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Abstract 

Neutron intensity measured by the aboveground cosmic-ray neutron intensity 

probe (CRP) allows estimating soil moisture content at the field scale. In this work, 

synthetic neutron intensities were used to remove the bias of simulated soil moisture 

content or update soil hydraulic properties (together with soil moisture) in the 

Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. 

The cosmic-ray forward model COSMIC was used as the non-linear measurement 

operator which maps between neutron intensity and soil moisture. The novel aspect of 

this work is that synthetically measured neutron intensity was used for real time 

updating of soil states and soil properties (or soil moisture bias) and posterior use for 

the real time scheduling of irrigation (data assimilation based real-time control 

approach). Uncertainty of model forcing and soil properties (sand fraction, clay 

fraction and organic matter density) were considered in the ensemble predictions of 

the soil moisture profiles. Horizontal and vertical weighting of soil moisture was 

introduced in the data assimilation in order to handle the scale mismatch between the 

cosmic-ray footprint and the CLM grid cell. 

The approach was illustrated in a synthetic study with the real-time irrigation 

scheduling of fields of citrus trees. After adjusting soil moisture content by 

assimilating neutron intensity, the irrigation requirements were calculated based on 

the water deficit method. Model bias was introduced by using coarser soil texture in 

the data assimilation experiments than in reality. A series of experiments was done 

with different combinations of state, parameter and bias estimation in combination 

with irrigation scheduling. 

Assimilation of CRP neutron intensity improved soil moisture characterization. 

Irrigation requirement was overestimated if biased soil properties were used. The soil 

moisture bias was reduced by 35% after data assimilation. The scenario of joint 

state-parameter estimation resulted in the best soil moisture characterization (50% 

decrease in root mean square error compared to open loop simulations), and the best 

estimate of needed irrigation amount (86% decrease in Hausdorff distance compared 



  

to open loop). The coarse scale synthetic CRP observation was proven to be useful for 

the fine scale soil moisture and soil properties estimation for the objective of 

irrigation scheduling. 

 

Keywords: Data Assimilation; Cosmic ray; Soil Moisture; Parameter Estimation; Bias 

Estimation; Irrigation Scheduling  



  

1. Introduction 

Globally, 70% of fresh water is used by agriculture (FAO - Food and Agriculture 

Organization of the United Nations). Therefore, it is necessary to increase the water 

use efficiency and reduce the water need for crop production, while maintaining crop 

yield. Enough water should be applied to meet the requirement of maximum crop 

evapotranspiration (ET). Farmers usually base irrigation scheduling on their own 

experience taking into account soil water status and crop growth. However, it is 

unlikely that the optimal scheduling of irrigation is acquired without the knowledge of 

crop water needs. Low cost sensors that measure soil moisture content can be of 

advantage. However, these sensors typically have a very small measurement volume 

which is much smaller than the scale of the fields where the crops are grown. 

Numerical models like crop growth models (Heng et al., 2009) and land surface 

models (Wood et al., 2011) can be used for the quantitative estimation of the irrigation 

requirement under specific soil water and crop growth conditions. The estimated 

irrigation amount can be applied accurately with new agricultural technology like drip 

irrigation (Sampathkumar et al., 2012). However, uncertain model input data and 

deficits in the model structure result in biased estimates of soil water status, crop 

transpiration and therefore irrigation requirement. 

The optimal scheduling of irrigation is complicated given the high heterogeneity 

of soil moisture content in drip irrigated fields. An estimate of soil moisture content 

for the complete root zone is important in this context. It is difficult to achieve this 

with small-scale measurements (e.g., TDR-Time Domain Reflectometry, 



  

FDR-Frequency Domain Reflectometry or TDT-Time Domain Transmission) as a 

prohibitively large number of sensors is needed to cover large irrigated areas. Soil 

moisture information from remote sensing on the other hand is limited to the upper 

few soil centimeters, and often has a very coarse horizontal resolution (>10 km) 

(Entekhabi et al., 2010; Kerr et al., 2010; Montzka et al., 2013). A further limitation 

of satellite-derived soil moisture content is that it is not reliable for highly vegetated 

areas (Njoku and Chan, 2006) and high uncertainties (Merlin et al., 2009; Montzka et 

al., 2013). The spatial variability of soil moisture is controlled by soil hydraulic 

properties, meteorological forcing, land cover patterns and topographic features at 

different measurement scales. Small scale variability is more driven by soil hydraulic 

properties while large scale variability is also more driven by the other factors. Hence, 

strengths and weaknesses of each measurement method rely on the additional 

uncertainty given by these additional controlling factors (Crow et al., 2012). 

