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Abstract

Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological
and evolutionary consequences. Interest in plant dispersal has increased with concerns about the persistence of
populations and species under global change. We argue here that advances in plant dispersal ecology research will
be determined by our ability to surmount challenges of spatiotemporal scales and heterogeneities and ecosystem
complexity. Based on this framework, we propose a selected set of research questions, for which we suggest some
specific objectives and methodological approaches. Reviewed topics include multiple vector contributions to
plant dispersal, landscape-dependent dispersal patterns, long-distance dispersal events, spatiotemporal variation
in dispersal, and the consequences of dispersal for plant communities, populations under climate change, and
anthropogenic landscapes.
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Introduction
Pollen and seed dispersal are essential functions of plants,
with far-reaching consequences for reproduction, popula-
tion and community dynamics, neutral and adaptive evo-
lution and, ultimately, population and species persistence.
Because an understanding of gene and individual move-
ment capacities is critical to predicting the response of
individuals, populations and species to ecosystem perturb-
ation and climate change, the long-standing interest in
plant dispersal has seen an upsurge in recent years. Exten-
sive monographs have recently dealt with the ecology and
evolution of dispersal of organisms in general [1] and of
plants in particular [2]. Other more specific reviews (many
of which are cited below) have focused on the mecha-
nisms, consequences and measurement of passive and
animal-mediated plant dispersal, considering different
spatial and temporal scales and varied ecological, demo-
graphic and evolutionary settings.
Here, we pose eight general questions that we believe

will define some of the research frontiers in plant move-
ment ecology in the coming years. We do not attempt to
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answer these questions, or to exhaustively review the state-
of-the-art in these areas, but rather offer our perspectives
regarding a selection of important research topics, with an
emphasis on specific empirical objectives and methods.
The paper is oriented along three axes, representing three
fundamental dimensions that challenge ecological infer-
ence and models in general, and dispersal ecology research
in particular: space, time and complexity (Figure 1). Spatial
scale and heterogeneity issues typically arise in long-
distance dispersal (LDD) estimation and modeling, but also
when characterizing dispersal variation among individuals,
populations and regions, when assessing landscape ef-
fects on dispersal, or when measuring dispersal anisot-
ropy. Temporal issues are inherent in studies examining
dispersal fluctuations across years or dispersal seasons,
and also arise when building up dispersal kernels from
descriptions of instantaneous vector movement, when
obtaining robust estimates of dispersal variation among
individuals or populations, when inferring historical mi-
gration rates from genetic data, and when predicting
long-term feedbacks between dispersal, demography and
evolution. The dynamic complexity of environments,
communities and ecosystems pervades most aspects of
dispersal ecology research, from pollinator and seed-
disperser networks, through the consequences of dispersal
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Figure 1 Diagram of plant dispersal research topics considered in this study, each of which confronts challenges of spatial scale and
heterogeneity, temporal scale and/or system complexity.
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for population and community dynamics, to dispersal sen-
sitivity to global change (Figure 1).
Within this broad framework, we first argue that

mechanistically accounting for the relative contribution
of multiple vectors to dispersal of particular plant spe-
cies constitutes an essential basis for explaining and pre-
dicting dispersal patterns in spatiotemporally changing
ecosystems (Section 1). Next, we examine how the inter-
play between vectors and environmental heterogeneity
determine landscape-dependent seed and pollen depos-
ition patterns that are missed by pure distance-dependent
models (Section 2). We then focus on the broadest
spatial scale by examining the measurement of long-
distance dispersal across species’ ranges (Section 3).
We continue by addressing the causes and conse-
quences of variability in dispersal patterns among in-
dividuals and populations (Section 4), and over time
(Section 5). Finally, we take a broader temporal per-
spective to consider the consequences of dispersal for
plant communities (Section 6), populations under cli-
mate change (Section 7), and anthropogenic land-
scapes (Section 8).
Review
1. What are the contributions of different vectors to plant
dispersal?
It is now acknowledged that for many if not most plant
species multiple vectors contribute to dispersal [3]: polychory
(seed dispersal by multiple animal vectors) is widespread [4],
ambophily (pollination by insects and wind) might be more
common than previously thought [5], and mutualistic net-
works confirm the diversity of animal pollinators [6]. Know-
ing the variety of vectors for the species of interest is an
essential initial step of dispersal studies, because different
vectors may disperse propagules (defined here as pollen,
seeds or spores) over contrasting spatial scales [7-9], their
activity may fluctuate over different spatial and temporal
scales, and they may respond differently to environmental
and demographic changes. Of special interest is identifying
vectors, vector characteristics, or environmental conditions
responsible for LDD events, because they often result from
nonstandard dispersal conditions [3,4,10-13] and contribute
disproportionately to demography and population genetics
(see Section 3). However, most intraspecific studies of seed
and pollen dispersal have focused on a single vector.
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The relative contribution of multiple vectors to dispersal
can be investigated using empirical and modelling ap-
proaches. Dispersal kernels (i.e. the probability distribu-
tion of dispersal locations relative to the source location)
can be estimated empirically based on direct observation
of propagule deposition patterns at a sample of settling
locations (Eulerian methods), or by tracking individual
propagules (Lagrangian methods), most frequently over
short to intermediate scales (e.g. [2,14-19]). Assessing the
contribution of multiple vectors to dispersal based on
these methods involves pairing each propagule deposition
or transport event with the responsible vector, which may
not be easy in practice. A few recent studies provide good
examples of how to empirically investigate the contribu-
tion of multiple animal vectors to seed [20-23] and pollen
[24] dispersal kernels, and we expect to see more such ef-
forts in the future, including replication over different
landscape configurations, environments and dispersal sea-
sons. A complementary and more explanatory approach
consists in modeling the dispersal kernel from mechanistic
(process-based) considerations [25], and calibrating it
using Eulerian [26] or Lagrangian [27] data. Mechanistic
models provide excellent tools for evaluating the relative
importance of different dispersal vectors, because they
involve (i) inventorying the biological, ecological and
environmental factors that impact propagule paths from
emission to final deposition, and (ii) quantifying the prob-
abilities associated with the different factors. For example,
if wind speed, settling velocity and release height are fixed,
the ballistic equation provides a unique dispersal location
for a propagule passively dispersed by wind, assumed to
follow a deterministic linear path. Integrating over prob-
ability distributions for wind speed, release height, propa-
gule mass and area then results in a dispersal kernel
[26,28]. Similarly, propagule dispersal by different animal
vectors can be modeled with dispersal kernels that inte-
grate observations of disperser movement and foraging
behavior with models of seed retention [21] or pollen
carry-over [29].
Mechanistic approaches are valuable for understanding

