Y. Chilliard and A. Ferlay, Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties, Reprod Nutr Dev, vol.44, issue.5, pp.467-92, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00900496

S. Ollier, C. Robert-granie, L. Bernard, Y. Chilliard, and C. Leroux, Mammary transcriptome analysis of fooddeprived lactating goats highlights genes involved in milk secretion and programmed cell death, J Nutr, vol.137, issue.3, pp.560-567, 2007.

L. Bernard, C. Leroux, and Y. Chilliard, Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland, Adv Exp Med Biol, vol.606, pp.67-108, 2008.

M. Bionaz and J. J. Loor, Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state, Gene Regul Syst Bio, vol.6, pp.109-134, 2012.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.281-97, 2004.

A. V. , The functions of animal microRNAs, Nature, vol.431, issue.7006, pp.350-355, 2004.

N. Bushati and S. M. Cohen, microRNA functions, Annu Rev Cell Dev Biol, vol.23, pp.175-205, 2007.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of micro-RNAs, Genome Res, vol.19, issue.1, pp.92-105, 2009.

I. Ibarra, Y. Erlich, S. K. Muthuswamy, R. Sachidanandam, and G. J. Hannon, A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells, Genes Dev, vol.21, issue.24, pp.3238-3281, 2007.

S. B. Greene, P. H. Gunaratne, S. M. Hammond, and J. M. Rosen, A putative role for microRNA-205 in mammary epithelial cell progenitors, J Cell Sci, vol.123, pp.606-624, 2010.

L. Guillou, S. Sdassi, N. Laubier, J. Passet, B. Vilotte et al., Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution, PLoS One, vol.7, issue.9, p.45727, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000363

D. Llobet-navas, R. Rodriguez-barrueco, V. Castro, A. P. Ugalde, P. Sumazin et al., The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland, Genes Dev, vol.28, issue.7, pp.765-82, 2014.

K. H. Yoo, K. Kang, Y. Feuermann, S. J. Jang, G. W. Robinson et al., The STAT5-regulated miR-193b locus restrains mammary stem and progenitor cell activity and alveolar differentiation, Dev Biol, vol.395, issue.2, pp.245-54, 2014.

H. M. Li, C. M. Wang, Q. Z. Li, and X. J. Gao, Mir-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth receptor expression, Molecules, vol.17, issue.10, pp.12037-12085, 2012.

J. Wang, Y. Bian, Z. Wang, D. Li, C. Wang et al., MicroRNA-152 Regulates DNA Methyltransferase 1 and Is Involved in the Development and Lactation of Mammary Glands in Dairy Cows, PLoS One, vol.9, issue.7, p.101358, 2014.

Z. Gu, S. Eleswarapu, and H. Jiang, Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland, FEBS letters, vol.581, issue.5, pp.981-989, 2007.

Z. Li, H. Liu, J. X. Lo, L. Liu, and J. , Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation, BMC Genomics, vol.13, p.731, 2012.

Z. Li, X. Lan, W. Guo, J. Sun, Y. Huang et al., Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues, PLoS One, vol.7, issue.12, p.52388, 2012.

L. Guillou, S. Marthey, S. Laloe, D. Laubier, J. Mobuchon et al., Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes, PLoS One, vol.9, issue.3, p.91938, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193894

X. Lin, J. Luo, L. Zhang, W. Wang, and D. Gou, MiR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation, PLoS One, vol.8, issue.11, p.79258, 2013.

X. Z. Lin, J. Luo, L. P. Zhang, W. Wang, H. B. Shi et al., mir-27a suppresses triglycerides accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells, Gene, vol.521, issue.1, pp.15-23, 2013.

M. S. Shah, L. A. Davidson, and R. S. Chapkin, Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk, Frontiers in genetics, vol.3, pp.1-14, 2012.

L. Garcia-segura, M. Perez-andrade, and J. Miranda-rios, The Emerging Role of MicroRNAs in the Regulation of Gene Expression by Nutrients, J Nutrigenet Nutrigenomics, vol.6, issue.1, pp.16-31, 2013.

R. Pando, N. Even-zohar, B. Shtaif, L. Edry, N. Shomron et al., MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1, J Nutr Biochem, vol.23, issue.11, pp.1474-81, 2012.