A new promising method which can determine integral root zone soil moisture 

from the measured above ground fast neutron intensity (defined as the number of 

counted neutrons per unit of time – e.g., counts per hour) has been proposed (Zreda et 

al., 2012). This synthetic study focuses on the assimilation of cosmic-ray probe (CRP) 

neutron intensity (Bogena et al., 2013; Desilets et al., 2010; Rosolem et al., 2014; 

Shuttleworth et al., 2013; Zreda et al., 2008; Zreda et al., 2012). Soil moisture 

measurements at the intermediate scale of the cosmic ray probe have the advantage 

that they are less affected by small scale variability of soil hydraulic properties. A 

further advantage is that soil moisture can be determined for a deeper layer (10-70 cm) 



  

in higher temporal frequency than remote sensing (Rosolem et al., 2014). 

Primary cosmic rays originate from our galaxy and eventually collide with 

atmospheric nuclei, generating secondary cosmic rays mainly consisting of neutrons 

(Lal and Peters, 1967). Primary cosmic rays create cascades of secondary high-energy 

neutrons through colliding with atmospheric nuclei and the high-energy neutrons can 

penetrate the atmosphere and collide with nuclei in soils. These collisions in the soil 

generate fast neutrons. Some of these fast neutrons are eventually scattered back to 

the atmosphere and the fast neutron intensity can be measured with the CRP. The 

measured intensity of fast neutrons above the ground depends strongly on soil 

moisture content (Hendrick and Edge, 1966; Zreda et al., 2012). CRPs make use of 

this principle to estimate soil moisture content for an area of about 600 m diameter 

and variable measurement depth (~10-70 cm) depending on the soil moisture 

conditions (Zreda et al., 2012). 

Measured neutron intensities above ground need to be corrected for variations in 

incoming high-energetic neutrons and atmospheric pressure (Zreda et al., 2012). 

Moreover, as the measured neutron intensity depends on additional sources of 

hydrogen (besides of soil moisture), these need to be taken into account in order to 

isolate the soil moisture signal. Corrections have been proposed for other hydrogen 

sources like atmospheric vapor (Rosolem et al., 2013), lattice water and organic 

carbon in the soil (Franz et al., 2013), hydrogen atoms stored in the litter layer 

(Bogena et al., 2013) and above-ground biomass (Baatz et al., 2015). Data 

assimilation studies have shown the advantage of using measured multi-source soil 



  

moisture observations for improving the soil moisture profile characterization of a 

land surface model (Crow et al., 2008; De Lannoy et al., 2007b; Han et al., 2012; 

Huang et al., 2008; Reichle et al., 2008; Walker et al., 2001). Measured neutron 

intensities have already been used for assimilation in a land surface model to improve 

estimates of soil moisture profiles, but the model parameters were calibrated a priori 

(Han et al., 2015a; Rosolem et al., 2014; Shuttleworth et al., 2013). 

In this paper we will investigate the benefits of assimilating coarse scale (600 m) 

neutron intensity data into the Community Land Model (CLM) for the application of 

drip irrigation for citrus trees on a finer scale (100 m) than the CRP scale. The neutron 

intensity measured by a synthetic CRP affects a larger area than a typical irrigation 

management unit (1 ha in this work). In order to study the impact of soil moisture data 

assimilation on irrigation scheduling, the drip irrigation was therefore simulated at a 

finer spatial scale than the footprint of a CRP. The drip irrigation was applied at the 

vegetated area and resulted in a very heterogeneous soil moisture distribution with the 

alternation of patches of wet and dry soil. It is very CPU-intensive to explicitly model 

the irrigated patches and the non-irrigated parts, and a simplified implementation was 

adopted in this work, which will be further detailed in the methodology section. In the 

simulation experiments, CLM was driven by biased soil properties to mimic the 

intrinsic model uncertainties. The coarse scale CRP neutron intensity observations 

were used to update the field scale heterogeneous soil moisture field through data 

assimilation. The joint soil moisture and soil properties (or soil moisture bias) 

estimation scheme was evaluated. This is important because soil moisture content and 



  

crop transpiration are sensitive to model parameters (Hou et al., 2012; Rosolem et al., 

