E. Attard, H. Yang, A. Delort, P. Amato, U. Pöschl et al., Effects of atmospheric conditions on ice nucleation activity of Pseudomonas, Atmos. Chem. Phys, vol.12, pp.10667-10677, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717681

B. C. Christner, C. E. Morris, C. M. Foreman, R. Cai, and D. C. Sands, Ubiquity of biological ice nucleators in snowfall, Science, vol.319, p.1214, 2008.

P. J. Demott and A. J. Prenni, New directions: need for defining the numbers and sources of biological aerosols acting as ice nuclei, Atmos. Environ, vol.44, 1944.

P. J. Demott, O. Möhler, O. Stetzer, G. Vali, Z. Levin et al., Resurgence in ice nuclei measurement research, vol.92, pp.1623-1635, 2011.

W. Gao, W. Zhang, and D. R. Meldrum, RT-qPCR based quantitative analysis of gene expression in single bacterial cells, J. Microbiol. Meth, vol.85, pp.221-227, 2011.

J. Hallett and S. Mossop, Production of secondary ice particles during the riming process, Nature, vol.249, pp.26-28, 1974.

C. Hoose, J. E. Kristjánsson, and S. M. Burrows, How important is biological ice nucleation in clouds on a global scale?, Environ. Res. Lett, vol.5, pp.1-7, 2010.

R. Iannone, D. I. Chernoff, A. Pringle, S. T. Martin, and A. K. Bertram, The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere, Atmos. Chem. Phys, vol.11, pp.1191-1201, 2011.

M. Joly, E. Attard, M. Sancelme, L. Deguillame, C. Guilbaud et al., Ice nucleation activity of bacteria isolated from cloud water, Atmos. Environ, vol.70, pp.392-400, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650034

B. J. Mason, The rapid glaciation of slightly supercooled cumulus clouds, Q. J. Roy. Meteorol. Soc, vol.122, pp.357-365, 1996.

O. Möhler, P. J. Demott, G. Vali, L. , and Z. , Microbiology and atmospheric processes: the role of biological particles in cloud physics, Biogeosciences, vol.4, pp.1059-1071, 2007.

C. E. Morris, D. C. Sands, M. Bardin, R. Jaenicke, B. Vogel et al., Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate, Biogeosciences, vol.8, pp.17-25, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652355

B. J. Murray, D. O'sullivan, J. D. Atkinson, M. E. Webb, M. Nemecek-marshall et al., High-level expression of ice nuclei in a Pseudomonas syringe strain is induced by nutrient limitation and low temperature, Chem. Soc. Rev, vol.41, pp.4062-4070, 1993.

D. K. Perovich, Complex yet translucent: the optical properties of sea ice, Physica B, vol.338, pp.470-478, 2003.

J. A. Ruggles, M. Nemecek-marshall, and R. Fall, Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly, J. Bacteriol, vol.175, pp.7216-7221, 1993.

C. A. Stan, G. F. Schneider, S. S. Shevkoplyas, M. Hashimoto, M. Ibanescu et al., A microfluidic apparatus for the study of ice nucleation in supercooled water drops, Lab Chip, vol.9, pp.2293-2305, 2009.

G. Vali, Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids, J. Atmos. Sci, vol.28, pp.402-409, 1971.

G. Vali, E. R. Lee, G. J. Warren, G. , and L. V. , Principles of ice nucleation, Biological ice nucleation and its applications, pp.1-28, 1995.

G. Vali, Repeatability and randomness in heterogeneous freezing nucleation, Atmos. Chem. Phys, vol.8, pp.5017-5031, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303370

G. Vali and E. J. Stansbury, Time-dependent characteristics of the heterogeneous nucleation of ice, Can. J. Phys, vol.44, pp.477-502, 1966.