landscape-dependent dispersal patterns (Section 2) and the
occurrence of patchy or clumped dispersal resulting from
correlated movement of propagules [30]. They are particu-
larly useful for investigating LDD events and their associ-
ated vectors, because they can potentially inform accurate
extrapolation to larger scales than those observed [25] (see
Section 3). They can also assist in predicting the effects of
spatiotemporal variation in the environment and in plant
phenotypes on vector behavior and the distribution of dis-
persal distances (Sections 4 and 5). Future studies should
further exploit mechanistic methods to (i) investigate the
extent to which dispersal kernels are dynamic distributions
subject to temporal and environmental influence, and (ii)
identify the critical vectors and environmental variables
with disproportionate impact on dispersal probabilities
over short and long distances. For this purpose, it will
be important to validate mechanistic predictions with alter-
native methods (e.g., direct observations or genetic ap-
proaches; see Section 3) over different spatial and temporal
scales, and to cross-validate with independent data sets.

2. How can we better characterize landscape-dependent
variation in seed and pollen deposition, and how can we
better evaluate its consequences?
Historically, most studies of seed and pollen dispersal have
described dispersal patterns exclusively in terms of the
distribution of deposition distances from sources (e.g.
[15,31]). Clearly, distance from sources is important in
explaining variation in propagule deposition, and dispersal
distance is also critical in determining the consequences of
dispersal [32,33]. However, distance generally explains only
a small fraction of variation in seed [34] or pollen [35]
densities. The unexplained variation is important for
post-dispersal success of individual seeds or pollen grains,
and for population and community processes and patterns
[36-38]. A considerable portion of this variation can be
assigned to deterministic factors such as direction and habi-
tat characteristics [39,40], and/or explained by context-
dependent mechanistic models incorporating landscape
heterogeneity and vector movement characteristics [41,42].
Yet our methods for describing and modeling these pat-
terns remain fairly limited, and theoretical studies have
done little to elucidate their consequences.
In many systems, the probability of a seed ending up

in a particular location depends on the type of substrate
or habitat at that location – deposition is essentially
habitat-specific [34]. A special case of this is when seeds
are disproportionately deposited in habitats favorable
for seed and seedling success; this “directed dispersal”
has received considerable attention [39]. Yet this is just
a small part of a larger phenomenon, with little atten-
tion to the opposite pattern of disproportionate disper-
sal to less favorable habitats. For example, several
much-cited studies document directed dispersal into
canopy gaps in a few neotropical forest taxa [43]. How-
ever, a community-level study found that overall seed
arrival in gaps was much lower than seed arrival in
the shaded understory for all functional groups [44].
Habitat-specific dispersal is common in both wind- and
animal-dispersed seeds and pollen. For wind dispersal,
habitat-specific deposition may result from the way in
which seed or pollen movement is affected by topog-
raphy and canopy structure [42,45-48], and/or by sub-
strate characteristics determining the likelihood of
secondary dispersal by wind [49]. For animal-mediated
dispersal, habitat-specific deposition results from habi-
tat preferences of seed dispersers or pollinators, both
for movement in general [50,51], and for activities
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related to deposition (in the case of seeds), such as cach-
ing and defecating [52].
A challenge for modelling habitat-specific deposition is

that deposition probabilities depend not only on fine-scale
local habitat heterogeneities, but also on the habitat
matrix of a larger area [53]. Thus increasing or decreasing
propagule deposition probability by a fixed factor depend-
ing on habitat is too simplistic. Schurr et al. [54] address
this challenge by first transforming physical space into
“movement space”, reflecting areas of low and high per-
meability to (seed) flow by wind, and then evaluating dis-
persal kernels in this transformed space; this approach
seems well-suited to modelling wind dispersal of both
pollen and seeds. For animal dispersal, detailed spatially
explicit models can simulate the influences of animal
behavior and habitat structure on seed [41,50,55,56] and
pollen [29,51] dispersal patterns. The parameterization
and application of such models has become ever easier
due to advances in animal tagging and telemetry, remote
sensing (including accurate geo-referencing), and compu-
tation [43,57-60]. A key limitation is that such models are
generally based on purely phenomenological descriptions
of animal displacement kernels and habitat choice. Future
research should aim to develop mechanistic descriptions
of the processes behind such patterns, including in-
ternal motivation, memory, territoriality, and propagule
retention (e.g. seed digestion, [61]) time models, thereby
allowing for extrapolation to other spatial and temporal
contexts [62]. These models could build on the exten-
sive literature on animal movement ecology, which re-
mains under-utilized to date by scholars working on
plant dispersal [63-65].
Seed and pollen dispersal are also often anisotropic

[66-71], whereas the standard distance-only models as-
sume direction does not matter. Directional bias increases
clustering and may thereby reduce the benefits of disper-
sal [37]. Importantly, anisotropic dispersal of pollen and
seed will strongly influence mating patterns (e.g., corre-
lated paternity), gene flow and spatial genetic structuring
of neutral and adaptive genes. In the case of dispersal by
animals, anisotropic patterns are generally related to the
relative location of source trees, animal home ranges, and
habitat, and can potentially be explained and reproduced
by mechanistic models. In the case of dispersal by wind or
water, anisotropy reflects the directionality of the dispersal
vector, and/or asymmetries in the distribution of favorable
deposition sites around the source. It is relatively straight-
forward to reproduce anisotropic patterns in mechanistic
models of dispersal by wind or water, given data on the
directionality of the dispersal vector [26]. However, most
field studies of dispersal by wind simply integrate predic-
tions and data over all directions [72]. This may in part re-
flect the challenge of describing anisotropic patterns with
phenomenological models and the fact that anisotropic
dispersal kernels invariably involve more parameters than
isotropic ones and require larger samples to be fitted. Van
Putten et al. [73] introduced a general framework for
phenomenological anisotropic kernels that includes all
previous such kernels (referenced in [73]) as special cases.
Future research should better describe anisotropic disper-
sal patterns with available statistical tools, explain these
patterns mechanistically, and evaluate their consequences
for plant populations.

