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This article describes a generic programmatic method for mapping chemical compound

libraries on organism-specific metabolic networks from various databases (KEGG,

BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was

successfully applied to decipher the coverage of chemical libraries set up by two

metabolomics facilities MetaboHub (French National infrastructure for metabolomics

and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in

the MetExplore web server. The present generic protocol is designed to formalize and

reduce the volume of information transfer between the library and the network database.

Matching of metabolites between libraries and metabolic networks is based on InChIs

or InChIKeys and therefore requires that these identifiers are specified in both libraries

and networks. In addition to providing covering statistics, this pipeline also allows

the visualization of mapping results in the context of metabolic networks. In order to

achieve this goal, we tackled issues on programmatic interaction between two servers,

improvement of metabolite annotation in metabolic networks and automatic loading of a

mapping in genome scale metabolic network analysis tool MetExplore. It is important to

note that this mapping can also be performed on a single or a selection of organisms of

interest and is thus not limited to large facilities.

Keywords: chemical library, metabolic networks, metabolome mapping, web services, SaaS (Software As A

Service)

INTRODUCTION

Metabolomics is the real-time outcome of the organism metabolism. To provide physiological
interpretations and new hypotheses based on metabolomics datasets obtained on biofluids,
tissue, or cellular extracts; it is of outmost importance to put the identified metabolites in a
biological context. However, the analytical methods used in metabolomics do not allow coverage
of the whole range of small molecules, introducing possible bias in the interpretation of whole-
organismmetabolism. Identifying which part of the metabolism can be detected in a metabolomics
experiment could lead to more robust metabolomics studies.
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The chemical diversity of small molecules is vast as
evidenced by the massive size of current databases such
as PubChem (60,870,896 compounds, October 2015; Kim
et al., 2016), eMolecules (4,840,559 compounds referenced
in ChemSpider, October 2015; Pence and Williams, 2010),
or MolPort (5,292,051 compounds referenced in ChemSpider,
October 2015). Nevertheless, most of these compounds are drugs
or synthetic compounds and are thus not necessarily related to
the endogenous metabolism (in which metabolites are created
or consumed by cellular processes). Since, metabolomics aims
at deciphering metabolic modulations induced by environmental
or genetic factors on this intracellular metabolism (Nicholson
et al., 1999; Fiehn et al., 2000), researchers generally focus
on endogenous metabolites and only monitor a small portion
of these databases (Ramautar et al., 2013). This explains the
success of biology-oriented chemical databases such as the
Human Metabolome Database (HMDB, 41,993 compounds,
October 2015; Wishart et al., 2013). These databases are largely
used for metabolite annotation purpose, for instance to assign
putative names to masses obtained using high resolution mass
spectrometry. However, annotation can lead to ambiguities and
requires a final identification step (to reach level 1 as described in
Sumner et al., 2007) to provide high quality metabolite lists.

The last processing step in annotation is achieved by
comparing experimental spectra to those obtained using
standard compounds (Creek et al., 2014). In order to increase
the number of possibly-identified compounds, metabolomics
facilities are building libraries of these standard molecular
fingerprints. These libraries are currently gathering hundreds of
standards and corresponding spectra (proton Nuclear Magnetic
Resonance [NMR) or Gas/Liquid Mass Spectrometry (LC/GC
MS)]. In this article, we will consider two libraries as a proof
of concept: the MetaboHub (French National infrastructure for
metabolomics and fluxomics) PeakForest database and the one
assembled by Glasgow Polyomics facility (GP).

Biological variability implies that metabolism (and related
metabolome) differs from one organism to the other.
Consequently, the number of metabolites referenced in the
chemical library which can be detected in a given organism
will highly depend on the organism. This discrepancy in
coverage of organism metabolomes has to be taken into account
by metabolomics facilities since, they will have to deal with
samples coming from a large range of organisms. The proposed
computational solution aims at identifying how much of a
specific organism metabolome is covered by a library and which
parts of the metabolism can be monitored.