2012; Schwinger et al., 2010). Typically, field measurements of parameter values are 

scarce and very uncertain, especially because of the scale mismatch between a local 

measurement and the model scale (Waller et al., 2014). Model parameter estimation 

in the context of a data assimilation framework was proven to be successful, using 

either an augmented state vector approach (Chen and Zhang, 2006), dual state 

parameter estimation (Moradkhani et al., 2005b) or parameter estimation in a loop 

external to the data assimilation filter (Vrugt et al., 2005). Successful applications are 

reported for such diverse areas as groundwater hydrology (Franssen and Kinzelbach, 

2008; Kurtz et al., 2014; Schöniger et al., 2012), rainfall-runoff models (Moradkhani 

et al., 2005a; Vrugt et al., 2006), land surface models (Han et al., 2014a; Pauwels et 

al., 2009), vadose zone hydrology (Montzka et al., 2011; Wu and Margulis, 2013) and 

atmospheric models (Ruiz et al., 2013). A data assimilation framework can consider 

uncertain model forcing, model structure and initial conditions, as well as parameter 

uncertainties. Data assimilation has become a commonly used method for parameter 

estimation, especially for large scale applications (Wanders et al., 2014).  

Joint soil moisture and soil moisture bias estimation has been proven to be helpful 

for improving data assimilation results (De Lannoy et al., 2007a; Kumar et al., 2012b) 

like soil temperature assimilation with bias correction (Bosilovich et al., 2007; 

Reichle et al., 2010). In this study, we also evaluated the impact of the soil moisture 

bias estimation method (Dee, 2005) on improving the soil moisture assimilation and 

irrigation scheduling and compared it with joint state-parameter estimation. 



  

In Han et al., 2015a, we studied the joint updating of soil moisture, soil 

temperature and leaf area index by assimilating CRP neutron intensity and land 

surface temperature. In this study however, we considered in addition the joint 

updating of soil moisture and soil properties, or soil moisture and soil moisture bias, 

and the vertical and horizontal weighting for updating soil moisture in the footprint of 

a CRP. This implies that in this work states and parameters for many model grid cells 

in the CRP footprint are updated with a single CRP neutron intensity observation. 

This is therefore a small multiscale data assimilation experiment with the irrigation 

scheduling as one of the objectives. 

It is expected that a more accurate characterization of the heterogeneous soil 

moisture distribution can be obtained if the coarse scale CRP neutron intensity data 

are assimilated using a combination of data assimilation and parameter estimation (or 

bias estimation). Based on such results, it is then assumed that the estimated irrigation 

requirement could be improved. The objective of this study is to evaluate with help of 

a synthetic study: 1) the potential of measured neutron intensity data by the CRP for 

improving the characterization of soil moisture content and soil properties (or soil 

moisture bias), and 2) the impact of the assimilation of neutron intensity on better 

irrigation scheduling and the potential for real-time irrigation optimization. In this 

study, the spatial variability of soil properties and crop status will be considered in the 

data assimilation. 

 

2. Methodology 



  

The main components of the methodology are: (i) measurement of above-ground  

neutron intensity, which is linked to field scale soil moisture content by a 

measurement operator (section 2.1) and horizontal weights (section 2.3); (ii) the land 

surface model CLM (version 4.5) which simulates the transport of water and energy 

in the soil-plant-atmosphere continuum (section 2.2); (iii) data assimilation according 

to the Local Ensemble Transform Kalman Filter (LETKF) methodology (Hunt et al., 

2007) which optimally combines measurements and model predictions to update soil 

moisture (and possibly soil properties or soil moisture bias), taking into account 

uncertain atmospheric forcing and model parameters (or model bias) (section 2.3) and 

(iv) an optimization routine which calculates irrigation need for the ensemble of soil 

moisture forecasts (section 2.4). 

2.1. Cosmic ray Soil Moisture Interaction Code (COSMIC) 

In order to assimilate neutron intensity, the relationship between neutron intensity 

and depth-weighted soil moisture content should be reasonably represented. The 

newly-developed COsmic ray Soil Moisture Interaction Code (COSMIC) 

