10.1007/s00122-015-2480-6 PMID:
25725999

129. Jo K-R, Arens M, Kim T-Y, JongsmaM, Visser RF, Jacobsen E, et al. Mapping of the S. demissum
late blight resistance gene R8 to a new locus on chromosome IX. Theor Appl Genet. 2011; 123
(8):1331–40. doi: 10.1007/s00122-011-1670-0 PMID: 21877150

130. Lindqvist-Kreuze H, Gastelo M, PerezW, Forbes GA, de Koeyer D, Bonierbale M. Phenotypic Stability
and Genome-Wide Association Study of Late Blight Resistance in Potato Genotypes Adapted to the
Tropical Highlands. Phytopathology. 2014; 104(6):624–33. doi: 10.1094/phyto-10-13-0270-r PMID:
24423400

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 35 / 36

http://dx.doi.org/10.1186/1471-2164-12-7
http://dx.doi.org/10.1007/s00122-010-1379-5
http://www.ncbi.nlm.nih.gov/pubmed/20563789
http://dx.doi.org/10.1007/bf02871596
http://www.ncbi.nlm.nih.gov/pubmed/17134399
http://www.ncbi.nlm.nih.gov/pubmed/PMC2819509
http://dx.doi.org/10.1186/gb-2000-1-6-reviews3003
http://dx.doi.org/10.1016/j.phytochem.2012.07.019
http://dx.doi.org/10.1016/j.phytochem.2012.07.019
http://dx.doi.org/10.1016/j.phytochem.2012.07.019
http://www.ncbi.nlm.nih.gov/pubmed/22959531
http://dx.doi.org/10.1093/jxb/erv434
http://www.ncbi.nlm.nih.gov/pubmed/26417019
http://dx.doi.org/10.1016/j.tplants.2014.07.002
http://dx.doi.org/10.1016/j.tplants.2014.07.002
http://dx.doi.org/10.1016/j.tplants.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25131948
http://dx.doi.org/10.1104/pp.104.057950
http://dx.doi.org/10.1104/pp.104.057950
http://www.ncbi.nlm.nih.gov/pubmed/15908604
http://www.ncbi.nlm.nih.gov/pubmed/11607466
http://dx.doi.org/10.2307/3869418
http://www.ncbi.nlm.nih.gov/pubmed/1283354
http://dx.doi.org/10.1016/j.gene.2012.04.042
http://dx.doi.org/10.1016/j.gene.2012.04.042
http://dx.doi.org/10.1016/j.gene.2012.04.042
http://www.ncbi.nlm.nih.gov/pubmed/22561114
http://dx.doi.org/10.1094/mpmi.2001.14.5.629
http://dx.doi.org/10.1094/mpmi.2001.14.5.629
http://www.ncbi.nlm.nih.gov/pubmed/11332727
http://dx.doi.org/10.1094/MPMI-22-5-0589
http://www.ncbi.nlm.nih.gov/pubmed/19348576
http://dx.doi.org/10.1007/s00122-015-2480-6
http://www.ncbi.nlm.nih.gov/pubmed/25725999
http://dx.doi.org/10.1007/s00122-011-1670-0
http://www.ncbi.nlm.nih.gov/pubmed/21877150
http://dx.doi.org/10.1094/phyto-10-13-0270-r
http://www.ncbi.nlm.nih.gov/pubmed/24423400


131. Fry WE. Quantification of general resistance of potato cultivars and fungicide effects for integrated
control of potato late blight. Phytopathology. 1978; 68:1650–5.

132. Bogdanova EA, Shagin DA, Lukyanov SA. Normalization of full-length enriched cDNA. Mol BioSyst.
2008; 4(3):205–12. doi: 10.1039/b715110c PMID: 18437263

133. Voorrips R, Gort G, Vosman B. Genotype calling in tetraploid species from bi-allelic marker data using
mixture models. BMC Bioinformatics. 2011; 12(1):172. doi: 10.1186/1471-2105-12-172

134. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. TopHat2: accurate alignment of tran-
scriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013; 14(4):
R36. doi: 10.1186/gb-2013-14-4-r36 PMID: 23618408

135. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–
8. http://www.nature.com/ng/journal/v43/n5/abs/ng.806.html#supplementary-information. doi: 10.
1038/ng.806 PMID: 21478889

136. Zhang Z, Buckler ES, Casstevens TM, Bradbury PJ. Software engineering the mixed model for
genome-wide association studies on large samples. Briefings in Bioinformatics. 2009; 10(6):664–75.
doi: 10.1093/bib/bbp050 PMID: 19933212

137. VSN International. GenStat for Windows 17th Edition. Hemel Hempstead, UK: VSN International;
2014.

138. Ritland K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res
Comb. 1996; 67:175–85.

139. Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyze spatial genetic structure
at the individual or population levels Molecular Ecology Notes. 2002; 2:618–20.

140. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype
data. Genetics. 2000; 155(2):945–59. PMID: 10835412

141. Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUC-
TURE output and implementing the Evannomethod. Conservation Genetics Resources. 2012;
4:359–61.

142. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software
STRUCTURE: a simulation study. Mol Ecol. 2005; 14:2611–20. PMID: 15969739

143. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for
association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23:2633–5. PMID:
17586829

144. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation
matrix. Heredity. 2005; 95:221–7. PMID: 16077740

145. Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Sta-
tistics. 2003; 31(2013–2035).

Diagnostic SNPs for Potato Quantitative Resistance to Late Blight

PLOS ONE | DOI:10.1371/journal.pone.0156254 June 9, 2016 36 / 36

http://dx.doi.org/10.1039/b715110c
http://www.ncbi.nlm.nih.gov/pubmed/18437263
http://dx.doi.org/10.1186/1471-2105-12-172
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://www.ncbi.nlm.nih.gov/pubmed/23618408
http://www.nature.com/ng/journal/v43/n5/abs/ng.806.html#supplementary-information
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1093/bib/bbp050
http://www.ncbi.nlm.nih.gov/pubmed/19933212
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://www.ncbi.nlm.nih.gov/pubmed/15969739
http://www.ncbi.nlm.nih.gov/pubmed/17586829
http://www.ncbi.nlm.nih.gov/pubmed/16077740