This metabolic information on each organism can be retrieved
by using genome scale metabolic networks since they aim at
gathering all metabolic reactions an organism can perform
(Thiele and Palsson, 2010). A genome scale metabolic network is
built based on genome annotation, looking for encoded proteins
(enzymes) catalyzing metabolic reactions. Several reconstruction
platforms are available (e.g., Pathway tools, Karp et al., 2015
or model Seed, Devoid et al., 2013) and allow generating
networks containing thousands of reactions and metabolites.
These networks can also be found under various file formats,
the main one being Systems Biology Markup Language (SBML)

(Hucka et al., 2003). Repositories like BioModels (Wimalaratne
et al., 2014), BIGG (Schellenberger et al., 2010), or MetExplore
(Cottret et al., 2010) were created to warehouse these networks.
Hence, the challenge is to link chemical libraries and these
repositories in order to find in which extent libraries’ contents
cover the metabolic network of various organisms.

One of the main challenges in mapping metabolite lists on
metabolic networks is the weak consensus betweenmetabolomics
and modeling fields on the identifiers to be used to name
metabolites. In fact, there is a wide range of identifiers (ChEBI,
InChI, SMILES, KEGG) available but they are not necessarily
used in network descriptions. Fortunately, some tools including
CTS (Chemical Translation Service; Wohlgemuth et al., 2010),
MetMask (Redestig et al., 2010), or MNXRef (Bernard et al.,
2014) of MetaNetX platform (Ganter et al., 2013) are designed to
perform single or batch conversions between various identifiers
(see also Haraldsdóttir et al., 2014 for a discussion on this topic).
We propose in this article to use InChIs and InChIKeys as shared
identifiers (Heller and McNaught, 2006; Heller et al., 2013).

This article describes a novel protocol designed to perform
chemical library mapping on genome-scale metabolic networks.
This protocol makes it possible for a chemical library to send
a list of identifiers to a network database and then receive
statistics on the coverage of this list on metabolic networks. We
propose an overall architecture to establish a remote dialogue
between chemical library and network repository. We use two
chemical libraries (PeakForest, GP library) and a metabolic
network repository (MetExplore) as data sources, and highlight
how to deal with some specific issues such as the identifiers used
to perform the mapping.

MATERIALS AND METHODS

Overall Architecture for Remote Access
We used the concept of “Software As A Service” (SaaS)
introduced by Dai et al. (2012) and defined as online-software
services and remote access facilities which make bioinformatics
tools available through the web. With this approach, existing
applications, resources and/or algorithms are wrapped in a
system which can run massive jobs online with a high frequency
cycle. Such SaaS architecture is thus very well suited for
metabolome mapping on metabolic networks. This solution
has the advantage of being more flexible and versatile than
other bioinformatics approaches such as developing a stand-
alone functional package or binary software application. Another
solution would be to offer web forms on top of the server
containingmetabolic networks to query the database with a list of
metabolites and get a mapping back, but this solution would lack
flexibility, and in particular it would not allow complex queries
(for more detailed description, please refer to Section “The SaaS
code of conduct” in Supplemental Data Sheet 1).

Mapping requires accessing both the network database and
the chemical library which are often stored on different systems
and in different locations (see Figure 1). A way to connect these
two data sources, shown on the left of Figure 1, consists in
copying the resource (e.g., a copy of the network database) in
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FIGURE 1 | Overall concept of the protocol. The aim of this study is to

advance the networking of resources (Resource Network) by proposing a way

to interconnect two independent resources: a GEM’s database and a chemical

library (Relationships in the network). This is achieved through a framework of

web services that will mutually enrich each side Graphical User Interface (GUI).

the in-house system (the chemical library). Requests are then
performed locally and return the same results for the copied
release. The major drawback is that it requires maintaining the
resource up-to-date by regularly importing the entire network
database. In the second option, right part of Figure 1, the
resource is stored on the remote server and accessed through
the web when necessary. We chose this option since it has the
advantage of not needing to manage any database update.