3. How can we measure long-distance dispersal across
plant species’ ranges?
Long-distance dispersal (LDD) can be defined in absolute
terms as the fraction of dispersal events that occurs above
a given threshold distance associated with the biology,
demography and environment of the species [4]. LDD of
seed and pollen is important to the speed of colonization
or invasion, metapopulation dynamics, long-distance gene
flow, local adaptation, adaptive evolution [74], and demo-
graphic and genetic effects of fragmentation [75]. Island
colonization and dispersal biogeography studies have
demonstrated the potential for effective plant dispersal
over scales of hundreds to thousands of km, and how un-
derstanding vector characteristics enable predictions
about long-distance plant migration routes over extended
time periods (e.g., [76,77]). Future studies on this front
should build on more explicit mechanistic models of the
interaction between vectors and propagule traits (see
Section 1), and account for species’ establishment niches
and potential arrival habitats, to provide a sounder
hypothesis-testing framework concerning the source, path
and effective establishment sites of long-distance propa-
gules [78]. Dispersal biogeography approaches are limited
in that they are difficult to apply within continents and
cannot generally estimate dispersal rates [79]. Tallying the
arrival of different gene lineages into islands may shed
more light on the frequency and origin of LDD [80], but
this approach only provides minimum frequency esti-
mates, because immigrant lineages may have gone extinct
through competition, drift or selection.
More general models are available to infer historical (i.e.,

averaged over generations) seed- and pollen-mediated gene
dispersal rates among discrete populations using genetic
structure data. These methods rely on simple demographic
history assumptions to separate the genetic signature of
dispersal from those of random drift and shared ancestral
polymorphism [81,82]. Their spatial scale of analysis is
potentially large, making them suitable for historical LDD
inference, with the caveats that model misspecification
and unsampled populations can bias dispersal estimates
[83,84], and that current and past population distribu-
tions need not coincide, which complicates inferring the
actual scale of dispersal estimates. In the case of con-
tinuously distributed species, theoretical studies have
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predicted how different LDD levels during range expan-
sion should be reflected in contrasting genetic struc-
tures across newly colonized areas [85-90], but we still
lack formal methods to use this kind of information.
Future methodological advances will surely exploit the
flexibility of Approximate Bayesian Computation (ABC)
methods for LDD inference from genetic structure
data under realistic demographic assumptions, both for
discrete and continuous populations e.g. [91,92], as well
as the information about gene flow contained in linkage-
disequilibrium patterns across whole genomes [93]. Efforts
to adapt these tools to disentangle the relative contribu-
tion of seed versus pollen dispersal to historical gene flow
rates, either with uni- or biparentally inherited markers,
would be a welcome addition for plant ecologists, as this
topic has remained notably underexplored since the basic
island model in [94] and [95].
Although historical LDD is interesting for biogeographic,

population genetic and evolutionary studies, broad-scale
patterns of dispersal under current (non-equilibrium)
demographic and environmental conditions are becom-
ing of greater concern. We anticipate growing emphasis
on contemporary dispersal research spanning increas-
ingly larger scales, using spatially and environmentally
explicit approaches, and distinguishing effective disper-
sal (leading to successful establishment or reproduction)
from basic dispersal (encompassing only propagule move-
ment from source to deposition sites) [96]. Tracking re-
cent or ongoing range expansions will remain a reliable
source of information about the range of effective disper-
sal and the speed of migration into new habitats [97,98],
while offering methodological advantages to establish re-
cent LDD contributions to population establishment and
growth [99]. A more general problem will be to estimate
contemporary seed and pollen dispersal rates between
discrete populations, or between localities throughout
continuous plant ranges, accounting for or jointly infer-
ring the effect of relevant spatial, demographic and
environmental factors determining basic and effective
dispersal. Mechanistic models provide a good basis for
this purpose, but they are hard to validate over broad
distances and do not easily reflect post-dispersal processes
leading to effective dispersal [74,96]. Genetic methods are
harder to extrapolate beyond the sampling area, but they
can provide data at multiple spatial scales to validate
mechanistic predictions, and estimate either basic or ef-
fective propagule dispersal with appropriate choice of
sampling protocols and statistical analyses [96,100]. This
flexibility of genetic methods can be exploited to investi-
gate processes operating between the dispersed-seed and
established-seedling (or between the dispersed-pollen and
viable-embryo) stages, which increase spatiotemporal vari-
ation in effective dispersal patterns (see Sections 4, 5 and
7). Overall, scaling up mechanistic or genetic methods
alone is unlikely to succeed for estimating contemporary
seed and pollen dispersal rates (either basic or effective)
over broad scales [74], so we suggest combining both.
The combination of mechanistic and genetic methods