U. A. Orom, M. K. Lim, J. E. Savage, J. L. , S. A. Lisanti et al., MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction, Cell Cycle, vol.11, issue.7, pp.1291-1296, 2012.

E. M. Mercken, E. Majounie, J. Ding, R. Guo, J. Kim et al., Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction, Aging, vol.5, issue.9, pp.692-703, 2013.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnetjournal, vol.17, issue.1, pp.10-12, 2011.

M. R. Friedlander, S. D. Mackowiak, N. Li, W. Chen, and N. Rajewsky, miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic Acids Res, vol.40, issue.1, pp.37-52, 2012.

Y. Dong, M. Xie, Y. Jiang, N. Xiao, X. Du et al., Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus), Nat Biotechnol, vol.31, issue.2, pp.135-176, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651460

A. Masotti, V. Caputo, D. Sacco, L. Pizzuti, A. Dallapiccola et al., Quantification of small noncoding RNAs allows an accurate comparison of miRNA expression profiles, J Biomed Biotechnol, vol.659028, issue.10, p.1, 2009.

D. Li, H. Liu, Y. Li, M. Yang, C. Qu et al., Identification of suitable endogenous control genes for quantitative RT-PCR analysis of miRNA in bovine solid tissues, Mol Biol Rep, vol.41, issue.10, pp.6475-80, 2014.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-410, 2001.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, issue.10, pp.2010-2021, 2010.

A. Rau, M. Gallopin, G. Celeux, and F. Jaffrezic, Data-based filtering for replicated high-throughput transcriptome sequencing experiments, Bioinformatics, vol.29, issue.17, pp.2146-52, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00927025

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a pratical and powerful approach to multiple testing, J R Statist Soc B, vol.57, issue.1, pp.289-300, 1995.

M. D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, I. S. Vlachos, T. Vergoulis et al., DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows, Nucleic Acids Res, vol.41, pp.169-73, 2013.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, issue.1, pp.15-20, 2005.

S. Gaj, L. Eijssen, R. P. Mensink, and C. T. Evelo, Validating nutrient-related gene expression changes from microarrays using RT(2) PCR-arrays, Genes Nutr, vol.3, issue.3-4, pp.153-160, 2008.

J. J. Zhao, D. G. Sun, J. Wang, S. R. Liu, C. Y. Zhang et al., Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model, Childs Nerv Syst, vol.24, issue.4, pp.485-92, 2008.

A. Kozomara, S. Griffiths-jones, and . Mirbase, annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.

S. Baskerville and D. P. Bartel, Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes, RNA, vol.11, issue.3, pp.241-248, 2005.

J. M. Dhahbi, S. R. Spindler, H. Atamna, A. Yamakawa, N. Guerrero et al., Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction, Aging, vol.5, issue.2, pp.130-171, 2013.

J. Ding, S. Zhou, and J. Guan, miRFam: an effective automatic miRNA classification method based on ngrams and a multiclass SVM, BMC Bioinformatics, vol.12, issue.216, pp.1471-2105, 2011.

W. Cui, Q. Li, L. Feng, and W. Ding, MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland, Mol Cell Biochem, vol.355, issue.1-2, pp.17-25, 2011.

G. Turcatel, N. Rubin, A. El-hashash, and D. Warburton, MIR-99a and MIR-99b modulate TGF-beta induced epithelial to mesenchymal plasticity in normal murine mammary gland cells, PLoS One, vol.7, issue.1, p.31032, 2012.

F. Dessauge, V. Lollivier, B. Ponchon, R. Bruckmaier, L. Finot et al., Effects of nutrient restriction on mammary cell turnover and mammary gland remodeling in lactating dairy cows, J Dairy Sci, vol.94, issue.9, pp.4623-4658, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00729290

J. Zarzynska and T. Motyl, Apoptosis and autophagy in involuting bovine mammary gland, J Physiol Pharmacol, vol.59, issue.9, pp.275-88, 2008.

C. J. Watson and P. A. Kreuzaler, Remodeling mechanisms of the mammary gland during involution, Int J Dev Biol, vol.55, issue.7-9, pp.757-62, 2011.

M. Bionaz and J. J. Loor, Gene networks driving bovine milk fat synthesis during the lactation cycle, BMC Genomics, vol.9, issue.366, pp.1471-2164, 2008.