Principle of Web Services
The automatic mapping of a chemical library is established
through a programmatic interaction between the library and the
network database (see Figure 2 for an overview). To allow data
exchange between both components, we use web services (i.e.,
“a software system designed to support interoperable machine-
to-machine interaction over a network,” W3C, World Wide Web
Consortium, definition), and structured files. One advantage of
web services is that they allow exchanges between two servers
working on different configurations (e.g., two operating systems).
As result of W3C specifications and standards, web services
are built on a “language transparency” policy: each side (client
and server) can use different technologies and programming
languages and accesses (consumes) other services written in any
kind of language.

In our computational method, we use the REST
(Representational State Transfer) protocol which has the
advantage of handling various file formats like XML or JSON
(JavaScript Object Notation). More importantly, REST does not
require predefined methods for interactions with clients. REST

was chosen over the alternative solution called SOAP (Simple
Object Access Protocol) because SOAP does not offer these two
features.

Common Descriptors for Metabolites in
Libraries and Network Databases
Most metabolic networks are created for mathematical
simulation purposes and are not necessarily built with the
aim of importing “omics” data. This implies that metabolic
networks often contain specific identifiers for metabolites. As an
example, D-glucose and water are present in most networks but
may have a specific and different identifier in each network (see
Table 1).

Metabolomics community is putting some efforts in order to
reference metabolites using controlled vocabularies and specific
identifiers (Salek et al., 2015). Among them, most commonly
used ones are ChEBI (Hastings et al., 2013), KEGG (Kanehisa
et al., 2014), and PubChem (Kim et al., 2016) identifiers.
Nevertheless, these identifiers do not provide any structural
information on compounds and when dealing with compounds
which are not referenced in any database, one needs nevertheless
a way to identify these compounds. To overcome this issue,
identifiers describing chemical structure, and thus independent
from any database, are increasingly used in metabolomics. The
IUPAC Organic Nomenclature provides this information but
this naming convention generates long and complex names. For
example, the IUPAC name of the D-Glucose is: (3R,4S,5S,6R)-6-
(hydroxymethyl)oxane-2,3,4,5-tetrol. To ensure consistency and
include structural information in our computational method, we
chose the InChI (IUPAC International Chemical Identifier) and
the InChIKey which are two other structural identifiers receiving
a lot of interest in the field (Heller and McNaught, 2006; Heller
et al., 2013; Galgonek and Vondrášek, 2014).

InChI identifiers provide a formal and non-ambiguous
identification of compounds (see Figure 3 for examples). InChIs
are layered identifiers, in which each successive layer provides
more detailed information about the structure of the molecule
(formula, carbon backbone, protonation. see http://www.inchi-
trust.org/technical-faq/ for a detailed description of these
layers). This layered structure allows flexibility when establishing
correspondence between twometabolites. Moreover, using InChI
identifiers has the advantage that it is possible to detect that two
compounds are in two different forms (acid and base) of the same
molecule by taking into account the information of a specific
layer (Figure 3).

A methodological complication when using InChIs to
compare molecules is the parsing (automatic computational
reading) and analysis of the InChI string itself. In fact, if some
layers of the identifiers are empty, the single letter tag of that layer
will be completely discarded from the string [see Figure 4(1)].
Moreover, some layers, and their tags, can be present several
times in the identifier as shown in Figure 4(2).

To address these issues, we implemented a method on the
MetExplore web server to compare two InChIs. Layers are
considered as parameters in the comparison and a Boolean value
is returned if the two InChIs match.
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FIGURE 2 | Detailed exchange protocol between chemical library and network database.

TABLE 1 | Water and D-Glucose identifiers and names in four human

metabolic networks and databases.

Recon 2 HMR HumanCyc KEGG Hsa

D-glucose Name D-Glucose Beta-D-glucose D-Glucose D-Glucose

Identifier M_glc_D_c M_m01388c D-Glucose C00031

Water Name Water H2O H2O H2O

Identifier M_h2o_g M_m02040c WATER C00001

Recon2 and HMR are two genome scale metabolic networks available in flat file formats.

