R. L. Andrews and I. S. Currim, A comparison of segment retention criteria for finite mixture logit models, Journal of Marketing Research, pp.235-243, 2003.

F. B. Baker and L. J. Hubert, Measuring the power of hierarchical cluster analysis, Journal of the American Statistical Association, vol.70, issue.349, pp.31-38, 1975.

A. Banerjee, I. Dhillon, J. Ghosh, and S. Et-merugu, A generalized maximum entropy approach to Bregman co-clustering and matrix approximation, Journal of Machine Learning Research, vol.8, pp.1919-1986, 2007.

J. D. Banfield and A. E. Raftery, Model-based Gaussian and non-Gaussian clustering, Biometrics, pp.803-821, 1993.

A. Ben-dor, B. Chor, R. Karp, and Z. Et-yakhini, Discovering local structure in gene expression data : the order-preserving submatrix problem, Journal of computational biology, vol.10, issue.3-4, pp.373-384, 2003.

J. Bennett and S. Lanning, A survey of clustering data mining techniques, Proceedings of KDD cup and workshop, p.35, 2006.

C. Biernacki, G. Celeux, and G. Et-govaert, Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.7, pp.719-725, 2000.

C. Biernacki, G. Celeux, and G. Et-govaert, Exact and Monte Carlo calculations of integrated likelihoods for the latent class model, Journal of Statistical Planning and Inference, vol.140, issue.11, pp.2991-3002, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00310137

H. Bock, Simultaneous clustering of objects and variables, Analyse des données et Informatique, pp.187-203, 1979.

K. P. Burnham and D. R. Anderson, Multimodel inference understanding aic and bic in model selection, Sociological methods & research, vol.33, issue.2, pp.261-304, 2004.

T. Cali?ski and J. Harabasz, A dendrite method for cluster analysis, Communications in Statistics-theory and Methods, vol.3, issue.1, pp.1-27, 1974.

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions, Computational Statistics and Data Analysis, vol.14, issue.3, pp.315-332, 1992.
URL : https://hal.archives-ouvertes.fr/inria-00075196

G. Celeux and C. Robert, Une histoire de discrétisation, La Revue de Modulad, vol.11, pp.7-44, 1993.

M. Charrad, Y. Lechevallier, G. Saporta, and M. Et-ben-ahmed, Détermination du nombre de classes dans les méthodes de bipartitionnement, 17ème Rencontres de la Société Francophone de Classification, pp.119-122, 2010.

Y. Cheng and G. M. Church, Biclustering of expression data, Proceedings of the International Conference on Intelligent Systems for Molecular Biology (ISMB), p.93, 2000.

D. L. Davies and D. W. Et-bouldin, A cluster separation measure. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.2, pp.224-227, 1979.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society, vol.39, issue.1, pp.1-38, 1977.

M. Deodhar and J. Ghosh, Simultaneous co-clustering and modeling of market data, Proceedings of the Workshop for Data Mining in Marketing, 2007.

I. S. Dhillon, S. Mallela, and D. S. Et-modha, Information-theoretic co-clustering, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.89-98, 2003.

D. E. Duffy and J. Quiroz, A permutation-based algorithm for block clustering, Journal of Classification, vol.8, issue.1, pp.65-91, 1991.

J. C. Dunn, Well-separated clusters and optimal fuzzy partitions, Journal of cybernetics, vol.4, issue.1, pp.95-104, 1974.

C. Fraley and A. E. Raftery, How many clusters ? Which clustering method ? Answers via model-based cluster analysis, The Computer Journal, vol.41, issue.8, pp.578-588, 1998.

G. Gan, C. Ma, and J. Et-wu, Data clustering : theory, algorithms, and applications, Mathematics and Computer Science in Biology and Medicine. Her Majesty's Stationery Office, vol.20, 1965.

G. Govaert, Algorithme de classification d'un tableau de contingence, First international symposium on data analysis and informatics, pp.487-500, 1977.

G. Govaert, Classification croisée, Classification croisée. Modulad, vol.4, pp.9-36, 1983.

G. Govaert, Simultaneous clustering of rows and columns, Journal de la Société Française de Statistique, vol.24, issue.4, pp.437-458, 1995.

G. Govaert and M. Nadif, Clustering with block mixture models, Pattern Recognition, vol.36, pp.463-473, 2003.

G. Govaert and M. Nadif, Clustering of contingency table and mixture model, European Journal of Operational Research, vol.183, pp.1055-1066, 2007.