could be formalized within an ‘inverse problem’ frame-
work: parameter estimates of the underlying mechanisms
are retrieved from the (noisy) observation of resulting
spatial patterns through mechanistic-statistical models
[101] or state-space models [64], which associate a mech-
anistic model for the biological processes of interest to a
statistical model for the observations. Inverse methods are
increasingly popular for investigating large-scale biological
mechanisms in general [102], and particle dispersion from
unknown sources in particular [103], thanks to increasing
computational power and the development of numerically
intensive statistical methods (Bayesian MCMC, ABC).
Concerning the statistical “component” of our problem of
dispersal among discrete populations, genetic assignment
methods (reviewed in [104]) are an appealing choice,
because they overcome substantially the spatial scale
limitation of genetic parentage analysis. Moreover, some
developments of these methods explicitly estimate re-
cent migration rates among populations [105-107], and
specifically seed (or seedling) and pollen migration rates
[108-110], defined as the proportion of propagules im-
migrating into a population. These procedures easily
admit the incorporation of mechanistic formulations of
seed and pollen migration rates (see Additional file 1),
thus moving from the estimation of seed and pollen mi-
gration rates themselves to the estimation of the param-
eters of a mechanistic model for these rates [106,111].
For wind-dispersed propagules, mechanistic models for

among-population migration rates could embed regional
wind data in the form of connectivity maps, describing the
probability of basic seed or pollen dispersal along possible
trajectories linking a set of locations [77,112], as well as
sub-models for propagule mortality during transport
[72,113], mortality between seed deposition and seedling
establishment for effective seed dispersal [114], and flow-
ering phenological synchrony [115] and cross-population
pollination rates [116] for effective pollen dispersal. Con-
sidering animal-driven seed or pollen dispersal in spatially
heterogeneous landscapes, the mechanistic component for
the connectivity network could build upon previous work
on diffusive movement in patchy populations or meta-
populations [64]. Some simple movement behavioral
models indeed enable the analytical derivation of pair-
wise migration rates considering the structure of the
entire landscape and not only the two populations con-
sidered (e.g. [117,118]), while new automated track an-
notation systems can help calibrate such behavioral
models [60] (see also Section 2). Additional submodels
would be necessary to include the pollen carry-over by
individual pollinators or retention time of individual
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seed-dispersers, which may be particularly important
for LDD events over continental scales [119]. In mosaic
landscapes, the use of resistance surfaces to build con-
nectivity maps (using least-cost distances, ecological
distances or resistance distances) is also a promising ap-
proach [120]. This approach focuses extensively on the
effect of land-use on dispersal, but methods are still
needed to reliably parameterize the resistance values
[120,121]. Finally, several types of observations resulting
from the same processes could be analyzed simultan-
eously using mechanistic-statistical modeling, especially
when associated with hierarchical Bayesian statistics [122].
Future studies should thus take this opportunity to esti-
mate process parameters not only from genetic data but
also from demographic, capture-recapture or presence-
absence data [123,124]. The complexity of models includ-
ing all these elements and the challenge of obtaining eco-
logical data to parameterize them may be daunting, but
we have reached the point where sufficient knowledge
about the separate elements is available to attempt a
multidisciplinary integration into useful inferential and
predictive frameworks.
This combined genetic-mechanistic framework might

also be applied to continuously distributed species, pro-
vided genetic assignment remained feasible. If significant
clinal genetic variation were present over the spatial scale
of the dispersal study, genotypic probabilities for dispersed
propagules at any given location could be expressed as a
continuous function of distance along the allele-frequency
cline, potentially enabling the estimation of the LDD com-
ponent along this direction. In the case of non-clinal
(patchy) spatial genetic structure, allele frequency smooth-
ing techniques may allow genetic assignment of propa-
gules to a set of sampled and unsampled sources across
the species range [125,126], although the accuracy of this
method under contrasting sampling, dispersal, and genetic
structure scenarios remains to be tested. If the number of
migrant propagules is large (unfortunately an unlikely case
for LDD), it may also be possible to use the genotypic
composition of the propagule sample to help infer propa-
gule migration rates from a known [127] or unknown
[128] number of unsampled locations.

4. How variable are dispersal kernels among individuals
and populations and what are the most important factors
contributing to this variation?
Plant dispersal kernels are expected to be phenotype- and
environment-dependent, given the number of intrinsic
and extrinsic variables influencing the release, transport
and settlement of seeds and pollen. Less evident is the
relative weight of each variable, and how dispersal kernel
variation is hierarchically distributed across individuals,
populations and species, as well as over time. We deal
with temporal dispersal variation in Section 5, and focus
here on interindividual and interpopulation variation in
dispersal kernels. Among-species variation in multivariate
phenotypes putatively associated with dispersal (disper-
sal ‘syndromes’) can be substantial, and is usually inter-
preted in terms of vector specialization, resulting in
potentially large differences in propagule dispersal ker-
nels [7-9,129,130]. However, intraspecific variation has
been shown to be as large as or even larger than inter-
specific variation for particular dispersal traits of some
animal species, as a consequence of genetic variation
among and within populations and of individual pheno-
typic plasticity [131]. Although analogous hierarchical
quantitative analyses are still missing in plants, similar
results could be anticipated, because substantially different
seed and pollen dispersal estimates have been obtained
among populations with contrasting density, parental archi-
tecture, and vector characteristics, both for wind- and
animal-mediated dispersal [132-137]. Further comparative
studies of propagule dispersal in multiple sites and popula-
tions would be advisable to overcome common methodo-
logical limitations in previous studies, such as unbalanced
sampling designs, narrow spatial and temporal sampling
scales, poor or absent uncertainty assessment of the differ-
ence in dispersal estimates (but see [138]), and insufficient
or null replication across sites differing in intrinsic or
extrinsic factors of interest. It will then be possible to
move from the mere assessment of dispersal variation
towards a hypothesis-driven identification of its environ-
mental, demographic and phenotypic determinants. For
this purpose, it would be advisable to combine empirical
measurements of dispersal kernel parameters with mech-
anistic predictions based on measurements of vector oc-
currence and characteristics, environmental variables, and
plant dispersal traits, along the principles suggested in
Section 1.
At a narrower spatial scale, dispersal kernel variation