HumanCyc and KEGG Hsa are two databases from which list of reactions can be

downloaded.

A hashed version of the InChIs, the InChIKeys, is obtained
after calculation by a hash algorithm of the InChIs into a shorter
fixed-length value with 27 uppercase characters. As with InChIs,
InChIKeys identifiers can be divided into predefined layers (or
blocks) of fixed length. Each block corresponds to the hash of
a combination of specific layers of the InChI string as shown
in Figure 3. For this reason, they provide less precision and
flexibility when used to perform user-defined mappings. On the
other hand, their syntax is more compliant to web usage (URLs)
since they do not incorporate special characters like “/.”

In the network repository MetExplore, a dedicated service
of mapping on InChIKeys is provided and is available at:
http://metexplore.toulouse.inra.fr:8080/metExploreWebService/
mapping/launch/inchikey followed by the appropriate
parameters (see the online documentation for more details
on the parameters, links can be found in Supplemental Data
Sheet 2). By default, this service only uses the first block of the
InChIKey to perform the mapping between metabolites.

While there is a strong effort in the metabolomics community
to reference molecules using these identifiers, most metabolic
networks do not provide InChIs and often use their own
identifiers for metabolites (see Table 1). This is mainly due to
the fact that these networks are built using genome annotation

and are mostly used to interpret gene related data. To overcome
this limitation we developed inMetExplore an automatic method
of adding metabolite identifiers to networks. Provided that the
metabolic network mentions common names for metabolites, we
use the Chemical Translation Service (CTS, Wohlgemuth et al.,
2010) and UniChem (Chambers et al., 2013) to find identifiers
from commonly used databases in metabolomics, such as KEGG,
PubChem, and ChEBI. We then re-iterate over the retrieved
identifiers to cross reference and check those identifiers. The
human model Recon2v02 (Thiele et al., 2013) originally had 51%
of its metabolites with either an InChI or a SMILES identifier,
after the enrichment process, this went up to 77%. Other
resources and tools are available to perform this enrichment (May
et al., 2013; Bernard et al., 2014) and it has also been achieved on
Recon2 recently (Haraldsdóttir et al., 2014).

Thus, networks contained in MetExplore have, when it is
possible, InChI and InChIKey associated to metabolites (see
Supplementary Table 1 for an exhaustive list of enriched
networks).

Dialogue Protocol between Chemical
Library and Network Database
The proposed protocol relies on the dialogue between web
services located on two servers (the library and the network
database). Figure 5 shows the overall process of communication.
First the chemical library calls the network web server to
inform that it is going to perform a mapping and provides
its connection information (the address of its web service) (b).
Once this information is received by the network server, it
calls back the chemical library to get the metabolome to be
mapped [Figure 5(2)]. The library sends back the content of its
database [Figure 5(3)]. In order to automatise the process, the
library web service returns a JSON array with all compound
identifiers (InChIs or InChiKeys) from the chemical library. The
URL of this method is sent as a parameter to the MetExplore
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FIGURE 3 | Correspondence between chemical properties, InChI layers, and InChIKey blocks. (1) shows that the molecular skeleton of the compound

(formula, connectivity, and hydrogen bonds) is contained in the first block of the InChIKey, whereas the stereochemistry and the isotopic layers [as shown in (3)] are

contained in the InChIKey second block. (2) Shows the localization of the proton loss inside the InChI and InChIKey strings. (3) Shows that some layer identifiers can

be present multiple times inside a single InChI string. Here the “/t” layer is present a second time as a sub-layer of the isotopic layer. This is used to show the

asymmetric center created by the specification of the deuterium isotope. For each InChI, there is the corresponding InChIKey. We can see that the InChIKey’s first

block is always the same, this is because the molecular skeleton of the compound is the same in the three examples.

FIGURE 4 | Example of InChIs with no formula layer (1) or with isotopic

layer repeated (2). (adapted from InChI Technical Frequently Asked

Questions).

mapping web service. Finally, the network server replies with the
resulting mapping and its corresponding identifier [Figure 5(4)].
Each time the mapping web service is called, it retrieves a list
of publicly available networks from the database (256 public
networks, 108 having been enriched with a sufficient number of
InChIs for mapping). It is important to note that each database
and its web service exists on its own and is independent from
other services.