G. Govaert and M. Nadif, Block clustering with Bernoulli mixture models : Comparison of different approaches, Computational Statistics and Data Analysis, vol.52, pp.3233-3245, 2008.

G. Govaert and M. Nadif, Un modèle de mélange pour la classification croisée d'un tableau de données continues, CAP'09, 2009.

B. Hanczar, M. Nadif, J. Balcázar, F. Bonchi, A. Gionis et al., Bagging for biclustering : Application to microarray data, Machine Learning and Knowledge Discovery in Databases, vol.6321, pp.490-505, 2010.

J. Hansohm, Two-mode clustering with genetic algorithms, Classification, automation, and new media, pp.87-93, 2002.

J. A. Hartigan, Clustering Algorithms, 1975.

J. A. Hartigan, Bloc voting in the United States senate, Journal of Classification, vol.17, issue.1, pp.29-49, 2000.

I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bitter et al., Gene-expression profiles in hereditary breast cancer, New Eng. J. Med, vol.344, pp.539-548, 2001.

L. J. Hubert and J. R. Levin, A general statistical framework for assessing categorical clustering in free recall, Psychological bulletin, vol.83, issue.6, pp.1072-1080, 1976.

J. Ihmels, S. Bergmann, and N. Et-barkai, Defining transcription modules using large-scale gene expression data, Bioinformatics, vol.20, issue.13, pp.1993-2003, 2004.

M. Jagalur, C. Pal, E. Learned-miller, R. T. Zoeller, and D. Et-kulp, Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering, BMC Bioinformatics, vol.8, issue.10, p.5, 2007.

A. K. Jain, M. N. Murty, and P. J. Et-flynn, Data clustering : a review, ACM computing surveys (CSUR), vol.31, issue.3, pp.264-323, 1999.

C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Et-ueda, Learning systems of concepts with an infinite relational model, Proceedings of The Twenty-First National Conference on Artificial Intelligence, pp.381-388, 2006.

C. Keribin, V. Brault, G. Celeux, and G. Et-govaert, Model selection for the binary latent block model, Compstat, pp.379-390, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00924210

C. Keribin, V. Brault, G. Celeux, and G. Et-govaert, Estimation and Selection for the Latent Block Model on Categorical Data, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00802764

C. Keribin, G. Govaert, and G. Et-celeux, Estimation d'un modèle à blocs latents par l'algorithme SEM, 42e Journées de Statistique, 2010.

Y. Kluger, R. Basri, J. T. Chang, and M. Et-gerstein, Spectral biclustering of microarray data : coclustering genes and conditions, Genome Research, vol.13, issue.4, pp.703-716, 2003.

W. J. Krzanowski and Y. Lai, A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, pp.23-34, 1988.

D. Lashkari and P. Golland, Co-clustering with generative models, 2009.

L. Lazzeroni and A. Owen, Plaid models for gene expression data, Statistica Sinica, vol.12, pp.61-86, 2000.

H. Leredde and P. Et-perin, Les plaques-boucles mérovingiennes. Dossiers de l'Archéologie, vol.42, pp.83-87, 1980.

I. Lerman and H. Leredde, La méthode des pôles d'attraction. Journées Analyse des Données et Informatique, 1977.

A. Lomet, G. Govaert, and Y. Grandvalet, An approximation of the integrated classification likelihood for the latent block model, ICDM 2012 IEEE International Conference on Data Mining, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00933245

A. Lomet, G. Govaert, and Y. Grandvalet, Model selection in block clustering by the integrated classification likelihood, Proceedings of Compstat 2012, pp.519-530, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730829

A. Lomet, G. Govaert, and Y. Grandvalet, Un protocole de simulation de données pour la classification croisée, 2012.

B. Long, Z. M. Zhang, and P. S. Yu, Co-clustering by block value decomposition, Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp.635-640, 2005.

S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis : a survey, Computational Biology and Bioinformatics, vol.1, issue.1, pp.24-45, 2004.