within populations is primarily caused by local-scale
heterogeneity in phenotypic dispersal traits and/or by
the effects of local environmental variation on dispersal
vectors (e.g., wind and frugivore behavior, Section 2)
[42,54,56,139,140]. Changes in dispersal distances should
also be expected among individuals with different pollen
shedding or seed release phenology, if the different vector
contributions and/or behaviors vary throughout the sea-
son [141,142]. In addition, differences in microhabitat,
age, and genotype may produce variation in parental (e.g.
plant height) and propagule (e.g. fruit or seed size) pheno-
typic traits associated with dispersal [143-145]. However,
dispersal kernels are generally considered constant within
populations, probably because this is assumed by statis-
tical approaches typically used to fit observed patterns of
dispersal [15,18,19,35]. Future models could attempt to es-
timate the within-population distribution of dispersal ker-
nel parameters and their association with local phenotypic
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and environmental variables, using either mechanistic ap-
proaches [41] or extensions of recently developed genetic
methods to estimate individual variation in dispersal pa-
rameters [146,147]. The latter methods could also esti-
mate the association between dispersal kernel parameters
and reproductive success, which, to the extent allowed by
sampling and spatial scale limitations, would start shed-
ding light on the individual fitness consequences of short-
and long-distance dispersal in particular environments.
Estimates of individual variation in dispersal kernel pa-
rameters could also be combined with quantitative gen-
etics methods to estimate heritability in the wild [148],
as a first step to evaluate the genetic determinism of dis-
persal traits.
Gathering empirical information about intraspecific

variation in seed and pollen dispersal kernels and its
phenotypic and environmental drivers will contribute to
the construction of more realistic models of species dis-
tribution and interactions in changing environments (see
Sections 6, 7 and 8), while determining what proportion
of this variation is genetically determined will be essen-
tial for assessing the potential for evolution of dispersal
in future environments [149]. There are a few well-
documented cases of rapid seed dispersal evolution during
colonization [150-154] and after habitat fragmentation
[155,156], but these evolutionary responses will probably
be highly variable across taxa, owing to differences in
standing genetic variation, trait heritability, phenotypic
plasticity and fitness effects of dispersal traits [157]. Im-
portant insights could be obtained from phenotyping
individual dispersal traits and dispersal kernels in common
garden experiments replicated in contrasting environments
[158]. In conducting these experiments, it would be ideal
to (i) measure the short- and long-distance compo-
nents of seed and pollen dispersal kernels and their
presumed phenotypic and environmental correlates;
and (ii) assess potential correlations between dispersal
and other phenotypic traits of ecological relevance,
which might represent multivariate genetic constraints
on dispersal evolution [159].

5. How temporally variable is dispersal and what are the
implications of this variation for plant populations and
communities?
Dispersal varies not only over spatial scales (see Sections 2
and 4), but also over time scales, from seconds to weeks
to years, due to temporal variation in endogenous and ex-
ogenous factors influencing dispersal. Wind speed and dir-
ection, including wind turbulence, vary temporally due to
both variable atmospheric forcing and varying local leaf
area density, vegetation structure, and landscape config-
uration [10,141]. Pollinator and frugivore guild compos-
ition, abundance, and behavior also vary temporally
[142,160,161], with behavior influenced especially by
the local abundance and spatial distribution of other
flowering and fruiting plants [162,163]. There is also tem-
poral variation in the physical condition and form of the
diaspore and of tissues involved in seed release or abscis-
sion in wind-dispersed species [164], or in plant traits that
attract and reward animal dispersers [165,166].
Most dispersal studies disregard this temporal variabil-

ity, yet it critically affects the interpretation of dispersal
data. Because of temporal variation, sampling duration
and timing can strongly affect dispersal estimates [167].
The standard approach is to implicitly average over tem-
poral variability, providing time-integrated measures of
dispersal over the season or seasons of study (e.g. [168]).
The few studies that have evaluated dispersal in multiple
seasons or years have found significant temporal vari-
ation, for both pollen [169] and seeds [36,170]. This calls
into question our ability to draw conclusions about dis-
persal in systems in which data collection spans only
one or a few seasons or years, as is the case in the vast
majority of empirical dispersal studies.
Temporal variation in dispersal has important implica-

tions for plant populations. Inter-annual variation in
pollen and seed dispersal can determine mating system
variation [169], the assemblage of genetic diversity during
regeneration [171] and the heritability and the response to
selection of dispersal-related traits [149]. This is especially
relevant for long-lived species, where the contribution of
individuals to population demography and genetics spans
over multiple reproductive and dispersal episodes [172].
Knowing the extent of temporal variation in dispersal
could also shed more light on the consequences of mast-
ing for population dynamics, because masting benefits
could be influenced by temporal covariation between
seed crop size and spatial patterns of seed dispersal, a
potential association that remains largely unexplored
(but see [173]). More generally, establishing temporal
covariation patterns between environmental variables,
reproductive rates, seed and pollen dispersal patterns,
and effective seedling establishment rates will shed light
on the frequency of the rare favorable years on which
successful recruitment of long-lived species may dispropor-
tionately depend [174], and their effect on the evolution of
pollination and dispersal strategies, the speed of population
migration under climate change (see Section 7) and the
spread of invasive species [175,176].
We thus advocate and expect more studies measuring

temporal variation in seed and pollen dispersal, its mech-
anistic determinants, and its consequences for populations
and communities, much as we have advocated for studies
of spatial variation in dispersal (Section 4). Temporal char-
acterizations of seed and pollen dispersal should go beyond
measuring variation in fecundity to examine fluctuations in
dispersal distances and landscape-dependent dispersal pat-
terns (Section 2), and their association with focal plant
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conditions and vector dynamics. The task can be enor-
mous when dealing with complex ecological networks
or large landscapes; a comprehensive understanding of
temporal variation in dispersal will probably require
conceptual and methodological advances to establish a
clear partition of dispersal variability into environmen-
tal, spatial and temporal components (see [169] for a
comparable scheme applied to mating systems) over dif-
ferent nested scales.
Insofar as temporal variation in seed dispersal is an

important contributor to temporal variation in recruit-
ment success, it also becomes a critical component of
studies of community dynamics, and specifically the po-
tential for species coexistence via temporal niche differen-
tiation, also known as the “storage effect” [177]. In this
context, a critical question concerns the degree to which
temporal variation in seed dispersal is synchronous or
asynchronous among species. Temporal fluctuations in
wind speed or frugivore abundance might be expected to
lead to synchronous variation, while competition for
shared frugivores could lead to asynchronous variation
[161]. Studies are needed to evaluate the consequences
and importance of temporal dispersal variation at multiple
scales for plant communities. In particular, long-term
multi-species studies should investigate how coexisting
species co-vary in their temporal patterns of seed dis-
persal, and quantify associated contributions to inter-
specific patterns of temporal variation in recruitment.
To address these multi-species questions, much is ex-
pected from advances in the spatial analysis of plant-plant
and plants-frugivore networks [140] that incorporate
demographic and genetic aspects of focal species or popu-
lations [178,179].