Returned Mapping Results
MetExplore API sends back a JSON file containing information
on the mapping (see Supplementary Table 2 for detailed

FIGURE 5 | Dialogue protocol between chemical library and network

database.

description and Supplemental Data Sheet 3 for an example of
JSON results). The JSON is divided into sections, each one
corresponding to the mapping on a BioSource (network in
MetExplore). A section contains general information related
to the BioSource: name, strain, original source of information
(KEGG, BioCyc, SBML), version number and MetExplore
identifier.

It also provides indicators of the network metabolome: total
number of metabolites present in the network, number of
metabolites in the network which have an InChI (a compound
present in n compartments is counted n times) and the total
number of unique InChIs present in the network. These two
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last numbers are often different since, in network models,
a metabolite is repeated each time it appears in a cellular
compartment. For example, D-glucose in Recon2 is present five
times corresponding to its localization in cytoplasm, endoplasmic
reticulum, Golgi apparatus, lysosome, and extracellular space.
So, it will be counted as five InChIs and one unique
InChI.

Each section also contains mapping results, with the following
information:

• Total number of InChI from the network mapped in the
library.

• Total number of unique InChI from the network mapped in
the chemical library.

• Percentage based on the number of InChI found both in
library and network over the number of unique InChI in the
network.

• The network coverage (i.e., relative number of network
metabolites that are present in the library).

• The library coverage (i.e., relative number of library InChIs
that are mapped into the network).

Finally, each section contains the MetExplore id of the mapping.
This number will allow to accessing mapping directly in
MetExplore as described in the next Section.

RESULTS

In this section, we present the pipeline implementation to map
the content of two chemical libraries, MetaboHub PeakForest,
and Glasgow Polyomics database. Files retrieved by the
MetExplore web service were used as data sources to build
summary tables of library coverage on a selection of model
organisms or on an exhaustive list or organisms. Both libraries
link back to MetExplore allowing analyzing their content in the
context of metabolic networks.

The MetaboHUB PeakForest database, through its metabolic
profiles storage and annotation services, hosts more than 1900
metabolites (October 2015). The content of PeakForest has
been put together by a network of four French metabolomic
facilities: The Bordeaux Metabolome Platform (BMP) which is
specialized in metabolomics/lipidomics targeted or untargeted
profiling methods for plant samples and new plant compounds
identification, the Clermont-Ferrand Metabolism Exploration
Platform (PFEM) with its expertise on studying the effects of

nutrition on main the physiological functions in human and
animal models, the Paris Metabolome IDF, which brings its
knowledge and experience in mass spectrometry based analysis
of human biofluids and cell extracts for biomarker discovery, and
the Toulouse MetaToul platform, which provides expertise in
identification and analysis of metabolic pathways and metabolic
networks, measurement of metabolic fluxes, chemometrics,
metabolic phenotyping, and biomarker identification.

This database encompasses substantial annotation and
identification work carried out on hundreds of metabolomic
studies with several models and phenotypes and confirmed
by chemical standard analysis. Reference metabolites and their
fingerprints found in PeakForest cover several model species
from a large taxonomic spectrum among which bacteria
(Escherichia coli), plants (Arabidopsis thaliana), mammalian
(Homo sapiens, Mus musculus).

PeakForest provides web service methods allowing remote
access to its chemical library. In addition to this possibility
of targeted queries (compound per compound), a web service
method was developed in order to send the whole chemical
library content to MetExplore mapping service. This additional
feature did not require an extensive coding (e.g., 60 lines in Java,
60 lines in Perl—The web services documentation URL with
examples is provided in the Supplemental Data Sheet 4) and was
facilitated by the fact that an effort was performed by the four
facilities to annotate all compounds using InChIs.