(Shuttleworth et al., 2013) was adopted as the forward observation operator to 

simulate the equivalent neutron count rates from simulated soil moisture profiles (i.e., 

soil moisture contents for 10 vertical model layers of CLM from surface to 3 m depth, 

in this study) and takes into account the weighted contribution of individual soil 

layers with depth. The COSMIC operator calculates the number of fast neutrons 

reaching the CRP COSMOSN  at a near-surface measurement point by: 
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s  102.0405.0           (3) 

sL  38.9976.313           (4) 

where N (counts/h) is the number of high-energy neutrons at the soil surface, z

is the soil layer depth (m), s  is the dry soil bulk density (g cm
-3

), w  is the total 

soil water density, including the lattice water (g cm
-3

); )(zms  and )(zmw  are the 

integrated mass per unit area of dry soil and water (g cm
-2

),   is the angle between 

the vertical below the detector and the line between the detector and each point in the 

plane (Shuttleworth et al., 2013), 1L  is the high energy soil attenuation length with 

value of 162.0 gcm
-2

, 2L  is the high energy water attenuation length of 129.1 gcm
-2

, 

3L  is the fast neutron soil attenuation length (gcm
-2

) and 4L  is the fast neutron water 

attenuation length with value of 3.16 gcm
-2

 (Shuttleworth et al., 2013). 

In this study soil moisture contents for 10 vertical soil layers of CLM were used 

to drive the COSMIC operator. COSMIC interpolates the soil moisture to 300 layers 

with a soil profile depth of 3 meters and derives the fast neutron count rate from the 

depth-averaged soil moisture content based on the effective sensor depth, also 

calculated by COSMIC. The simulated fast neutron intensity was assumed to be 

observed and subsequently used for the data assimilation as will be explained below. 

Vertical variation of soil moisture content will be considered according to the 

contribution to the total neutron intensity of each soil layer. 



  

 

2.2. Community Land Model - CLM 

The Community Land Model (CLM - version 4.5) developed by the National 

Center for Atmospheric Research (NCAR) was used to calculate soil moisture content 

and evapotranspiration (Oleson et al., 2013). CLM uses the simplified Richards 

equation to model water flow in the unsaturated zone and calculation of land surface 

energy fluxes is done by invoking the Monin-Obukhov similarity theory. In addition, 

the following processes can be simulated by CLM: transfer of solar radiation and 

longwave radiation, stomatal physiology and photosynthesis, crop dynamics and 

irrigation (Oleson et al., 2013). The land cover can be represented by 17 plant 

functional types (PFTs) and the calculation of energy fluxes is based on the PFTs. 

Hydraulic and thermal parameters in CLM are derived based on soil properties such 

as sand and clay fraction and organic matter density (Oleson et al., 2013).  

 

2.3. Data Assimilation and Parameter Estimation 

The Local Ensemble Transform Kalman Filter (LETKF) is a square root 

ensemble Kalman filter (Hunt et al., 2007; Miyoshi and Yamane, 2007), which is 

applied extensively in atmospheric data assimilation studies (Aravéquia et al., 2011; 

Baek et al., 2006; Lien et al., 2013; Miyoshi et al., 2014) and also in land data 

assimilation studies (Han et al., 2014a). In LETKF, the uncertainty of the model 

forecast is represented by ensemble members. In this study LETKF is used to estimate 

both soil moisture and soil properties with the state augmentation method (Bateni and 



  

Entekhabi, 2012; Han et al., 2014a; Li and Ren, 2011) or to update soil moisture and 

soil moisture bias jointly. 

First two matrices bX  and bY  are constructed based on simulated soil moisture 

and soil properties (or soil moisture bias) of the ensemble members: 

1 , ,b b b b b

M
     X x x x x            (5) 

 b b

i iHy x               (6) 

1 , ,b b b b b

M
     Y y y y y            (7) 

where 
1 ,b b

Mx x  are vectors with the ensemble members, M  is the ensemble 

size, bx  is the vector with ensemble means calculated over
1 ,b b

Mx x , H  is the 

observation operator (i.e., COSMIC for soil moisture), b

iy  is the mapping of the 

ensemble members 
1 , M

b bx x  to the measurement space and b
y  is the vector of 

ensemble means of
1 , M

b by y . The vector bx  contains i) the depth weighted average 

soil moisture cosmic , which was derived from COSMIC and considers the 

contribution of different soil layers, ii) the soil moisture of 10 layers ( 1 10  ) and iii) 

soil properties (sand fraction, clay fraction and organic matter density) in case soil 

properties are estimated. In case of bias estimation, the vector bx  contains soil 

moisture bias instead of soil properties. The dimensions of the augmented state vector 

bx  were 11 for the state estimation only, 14 for joint state and parameter estimation, 

and 12 for joint state and bias estimation. Only soil properties and soil moisture bias 

for the upper soil layer were included in the state vector bx . Soil properties for all 10 

layers were updated based on the ratio of the soil properties between the upper soil 

layer and the lower soil layers (Han et al., 2014b). The soil moisture bias of deeper 



  

layers was assumed to decrease exponentially according to equation (8). 
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where iZ  (m) is the i
th

 soil layer thickness of CLM and k is the time step. 