6. What is the actual importance of seed dispersal in
determining community processes and patterns?
Seed dispersal is one of four fundamental processes in
community ecology, the others being selection (determin-
istic differences in per capita growth rates among species),
drift (stochastic changes in species abundances), and
speciation [180]. The importance of seed dispersal for
community patterns of species diversity, abundance, and
composition is generally accepted; indeed, it is often stated
in introductions and discussions of empirical studies of
dispersal. Further, theoretical studies clearly show that
seed dispersal or migration rates strongly influence
community patterns in neutral and niche models (e.g.,
[181,182]). However, there is a scarcity of empirical
studies convincingly demonstrating the role of seed dis-
persal rates and patterns for community dynamics and
structure [183].
Several types of empirical studies to date have provided

insights into the role of seed dispersal in community pat-
terns, but each has major shortcomings. Empirical analyses
of species turnover in space (beta diversity) often invoke
seed dispersal as the explanation for distance-dependent
patterns not explained by environmental variation (e.g.,
[184]); however, these studies are inherently limited in their
ability to distinguish the influence of dispersal from that of
environmental niches [185], do not consider distance-
independent variation in dispersal, and generally include
no link to empirically measured dispersal (but see [186]).
Empirical studies of variation in community patterns with
differences in isolation/connectivity and hence presumed
seed dispersal/migration rates generally find strong rela-
tionships, but these studies usually have important con-
founding factors – e.g., differences in the abundance and
species composition of animals that interact with plants
[187] or in the quality of habitat patches [188]. Studies
comparing areas with and without vertebrate seed dis-
persers, whether due to differences in hunting pressure
or to experimental exclusion, are similarly confounded
by variation in vertebrate seed predation and herbivory
[189,190]. Numerous experimental seed addition studies
have shown that species diversity and composition often
responds strongly to seed availability – but these studies
effectively simulate alterations in fecundity as much as
or more than they do dispersal [191].
The lack of good empirical tests of theory on the im-

portance of seed dispersal to communities in part re-
flects a mismatch between the simplistic way in which
dispersal is generally represented in models and the more
complex dispersal patterns observed in most real ecosys-
tems. Most models set seed dispersal rates as identical for
all species, when in the real world dispersal rates invari-
ably vary greatly among species within communities.
Further, a common approach is to model seed dispersal as
a dichotomy of within-patch vs. between-patch dispersal
using a metacommunity framework [192,193]. Few real-
world ecosystems are well-approximated by such models,
especially when all patches are assumed equally con-
nected, as is generally the case. The alternative is spatially
explicit models of communities. Advances in computing
and in mathematical techniques, particularly moment
methods, have made these models increasingly access-
ible and tractable, and has led to a tremendous increase
in relevant theoretical work [194-197]. This work has
expanded our understanding of how seed dispersal can
affect community patterns in theory, both alone and in
interaction with selection and drift.
We believe that two alternative approaches offer the

best potential to advance our understanding of the role
of seed dispersal in community patterns – not only spatial
patterns of turnover, but also relative abundances, species
composition, and diversity. The first is large-scale field ex-
periments manipulating dispersal patterns. Such manipu-
lations should involve not only seed addition, but seed
redistribution within areas of study. These might for
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example involve extending or restricting seed dispersal for
all species, and/or homogenizing seed dispersal patterns
across species. Few seed redistribution studies have been
undertaken even for individual species at small scales
[198], much less communities. The second approach is to
adroitly combine empirical and theoretical work, by col-
lecting empirical data on seed dispersal and competitive
interactions for multiple species sufficient to parameterize
simulation models that reproduce relevant community
patterns, and then using these models to conduct simu-
lation experiments regarding the effects of altered seed
dispersal on community patterns. For example, Ribbens
et al. [15] and Pacala et al. [199] take such an approach
to examine the importance of seed dispersal to a tem-
perate forest community, parameterizing the spatially
explicit, individual-based model SORTIE, and then evalu-
ating the sensitivity of species relative abundance and
other community patterns to changes in dispersal parame-
ters. More studies of these kinds are needed to establish
how seed dispersal matters not only to populations, but
to communities.

7. How will dispersal influence population viability under
climate change?
We now take a long-term perspective to examine the
importance of seed and pollen dispersal in the complex
interaction between demographic dynamics and adaptive
processes in a changing climate. A more conventional
title for this section could have run “Will plants migrate
fast enough to avoid extinction under climate change?”,
but this potentially misleading question suggests that
tracking suitable habitats through migration is the only
mechanism by which plants can avoid extinction in a dy-
namic environment, disregarding genetic adaptation and
adaptive phenotypic plasticity. Paleoecological records, es-
pecially rich for woody plants, suggest that latitudinal and
altitudinal displacements from multiple refugial sources
have been the main responses of many plant species to
past climate changes [200-202], but migration probably
has interacted and will interact with genetic evolution,
gene flow and phenotypic plasticity. For instance, climatic
tolerance and dispersal capacity can both evolve during
migration [74,203,204], effective pollen or seed dispersal
among distant populations may favor adaptation to new
conditions [74,205], and adaptive phenotypic plasticity
may buy time for migration, as it buffers the demographic
effects of maladaptation [206]. A more relevant question
would thus be whether the joint action of dispersal, gen-
etic evolution and phenotypic plasticity will be sufficient
to avoid the extinction of particular populations under
the novel selective pressures brought by climate change,
given population-specific factors such as census and
effective size, current climatic tolerance, interspecific inter-
actions [207], geographic range position [208], landscape
connectivity [209], gene immigration from other popula-
tions [74], levels of standing multivariate genetic variance
[210], and multivariate genetic constraints to adaptive
evolution [159,211]. Even if we will probably see the conse-
quences of climate change before being able to answer
such a question, it remains relevant to rank populations
according to estimated extinction risk, and to identify the
main natural and anthropogenic factors reducing their via-
bility, including dispersal limitation.
Efforts to incorporate this complexity in the prediction