The PeakForest browser supports natural language searches
allowing users to retrieve data with biological terms (e.g.,
species, tissues, or biofluids) to find reference compounds or
fingerprints. However, it does not provide a complete view
on how much an organism metabolome can be covered by
the content of the library. The interaction with a resource
such as MetExplore allows PeakForest’s users to evaluate the
relevance and the coverage of database information when they
annotate a particular biological matrix. PeakForest provides a
summary table (Figure 6) compiling themapping of the chemical
library content against different MetExplore’s genome scale
reconstructions of metabolic networks. A selection of nine model
organisms was made based on the principal MetaboHub fields
of application. It provides the percentage of coverage for nine
model organisms. Each organism name in the table is hyperlinked
to the corresponding mapping in MetExplore. If the user clicks
on the name it will automatically launch MetExplore with the
corresponding mapping of the chemical library.

FIGURE 6 | How PeakForest chemical library covers genome scale reconstructions of MetExplore’s metabolic networks (October 2015 release). The

latest release of this table can be found at this URL: http://peakforest.org/ME.
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This mapping is automatically updated once a week to take
into account potential changes in the library or in the networks.
The table is also automatically updated every week by using the
web service pipeline.

GP compounds library contains a list of 240 metabolites
that are routinely run as standard compounds for metabolomic
analyses. As GP contributes to a wide range of research
areas, it is meaningful to provide information to its user on
the coverage of a maximum number of organisms available
within MetExplore database. For this reason no filter on
organism is applied and the mapping is performed on all
enriched organisms available in MetExplore database. The
library coverage table is then built and made available to
GP users. This table currently contains almost 60 different
metabolic networks. Currently, the mapping has to be launched
manually in order to update the coverage table; however
PiMP constantly provides an open access to the list of InChIs
corresponding to Glasgow Polyomics standard compound library
and automatically parses the result sent back by MetExplore
to generate the new table. This task is achieved using Django,
a python web framework with which PiMP is developed. The
table is made interactive to the user using javascript and allows
search and filtering. The name is also clickable, allowing the
visualization in a new window of the web browser of the selected
mapping in MetExplore. Figure 7 shows the table created
in PiMP.

Visualizing Saved Mappings in Metexplore
As an example of the visual analysis, we use the mapping
of PeakForest library on the Recon2 network. 294 metabolites
of the library were found among the 1177 unique InChIs
present in the network. As described earlier, MetExplore’s web
service sends back a mapping id (in this case, 27050) which
can be used to create a URL (e. g., http://metexplore.toulouse.
inra.fr/metexplore2/?idMapping=27050). Figure 8 shows how
this mapping is displayed in the MetExplore metabolite panel
(containing all metabolites in the network). The last column,

called “identified,” contains a Boolean value indicating if the
metabolite is found both in the network and in the chemical
library.

MetExplore also provides a view of all the metabolic pathways
belonging to the network (Figure 9). Output includes covering
percentage of each pathway. It also provides the pathway
enrichment result (one-tailed Fisher’s Exact Test with Bonferroni
multiple test correction). This test is generally used when
mapping biomarkers in order to detect which pathways are
significantly overrepresented in the list (Xia and Wishart, 2010).
Here, it tells which pathways the library is focused on.

One way of mining this large list of pathways involves
filtering only those pathways highly covered by the mapping.
MetExplore offers a filter facility which, based on a selection
of pathways (e.g., the ones with coverage over 50%), keeps
in all the other panels (metabolites, reactions, genes) only
the elements belonging to these pathways. For instance, in
the reaction panel, only reactions involved in the selected
pathways will be displayed. This set of reactions constitutes
a sub-network that is highly covered by the chemical
library.

One of the main purposes of MetExplore is to provide an
interactive visualization of metabolic networks (or sub-networks)
in order to mine metabolomics (and other “omics”) data. Once
the mapping is performed, it is possible to visualize metabolites
in the context of the whole network, a specific pathway, a
selection of pathways or a selection of reactions. For instance,
based on the selection of reactions involved in pathways with
coverage higher than 50%, we extracted the network shown
in Figure 10. The highlighted circles are the metabolites found
in the chemical library. One interesting point is to detect
metabolites in this sub-network that are not in the library and
which may be of interest to complete the coverage of the sub-
network.