M. Mariadassou, S. Robin, and C. Vacher, Uncovering latent structure in valued graphs : a variational approach, The Annals of Applied Statistics, vol.4, issue.2, pp.715-742, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01197514

C. Matias and S. Et-robin, Modeling heterogeneity in random graphs : a selective review, Journal de la Société Française de Statistique, vol.156, issue.3, pp.2102-6238, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00948421

C. Maugis, M. Martin-magniette, J. Tamby, J. Renou, A. Lecharny et al., , 2009.

, Sélection de variables pour la classification par mélanges gaussiens pour prédire la fonction des gènes orphelins, La Revue de Modulad, vol.40, pp.69-80

G. J. Mclachlan, The classification and mixture maximum likelihood approaches to cluster analysis, Handbook of statistics, vol.2, pp.199-208, 1982.

E. Meeds and S. Roweis, Nonparametric Bayesian biclustering, 2007.

G. W. Milligan and M. C. Cooper, An examination of procedures for determining the number of clusters in a data set, Psychometrika, vol.50, issue.2, pp.159-179, 1985.

T. Murali and S. Kasif, Extracting conserved gene expression motifs from gene expression data, Pacific Symposium on Biocomputing, vol.8, pp.77-88, 2003.

K. Nowicki and T. A. Snijders, Estimation and prediction for stochastic blockstructures, Journal of the American Statistical Association, vol.96, issue.455, pp.1077-1087, 2001.

S. Oyanagi, K. Kubota, and A. Et-nakase, Application of matrix clustering to web log analysis and access prediction, WEBKDD 2001-Mining Web Log Data Across All Customers Touch Points, Third International Workshop, pp.13-21, 2001.

J. Podani and E. Feoli, A general strategy for the simultaneous classification of variables and objects in ecological data tables, Journal of Vegetation Science, vol.2, issue.4, pp.435-444, 1991.

A. Preli?, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann et al., A systematic comparison and evaluation of biclustering methods for gene expression data, Bioinformatics, vol.22, issue.9, p.1122, 2006.

C. Robert, Le choix bayésien : Principes et pratique, 2006.

R. Rocci and M. Vichi, Two-mode multi-partitioning, Computational Statistics and Data Analysis, vol.52, issue.4, pp.1984-2003, 2008.

M. Rooth, Two-dimensional clusters in grammatical relations, AAAI Symposium on Representation and Acquisition of Lexical Knowledge, 1995.

P. J. Rousseeuw, Silhouettes : a graphical aid to the interpretation and validation of cluster analysis, Journal of computational and applied mathematics, vol.20, pp.53-65, 1987.

D. M. Roy and Y. W. Teh, The mondrian process, NIPS, pp.1377-1384, 2008.

J. Schepers, E. Ceulemans, and I. Et-van-mechelen, Selecting among multi-mode partitioning models of different complexities : A comparison of four model selection criteria, Journal of Classification, vol.25, issue.1, pp.67-85, 2008.

Y. Seldin and N. Tishby, Pac-Bayesian analysis of co-clustering and beyond, The Journal of Machine Learning Research, vol.11, pp.3595-3646, 2010.

D. Seung and L. Lee, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems 13, pp.556-562, 2001.

M. Shafiei and E. Milios, Model-based overlapping co-clustering, Proceeding of SIAM Conference on Data Mining, 2006.

H. Shan and A. Banerjee, Bayesian co-clustering, Eighth IEEE International Conference on Data Mining, 2008. ICDM'08, pp.530-539, 2008.

A. Tanay, R. Sharan, and R. Et-shamir, Discovering statistically significant biclusters in gene expression data, Proceedings of ISMB 2002, pp.136-144, 2002.

N. Tishby, F. Pereira, and W. Et-bialek, The information bottleneck method, Invited paper to The 37th annual Allerton Conference on Communication, Control, and Computing, 1999.

B. Van-dijk, J. Van-rosmalen, and R. Et-paap, A Bayesian approach to two-mode clustering, 2009.

P. Wang, K. B. Laskey, C. Domeniconi, and M. Et-jordan, Nonparametric bayesian co-clustering ensembles, 2011.

J. Wyse and N. Friel, Block clustering with collapsed latent block models, Statistics and Computing, pp.1-14, 2010.

J. Yang, W. Wang, H. Wang, and P. Yu, ? -clusters : Capturing subspace correlation in a large data set, Proceedings. 18th International Conference on, pp.517-528, 2002.

J. Yoo and S. Choi, Orthogonal nonnegative matrix tri-factorization for co-clustering : Multiplicative updates on stiefel manifolds. Information processing & management, vol.46, pp.559-570, 2010.