Next, the analysis error covariance matrix 
aP  is calculated: 

  11a bT bM     P I Y R Y           (9) 

where R  is the observation error covariance matrix. The perturbations in the 

ensemble space aW  are calculated according to: 

 
1/2

1a aM   W P             (10) 

The analysis mean aw  is given by:  

 1a a bT o bw  P Y R y y            (11) 

where o
y  is the vector with the measured CRP neutron intensity. The analysis 

mean is added to each column of aW   to get the analysis ensemble. 

Finally, the new analysis 
aX  is obtained according to: 



  

a b a b X X W x              (12) 

where aX  are the model ensemble members after analysis. aX  includes the 

updated soil moisture and soil properties (or soil moisture bias), and will be used as 

initial condition for the next time step. 

The forecast model of soil moisture bias k

Biasθ  was defined as: 

1k k

Bias Bias

θ θ               (13) 

where k  is the time step. 

In this study, the LETKF was applied as a 1D filter to update soil moisture in the 

cosmic ray footprint, which covered several fine scale model grid cells. Neutron 

intensity data were used to update the fine scale soil moisture within the expected 

CRP footprint and the contribution of different grid cells within the CRP footprint to 

the observed neutron intensity was taken into account by assigning different 

horizontal weights to the CLM grid cells. Following the horizontal weighting method 

proposed by (Bogena et al., 2013), we used a Gaussian window function (Harris, 1978) 

to define the horizontal weights of the different CLM grid cells in the CRP footprint. 

Because a single observation was used to update the soil moisture content of many 

CLM grid cells, a simple multi-scale data assimilation strategy was proposed. First, 

the COSMIC operator was run for each CLM grid cell to simulate the neutron 

intensity of each CLM grid cell. Next, a convolution with a Gaussian window 

function was applied to retrieve the integrated neutron intensity at the coarse scale. 

This convolution step was used in both the ensemble runs and the parallel runs 

(introduced in section 3.3). Therefore the CRP neutron intensity (measured/simulated) 



  

considered the contributions from all model grid cells contained within the CRP 

footprint. The size of the Gaussian window function was chosen as the diameter of the 

CRP footprint (600 m). The observation operator H (needed by equation (6)) was 

defined as the combination of a Gaussian window function and the COSMIC operator. 

Using equation (6) we get: 

 (b b

i Gaussian cosmic if fy x ）           (14) 

where cosmicf  represents the COSMIC operator and Gaussianf  the Gaussian 

window function. 

The footprint of the CRP covered 43 CLM grid cells (i.e., ~600 m diameter). The 

data assimilation was done grid cell by grid cell in LETKF. Therefore the time series 

of a single neutron intensity observation was assigned uniformly to all grid cells of the 

CRP footprint and then the observations were assimilated separately for each CLM 

grid cell. The spatial localization was applied on the model states using equation (14), 

and therefore the observation localization was not used in this study (Greybush et al., 

2011; Han et al., 2015b). The soil moisture measured by CRP is composed of the 

contribution of all horizontal and vertical CLM grid cells of the CRP footprint. 

Therefore, there is only one relevant soil moisture content value and neutron intensity 

value. Given equation (14), the upscaling of soil moisture from CLM will be done 

before assimilation, it means the upscaled soil moisture cosmic which incorporates the 

contribution from all surrounding grid cells will be used as the soil moisture content 

value to be updated with the CRP neutron intensity measurement. All the soil 

moisture content values for the individual grid cells within the CRP footprint (both 



  

horizontally and vertically) will be updated according to the correlation between the 

simulated values by CLM and 
cosmic : 

 b

i( )cosmic Gaussian cosmicf f  x           (15) 

 

2.4. Irrigation Requirement 

CLM computes the water deficit between the current soil moisture content and a 

target soil moisture content. The target soil moisture in each soil layer is a weighted 

average of (1) the minimum needed soil moisture content to avoid water stress for that 

layer and (2) the saturated soil moisture content for that layer (Levis and Sacks, 

2011): 

 , , ,1 0.7 0.7target i o i sat i                (16) 

where   is the soil layer number, 
,o i  is the minimum soil moisture content of 

each vegetation type so that stomata are completely opened and 
,sat i  is the effective 

soil porosity. 