One benefit of visualizing the mapping in the context of
the network is, that it is then possible to detect potential
gaps in the library and orientate future analyses of specific

FIGURE 7 | Coverage of the first 10 metabolic networks (alphabetically sorted) by Glasgow Polyomics standard library. Latest and complete version of

this table can be found at this URL: http://polyomics.mvls.gla.ac.uk/polyomics_chemical_library/.
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FIGURE 8 | Metabolite panel in MetExplore with information on the mapping (last column).

FIGURE 9 | Pathway panel in MetExplore with information on the coverage and pathway enrichment.

standard compounds. For instance, Figure 11 shows a part of
network displayed on Figure 10. Metabolites like Glyoxylate
or N-acetyl-L-alanine are not referenced in PeakForest but are
connected to metabolites that are in the database.

DISCUSSION

Reactions forming metabolic networks are gathered based on
genomes. Since, functional genome annotation is not completed
(Blaby-Haas and de Crécy-Lagard, 2011) reactions may be
missing in the network, consequently their substrates and
products may not be referenced in the network. This explains
why some metabolites in a library are expected to be found but
not mapped on the network. Moreover, the level of curation
of metabolic networks is very variable. For some organisms
(e.g., Human, Thiele et al., 2013 or parasite Trypanosoma brucei
Shameer et al., 2015) large group of experts have been put

together to work on adding missing reactions and remove
falsely predicted ones. Other networks have been automatically
created from genome data (5455 networks in tier 3 section of
BioCyc). From a mapping perspective it means that it is not
appropriate to compare the coverage between organisms since
this value strongly depends on the quality of the underlying
network.

A second potential limit to the quality of data annotation is
the fact that some parts of the metabolism may not be covered
by InChIs or InChIKeys. Indeed, some metabolic networks use
generic compounds when several closely structurally related
compounds can be synthesized by the same reaction. This is
often, the case for the lipid metabolism. For instance, in the
Human KEGGmetabolic network, the pathway “hsa00062–Fatty
acid elongation–Homo sapiens (human)” references the generic
compounds “C00638–Long-chain fatty acid” and “C02843–Long-
chain acyl-CoA.” Such generic compounds do not represent
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FIGURE 10 | Sub-network visualization in MetExplore. Metabolites are represented by circles and reactions are represented by rectangles. Circles surrounded

with an orange box correspond to metabolites mapped based on the chemical library.

a unique metabolite but a subclass of metabolites and can
not be identified by their chemical formulas [respectively
C3H5O2R and C23H38N7O17P3S(CH2)2n] include radicals (R)
or undetermined indices. In that case the mapping is not
possible. However, genome scale network modeling community
is putting some efforts to improve these parts of the metabolism
(Smallbone, 2013).

The application of the proposed protocol on a large range of
organisms requires, for most networks, the addition of InChIs
to the metabolites in chemical databases. Although genome-scale
networks increasingly contain this information, some efforts
are still needed to systematically provide better identifiers for
metabolites. For this solution to be widely implemented, the
metabolic networks of network repositories need to be enriched
in terms of metabolite identifiers.

Mapping metabolomes on genome-scale networks can
be rendered more difficult by the compartmentalization of
metabolites (when the modeled organism contains cellular
compartments). Given, that some metabolites will be present
multiple times in a single network due to this phenomenon
of compartmentalization, they will artificially increase the
mapping coverage. Bias can be reduced by creating an
uncompartmentalized version for each network, but this requires
an unambiguous method to identify all instances of all

metabolites across compartments. At present, this represents a
considerable challenge due to missing identifiers for some parts
of the metabolism.

On the library side, analysts are increasingly keeping
“unknown” metabolites with the idea of building a complete
database for annotation when better identification algorithms
and standards become available. For these compounds, scientists
can only provide partial information (mono-isotopic or average
mass, chemical raw formula) but no structural identification
(in consequence: no InChI). Consequently the coverage of the
network may increase as some unknowns become elucidated.