A. Baylin, R. Deka, J. Tuitele, S. Viali, D. E. Weeks et al., INSIG2 variants, dietary patterns and metabolic risk in Samoa, Eur J Clin Nutr, vol.67, issue.1, pp.101-108, 2013.

J. Phan, M. Peterfy, and K. Reue, Lipin expression preceding peroxisome proliferator-activated receptorgamma is critical for adipogenesis in vivo and in vitro, J Biol Chem, vol.279, issue.28, pp.29558-64, 2004.

L. Q. Han, H. J. Li, Y. Y. Wang, H. S. Zhu, L. F. Wang et al., mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle, Genet Mol Res, vol.9, issue.2, pp.1250-1257, 2010.

O. Mani, M. Korner, M. T. Sorensen, K. Sejrsen, C. Wotzkow et al., Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin, Am J Physiol Regul Integr Comp Physiol, vol.299, issue.2, pp.642-54, 2009.

L. Liu, Y. Jiang, H. Zhang, A. R. Greenlee, and Z. Han, Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide, Life Sci, vol.86, issue.5-6, pp.192-200, 2010.

Z. Wang, X. Hou, B. Qu, J. Wang, X. Gao et al., Pten regulates development and lactation in the mammary glands of dairy cows, PLoS One, vol.9, issue.7, p.102118, 2014.

D. B. Shennan and C. A. Boyd, The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions, J Mammary Gland Biol Neoplasia, vol.19, issue.1, pp.19-33, 2014.

D. B. Shennan and M. Peaker, Transport of milk constituents by the mammary gland, Physiol Rev, vol.80, issue.3, pp.925-51, 2000.

J. Harris, P. M. Stanford, K. Sutherland, S. R. Oakes, M. J. Naylor et al., Socs2 and elf5 mediate prolactin-induced mammary gland development, Mol Endocrinol, vol.20, issue.5, pp.1177-87, 2006.

M. Bionaz and J. J. Loor, Gene networks driving bovine mammary protein synthesis during the lactation cycle, Bioinform Biol Insights, vol.5, pp.83-98, 2011.

Y. Hu, Q. Zhu, and L. Tang, MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression, PLoS One, vol.9, issue.3, p.92099, 2014.

V. K. Kansal, R. Sharma, and G. Rehan, Characterization of anionic amino acid transport systems in mouse mammary gland, Indian J Exp Biol, vol.38, issue.11, pp.1097-103, 2000.

M. Baik, B. E. Etchebarne, J. Bong, and M. J. Vandehaar, Gene expression profiling of liver and mammary tissues of lactating dairy cows, Asian Australas J Anim Sci, vol.22, issue.6, pp.871-84, 2009.

C. R. Baumrucker, Cationic amino acid transport by bovine mammary tissue, J Dairy Sci, vol.67, issue.11, pp.2500-2506, 1984.

M. M. Zhou, Y. M. Wu, H. Y. Liu, K. Zhao, and J. X. Liu, Effects of tripeptides and lactogenic hormones on oligopeptide transporter 2 in bovine mammary gland, J Anim Physiol Anim Nutr, vol.95, issue.6, pp.781-790, 2011.

T. Komatsu, F. Itoh, S. Kushibiki, and K. Hodate, Changes in gene expression of glucose transporters in lactating and nonlactating cows, J Anim Sci, vol.83, issue.3, pp.557-64, 2005.

R. J. Madon, S. Martin, A. Davies, H. A. Fawcett, D. J. Flint et al., Identification and characterization of glucose transport proteins in plasma membrane-and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland, Biochem J, vol.272, issue.1, pp.99-105, 1990.

Y. Feng, D. Manka, K. U. Wagner, and S. A. Khan, Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice, Proc Natl Acad Sci, vol.104, issue.37, pp.14718-14741, 2007.

J. J. Zhao, J. Lin, H. Yang, W. Kong, L. He et al., MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer, J Biol Chem, vol.283, issue.45, pp.31079-86, 2008.

M. S. Ashwell, D. W. Heyen, T. S. Sonstegard, C. P. Van-tassell, Y. Da et al., Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle, J Dairy Sci, vol.87, issue.2, pp.468-75, 2004.