The total water deficit deficitW (mm) was defined as: 

 , ,_ max ,0
N

deficit i target i liq i

i

W Root Fraction          (17) 

where ,liq i  is the current soil moisture content of layer i . 

The estimated irrigation amount deficitW  was applied in CLM as an incoming 

water flux not subjected to interception by the canopy layer (precipitation on the 

contrary was subjected to interception). 

The root fraction  iRF  of citrus trees for the soil layer i  was parameterized as 

(Oleson et al., 2013): 
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   (18) 

where 
,h iZ  (m) is the depth from the soil surface to the interface between soil 

layers i  and 1i   (
,0 0hZ   represents the soil surface), ar  and br  are plant 

dependent root distribution parameters, for citrus trees: 8.992ar  , 8.992br   (Zeng, 

2001), 10levsoiN   is the total number of soil layers. 

 

2.5. Performance Measures 

In order to evaluate the results of data assimilation and irrigation, the Root Mean 

Square Error (RMSE) was calculated for the hourly soil moisture results: 

 
2

 - 
RMSE  

K

est refk i

K

 



         (19) 

where est  is the hourly soil moisture ensemble mean for a given scenario, ref  

is the hourly soil moisture value of the reference scenario. K is equal to 8760. Soil 

moisture contents at the time points of assimilation and prediction were included in 

the calculations with Eq. 19. Lower RMSE values mean better performance. 

The Hausdorff Distance (HD) is a quantitative measure of the similarity between 

two spatial distributions (Kumar et al., 2012a). Lower HD values mean higher spatial 

similarity. HD is defined as the maximum distance of a set to the nearest point in the 

other set: 

    , max min
r Qq Q

h Q R q r


            (20) 

where  ,h Q R  is the HD value and q  and r  are the points of sets Q  and 



  

R . q r  is the norm of the points in the space of Q  and R , in terms of Euclidean 

distance. Q is the estimated annual irrigation amount of a CLM grid cell in the CRP 

footprint and R  is the annual irrigation amount of the reference scenario of the CRP 

footprint.  

The t-test can be used to determine whether two data sets are significantly 

different. The independent two-sample t-test was used to evaluate the statistical 

significance of the difference between the estimated irrigation amount and the 

reference irrigation amount (Welch, 1947). The definition of the t-test is as follows: 

1 2

2 2

1 2

1 2

t
X X

s s

N N






             (21) 

where
1 2/X X , 2 2

1 2/s s  and 1 2/N N  are the mean, variance and the number of 

optimized irrigation amounts, respectively. The subscripts 1 and 2 represent the 

reference scenario and estimation scenario, respectively. 

 

3. Synthetic Experiment 

A synthetic study was conducted to evaluate the methodology outlined in the 

previous sections. The synthetic study mimicked the Picassent site (close to Valencia, 

Spain) with citrus trees, which receives drip irrigation. The site is situated in a 

semi-arid region (39.38
o
 N, 0.47

o
 E) with yearly average precipitation of 454 mm (44 

precipitation days), average daily maximum temperature of 22.3
o
C and average daily 

minimum temperature of 13.4
o
C, and with a yearly irrigation period from April to 

October. In the synthetic experiments, a CRP (Zreda et al., 2012) measured the 



  

neutron intensity which was assimilated in the land surface model CLM. 

 

3.1. Design of Synthetic Experiments 

The citrus tree was modeled as a broadleaf evergreen tropical PFT in CLM. In 

order to mimic the planting pattern of citrus trees at the Picassent site, odd CLM grid 

columns were modelled as bare ground without vegetation cover while even CLM 

columns were modelled as fully covered by broadleaf evergreen tropical trees. The 

mimicked ground cover of vegetation was similar to the real measured ground cover 

fraction of citrus trees. Soil properties (sand fraction and clay fraction) and organic 

matter density determine the soil thermal and hydraulic properties in CLM. Soil 

samples from the Picassent region were taken and a soil sand fraction of 32%, clay 

fraction of 33%, bulk density of 1.5 gcm
-3

, and organic fraction of 1.2% (10 cm depth) 

and 0.7% (50 cm depth) were determined using the Bouyoucos method, which is 

based on stokes law and involves use of a hydrometer (Bouyoucos, 1962) and applied 

uniformly in space in CLM. Spatially correlated noise was added to the uniform soil 

properties to represent the spatial heterogeneity. The noise was simulated by 

sequential Gaussian simulation with a correlation range of 100 m, variance of 100.0 

(%) and mean value of 0.0 (%). The noise was constrained within the range of (-5.0%, 