of climate-driven species range shifts are heading to the
combination of simple habitat models with mechanistic
spatially-explicit models of metapopulation dynamics
[212-215], genetic and phenotypic adaptation [208,216,
217], and species interactions [218,219]. Future work
should deal with knowledge gaps that are critical for
linking the different components of these models, such
as the effects that long-distance seed and pollen dispersal
(along with genetic adaptation and phenotypic plasticity)
have on population fitness and demographic dynamics, as
well as the potential feedbacks between demographic,
ecological and evolutionary processes [206,207,220-223].
Plant movement ecologists can make important contri-
butions to this multidisciplinary endeavor by formulat-
ing and fitting realistic individual and gene movement
modules that are interactive with the ecological and
demographic layers of range-shift models. Rather than
assuming invariant migration, population spread models
should use mechanistic descriptions of seed fecundity,
transport and establishment, enabling the integration of
relevant phenotypic, climatic, and ecological factors that
determine variation in the seed dispersal kernel (see
Sections 1, 2, 4 and 5). Recent works have weighed the
relative effects of some of these factors on plant popula-
tion spread, including seed and maternal plant morph-
ology, wind conditions, non-random seed abscission,
animal movement and seed retention time, seed fecundity,
plant maturation age, plant longevity, and environment-
dependent post-dispersal mortality [37,224-229]. From
these studies, it is becoming clear that post-dispersal
factors determining effective establishment and growth
are as important or more than long-distance seed trans-
port in determining the speed of plant migration. We
therefore need not only better LDD data, but also fur-
ther studies to characterize niche variation across plant
life stages, from seed germination, through seedling
establishment, to adult survival and reproduction [230-
233]. We will then be in a better position to understand
how the interplay between LDD, niche requirements,
and dynamic heterogeneous environments (including
fragmented habitats with variable abundance of mates,
dispersers, predators and competitors) determines the
speed of spread of plant populations under climate
change.



Robledo-Arnuncio et al. Movement Ecology 2014, 2:16 Page 10 of 17
http://www.movementecologyjournal.com/content/2/1/16
Species distribution models allowing for genetic evolu-
tion should also include realistic modelling of seed- and
pollen-mediated gene flow among populations across
shifting ranges, since both are expected to influence local
adaptation and niche evolution [74,223]. In Section 2 we
outlined a mechanistic framework for modelling seed
and pollen migration rates among populations that would
be amenable to integration into future broad-scale species
distribution models, because it can account for spatial,
demographic, and environmental determinants of long-
distance propagule transport probabilities, and can be fit-
ted empirically using genetic marker information. It would
thus be possible to obtain a measure of the regional eco-
logical neighborhood to which a focal population is ex-
posed through gene immigration (similarly to [234], but
weighted by contemporary propagule transport probabil-
ities). The ecological and genetic layers of the model could
then determine the probability of establishment of seed
immigrants or hybrids and their potential population fit-
ness consequences, conditioned on the habitats of origin
and arrival and the species niche across life-stages. Ultim-
ately, any quantitative prediction about population viabil-
ity will be sensitive not only to model selection but also to
the choice of parameter values. Future transplant and
controlled-pollination experiments should help us quan-
tify the probability of effective establishment for long-
distance seed and pollen migrants under varied biotic and
abiotic environments [235].

8. Will dispersal across anthropogenic landscapes in a
globalized world be limited or enhanced?
Human activities have become a key driver of plant disper-
sal, both through their direct contribution to the transport
of propagules (e.g., [236,237]) and through anthropogenic
changes in land use, habitat fragmentation, biotic connect-
ivity (resulting in biological invasions) and climate change
[238,239]. All these factors represent important global
drivers of genetic erosion, species extinction and biodiver-
sity loss [240,241]; hence, understanding their combined
impact on seed and pollen dispersal represents a challen-
ging but tremendously important task. In turn, increasing
our current understanding of plant dispersal has been
identified as a critical factor to obtaining reliable prediction
of plant responses to global environmental change (GEC
hereafter) (see Section 7 and [242,243]).
The prospects are particularly worrying for animal-

mediated pollen and seed dispersal, because plant-animal
mutualisms tend to be negatively affected by most drivers
of GEC [244]. For example, habitat fragmentation, bio-
logical invasions and climate change negatively affect
outcross pollination and mating patterns of insect-
pollinated species (reviewed in [245] and [246]). Cascad-
ing effects of reduced pollination on seed dispersal by
animals could be exacerbated by direct effects of climate
on fruiting phenology [247], the disruption of seed-
dispersal mutualisms by invasive species [248] and
impaired dispersal among habitat fragments [249]. Effect-
ive seed dispersal may be reduced further by associated in-
creases in seed and seedling predation (e.g., [250]). These
effects vary among plant species, depending in part on
their morphological or functional traits. For example,
large-seeded species tend to show stronger reductions
in seed dispersal and stronger decreases in seed preda-
tion as a result of fragmentation (e.g., [251,252]), largely
owing to the defaunation of smaller fragments (i.e., the
selective removal of large-bodied dispersers and preda-
tors; e.g. [253,254]).
Generalizing the effects of multiple drivers of GEC on