The results obtained when visually inspecting metabolite
libraries in the context of mapping networks highlights the fact
that the network structure can be of interest for guiding future
annotation. This approach has already been proposed (Rogers
and Girolami, 2005; Silva et al., 2014) and could be implemented
in the pipeline.

This generic pipeline was applied to two chemical libraries
for illustration purposes. It could also scale up to repositories
storing metabolomics experimental datasets like MetaboLights
(Haug et al., 2013).

The main remaining issue is that there is not for now a
standardized way to identify metabolic networks. This issue can
be solved in two ways. One option would be to use predefined
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FIGURE 11 | Part of the sub-network presented in Figure 11. Rectangles

are reactions (dotted lines mean that reaction is reversible), circles are

metabolites. Metabolites surrounded by a red rectangle are the ones found in

the chemical library.

identifiers for each genome-scale model (like for BioModels). The
drawback is that this requires all metabolic networks to be stored
and described in a centralized database. A second option would
be, to devise a standardized method of creating a genome-scale
model identifier in a similar manner as it has been achieved for
compounds with InChIs. Previous work has proposed the use of
authors’ names and number of genes in the model (Thiele and
Palsson, 2010). Unfortunately this initiative has not been widely
adopted, and should maybe be reactivated and enriched to take
into account a larger range of information on the network.

Finally, providing flexible web services is in the scope of
current efforts of the metabolomics community to create data
analysis pipelines implemented in generic frameworks like
Galaxy. For instance, this approach will be integrated in the
Workflow4Metabolomics developed by MetaboHub (Giacomoni
et al., 2014).

CONCLUSION

The proposed pipeline is a simplified way to map an entire
chemical library on a large range of organism-specific metabolic

networks. In order to achieve this goal we tackled issues on
programmatic interaction between two servers, improvement of
metabolites annotation in metabolic networks and automatic
loading of a mapping in the genome-scale network analysis tool
MetExplore. It is important to notice that this mapping can also
be performed on a single or a selection of organisms of interest
and is not thus limited to large facilities.

This article describes an implementation of the SaaS
concept. One central point is to allow interoperability by
using standardized identifiers, communication protocols and by
providing a detailed description of the input and output of web
services. The important point is that SaaS is not restricted to a
single scenario and allows users to create their own way of using
the data.

Interaction and data exchange processes contribute to
consolidate information by cross data enrichment. In fact, the
link between MetExplore and PeakForest/GP interaction allows
scientists to evaluate the relevance of the whole chemical library
for their organisms of interest. The link with a network analysis
tool such as MetExplore allows these libraries to be mined in the
context of the metabolism. In particular, it can guide analysts
in the choice of standards they will have to analyze and store
in the database. We propose a scenario where the pipeline is
applied to the whole chemical library, but it can also be used at
the level of metabolites. For instance, in the next major release
of PeakForest, metabolite cards will be enriched by displaying all
metabolic networks each metabolite belongs to via an on-the-fly
request to MetExplore.

The approach proposed here is generic and could be
implemented in other network repositories than MetExplore
such as BIGG or BioModels, giving the opportunity to
map data on a larger range of metabolic networks. Naming
conventions for genome-scale models will be the main
bottleneck for this purpose. Whilst we demonstrate the use
of this protocol on two chemical libraries, our method is
designed to be sufficiently generic so that it be implemented
in other libraries (e.g., MassBank, Horai et al., 2010) and
metabolomics data repositories (e.g., MetaboLights, Haug
et al., 2013). Use of standardized metabolite identifiers
makes it is possible to apply the proposed protocol
to metabolite lists generated by various technological
platforms (LC-MS, GC-MS, or NMR), either alone or in
combination.

Finally, since metabolic networks contain information on
genes and their products they can be used as an integrated
platform for Polyomics facilities by mapping both metabolites
and genomic (post-genomic) information on reactions.
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