5.0%) after the sequential Gaussian simulation. The atmospheric forcing data 

measured by the Picassent weather station were used as CLM input. The maximum 

rate of carboxylation at 25 °C ( 25cmaxV ) controls the maximum rate of carboxylation 

and canopy transpiration in CLM. The default value of 25cmaxV  is 55 2 -1μmolm s  for 



  

broadleaf evergreen tropical tree in CLM. It was changed to 100 2 -1μmolm s according 

to a reference value for citrus trees (Velikova et al., 2012). The study area was 

discretized in 40×60 grid cells at a spatial resolution of 100 m. However, our 

analysis will focus on the CRP footprint which contains only 43 CLM grid cells in 

total. Because of the spatial discretization, it is not easy to describe the exact CRP 

footprint. The diameter of the CRP footprint for the horizontal weighting calculation 

was chosen as the ratio between the CRP diameter and the spatial resolution of the 

CLM grid cell, which was 7 grid cells. 

A model spin-up was made to obtain reasonable initial conditions for CLM. CLM 

was run for the spin-up period from 2010-01-01 to 2010-12-31 using an hourly time 

step. Next, a one-year (2011-01-01 to 2011-12-31) irrigation estimation using the true 

soil properties was performed in CLM and the irrigation requirement was calculated 

every three days during the period from 2011-01-01 to 2011-12-31 and subsequently 

applied. This reference model run also supplied the reference soil moisture 

distribution in space and time and the canopy transpiration, and a distribution in space 

and time (and total amounts) of irrigation. 

 

3.2. Ensemble Generation 

The simulation experiments evaluated how well the soil moisture, 

evapotranspiration, soil properties and irrigation requirement could be characterized if 

soil properties and model forcing were biased and/or uncertain, but the measurement 

data (albeit synthetically generated for this study) in the form of CRP neutron 



  

intensity were available. We assumed that the soil texture was systematically coarser 

than in reality. The soil properties used in the reference run were perturbed to 

represent these conditions: the sand fraction was multiplied by 1.5 while the clay 

fraction and organic matter density were both multiplied by 0.75. In addition, for all 

scenarios the sand and clay fractions, and organic matter density were perturbed by a 

uniform distributed noise in the range of [-10.0%, 10.0%] (for soil texture) and [-10.0 

km m
-3

, 10.0 km m
-3

] (for organic matter density) to generate 20 different soil 

hydraulic properties for the 20 different ensemble members. It is assumed that these 

perturbations represent a realistic representation of the uncertainty in practice. If the 

sum of the sand and clay fraction was larger than 98%, an amount equal to 

((Sand%+Clay%) – 98%)/2.0 was subtracted from both the sand and the clay fraction. 

For the ensembles for which initial soil moisture bias was updated instead of soil 

properties, soil moisture was perturbed with a spatially uniform value sampled from 

the uniform distribution with values between -0.04 m
3
m

-3
 and 0.04 m

3
m

-3
. 

The atmospheric forcing data of precipitation, air temperature, shortwave incident 

radiation and longwave incident radiation were perturbed with a noise correlated in 

space and time (Han et al., 2013). The spatially correlated noise was generated using 

the Fast Fourier Transform approach and the temporal correlation was imposed by a 

first-order auto-regressive model approach (Kumar et al., 2009; Park and Xu, 2009). 

The perturbation parameters are summarized in Table 1. 

 

3.3. Synthetic Observation 



  

In this study, the “observed” synthetic CRP neutron intensity was generated using 

the COSMIC model, which used the soil moisture profile simulated by CLM as input. 

A point which had to be considered in the simulation scenarios was that the soil 

moisture changed also as response to the irrigation amount applied in the CLM 

simulation. Therefore, the synthetic observations will be different for each simulation 

scenario due to the different irrigation amounts. In order to obtain the synthetic 

measurements of CRP neutron intensity for these scenario runs, a parallel run was 

made with the same soil properties and atmospheric forcing as the reference run for 

each of the simulation scenarios. However, the irrigation amount for this parallel run 

was the same as the optimized one for the specific simulation scenario. Therefore 

irrigation amounts differed among the parallel runs of the different scenarios. This in 

turn also affected the CRP intensity which was assimilated in the simulation scenarios. 

The soil moisture calculated in the parallel run was used now as the synthetic soil 

moisture measurement for this specific scenario and also used as input for COSMIC 

to estimate the synthetic CRP neutron intensity. This implies that the assimilated CRP 

neutron intensity differed among different scenarios, in correspondence with different 

irrigation amounts applied in the different scenarios.  