communities is challenging, because communities are
interlinked by interactions of variable sign and strength,
and because these effects are likely to be scale- and
species-dependent (e.g., [255] for the response of pollina-
tors to land use changes). This task will probably require a
“patchwork” of approaches, including (i) correlational
landscape-level approaches to infer relationships between
drivers and response variables and determine how they
scale over space and time; (ii) comparative studies that
identify adequate predictors of species’ responses to GEC
based on morphological, behavioral and functional traits,
and estimate their effects on species interactions and
interaction networks; (iii) mechanistic studies based on
detailed information of representative systems, in which
seed dispersal models based on individual, rule-based de-
scriptions of animal movement are used to generate sce-
narios of broader-scale responses to GEC (see Sections 2
and 7); and (iv) experimental manipulations of fragmented
and/or anthropogenic landscapes (e.g., patch characteris-
tics, habitat corridors or landscape features influencing
matrix permeability [256-259]) to test predictions regard-
ing planned landscape modifications undertaken for man-
agement purposes (using, whenever possible, an adaptive
approach; [260,261]). The combination of these four ap-
proaches could provide more accurate estimates of the
responses to anthropogenic pressures acting on different
species assemblages, for various spatial arrangements,
management regimes and temporal scales.
On first principles, the effects of GEC on wind-

mediated pollen and seed dispersal should be more
straightforward [262]. Empirical results and theoretical
predictions suggest however that this is not necessarily
the case, because some fragmented plant populations
exhibit enhanced wind dispersal of seed and pollen
while others show the reverse trend [75], and because
different assumptions about future wind speeds lead
to opposite airborne propagule dispersal predictions
[225,228,263]. It is clear that variation in wind-mediated
dispersal mechanisms should determine interspecific
differences in dispersal sensitivity to habitat alteration
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and climate change, but some of the conflicting results
in the literature seem to be the consequence of (i) a
poor characterization of habitat and demographic dis-
turbance over relevant spatial scales, relative to seed or
pollen dispersal range, and (ii) high uncertainty about
future local and regional wind regimes, two issues that
deserve more careful attention. Efforts to predict the ef-
fects of GEC on wind dispersal are especially hampered
by the difficulty of modeling LDD (see Section 3) and its
interaction with the spatiotemporal variability that often
characterizes anthropogenic landscapes (e.g., [264]).
Long-distance wind dispersal of plant propagules de-
pends on phenomena, such as turbulent updrafts and
downdrafts, that vary strongly with local and regional
weather conditions, micro-topography, foliage density,
and canopy and habitat structure [3,10,11,46,265]. Pre-
dictions are certainly aided by the increasing refinement
of mechanistic models [40,72,225,227,265,266], but
these need to be better validated if low frequency events
are to be reliably predicted. The integration of genetic
and mechanistic models bears the strongest potential
for this task (Section 3). On the other hand, extrapola-
tion of model predictions across species or functional
types can be used to derive approximate generalizations
about vegetation responses to GEC (e.g., [7-9,130]),
which should be tested using correlative studies and ex-
perimental manipulations in real landscapes (as advo-
cated above for animal-mediated dispersal).
Applications of this knowledge to the management of

anthropogenic landscapes must factor in the potential
consequences of pollen and seed dispersal across such al-
tered landscapes – consequences that may be positive or
negative overall [267,268]. Gene flow tends to increase
genetic variation within populations, limiting inbreeding
depression and increasing evolutionary potential, but it
may also limit local adaptation owing to introgression of
maladapted genes and the disruption of co-adapted gene
complexes [269-272]. A comparable duality of effect may
be expected at the community level, with increased con-
nectivity enhancing local population persistence and alpha
diversity – but tending also to increase homogenization
(reducing beta diversity) and facilitate the arrival of inva-
sive species, pathogens and parasites [273-276]. This is
particularly important in current scenarios of rapid cli-
mate change, in which habitat fragmentation and the
establishment of foreign genotypes and species may
constrain the processes of local adaptation and geo-
graphic redistribution required for species and commu-
nity persistence [268]. The evolving metacommunity
framework provides a sound theoretical ground for ad-
vancing estimates on the optimal levels of connectivity
in anthropogenic landscapes subjected to GEC (e.g.,
[277]), which could be validated and refined using man-
agement actions aimed at enhancing connectivity.
Conclusions
Advances in plant dispersal ecology research will be de-
termined by our ability to surmount challenges of spatial
scale and heterogeneity, temporal scale, and system
complexity. Enlarging the spatial scale of empirical stud-
ies will remain a necessity to avoid biased descriptions
of dispersal and its ecological and evolutionary conse-
quences. New inferential and predictive schemes should
be developed and applied to better describe the rate and
trajectories of effective seed and pollen migrants over
different spatial scales in environmentally and demograph-
ically explicit context, incorporating landscape-dependent
components of vector and propagule movements. This
will probably require a combination of mechanistic and
phenomenological (e.g., genetic-based) approaches that, in
the unavoidable trade-off between spatial scope, sampling
intensity and accuracy, should seriously assess expected
statistical power and uncertainty for low-frequency (but
still ecologically and evolutionarily important) dispersal
rates, model miss-specifications, and limited sampling.
Temporal scale issues will pervade plant dispersal ecology
studies, from a more meaningful characterization of aver-
age dispersal patterns given variation in dispersal within
and among seasons, through the assessment of the conse-
quences of such temporal dispersal variation for popula-
tion and community dynamics, to long-term predictions
about population and species persistence based on ob-
served and modelled feedbacks between dispersal, demog-
raphy and evolution in changing environments. Finally,
sufficiently approximating the dynamic complexity of en-
vironments, ecological networks and communities will be
essential for characterizing all relevant biotic and abiotic
mechanisms driving plant dispersal and their sensitivity to
global change, and for better understanding the ecological
consequences of dispersal in changing environments. We
will certainly need to increasingly pool data and expertise
from multiple disciplines to meet these big challenges, for
which we advocate not only further cooperative research
efforts, but also the implementation, standardization and
usage of open repositories of dispersal data and models.
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