In this synthetic study, COSMOSN  was set to 150 counts h
-1

 and lattice water was 3% 

in COSMIC. The simulated CRP intensity measurements were perturbed in order to 

represent the observation error. This perturbation had a mean equal to zero and a 

variance equal to the square root of the neutron intensity to represent the observation 

error. The CLM grid cells located in the footprint of the CRP were updated by the data 



  

assimilation procedure. The neutron intensity observation was assimilated at 23:00 

each three days, prior to irrigation scheduling. 

Fig. 1 shows a schematic overview of the complete calculation procedure for each 

time step. 

[Insert Figure 1 here] 

 

3.4. Irrigation Scheduling 

In Valencia, citrus trees are typically irrigated 3~6 days per week from April to 

October. For simplicity, the irrigation duration was assumed to be two hours from 

06:00 AM onwards, and the irrigation was applied every three days for reasons of 

computational efficiency. CLM was run in prediction mode for three days to estimate 

the needed amount of irrigation (at 06:00) using the predefined atmospheric forcing 

data. The first assimilation of soil moisture data was done at 23:00, seven hours 

before the start of the second irrigation period. 

Five irrigation estimation scenarios were designed to assimilate the CRP neutron 

intensity in the land surface model and to evaluate the impact of data assimilation, 

parameter estimation and bias estimation on the characterization of the soil moisture 

profile, irrigation amount and evapotranspiration:  

(1) Irrigation estimation with the true soil properties and atmospheric forcing 

(Reference).  

(2) Irrigation estimation with biased soil properties, without CRP neutron 

intensity assimilation (No_DA, i.e. Open loop).  



  

(3) Irrigation estimation with biased soil properties, with the assimilation of CRP 

neutron intensity (every three days) (Only_DA_SM). 

 (4) Irrigation estimation with biased soil properties, with both CRP neutron 

intensity assimilation (every three days) and soil moisture bias estimation 

(DA_SM_Bias). 

(5) Irrigation estimation with biased soil properties, with neutron intensity 

assimilation (every three days) including soil properties estimation (DA_SM_Par). 

For the scenario of DA_SM_Par, the study period included both 2010 and 2011. In 

2010, joint soil moisture and soil properties estimation were carried out in order to 

update the biased soil properties (sand fraction, clay fraction and organic matter 

density). Next, in 2011 the updated soil properties were used for soil moisture 

assimilation without soil properties updating. For the scenarios without soil properties 

estimation, the experiments were only carried out for 2011.  

The estimation of soil properties during the year 2010 deteriorated in case of 

intensive irrigation. In case of intensive irrigation, the soil column is close to 

saturation, and the ensemble members show a limited spread. In addition, the 

sensitivity of soil moisture with respect to soil properties becomes small. Parameter 

estimation (i.e., updating of soil properties) is not very efficient during these periods. 

Therefore, soil properties were not updated if the accumulated irrigation amount 

between two data assimilation time steps was larger than 10 mm.  

 

4. Results 



  

In this section we evaluate time series for the different simulation scenarios at the 

CRP location. Spatial patterns of (estimated) soil properties and optimized irrigation 

amounts for different simulation scenarios are also compared. This comparison is 

made at the scale of the complete CRP footprint. The temporal evolution of soil 

moisture content at 30 cm and 50 cm depth for different simulation scenarios is shown 

in Fig. 2. The scenario No_DA underestimated soil moisture content even although 

(too) high irrigation amounts were scheduled, which is related to the erroneous soil 

texture in this simulation scenario and the associated bias in soil properties like 

saturated hydraulic conductivity. In the data assimilation scenario Only_DA_SM soil 

moisture characterization was improved by assimilating the CRP neutron intensity, 

but the bias was also very high due to the large bias of soil properties. In order to 

reduce the soil moisture bias, the joint soil moisture state and bias estimation was 

evaluated in the scenario DA_SM_Bias by use of the state augmentation method. The 

soil moisture estimation became better than Only_DA_SM after the soil moisture bias 

was reduced. The best soil moisture results were obtained in the scenario DA_SM_Par, 

in which sand fraction, clay fraction and organic matter density were updated 

sequentially using the joint state and parameter estimation method. 

[Insert Figure 2 here] 

The RMSE values for soil moisture characterization are summarized in Fig. 3. 

Compared with the Reference scenario, the scenarios No_DA and Only_DA_SM 

underestimated soil moisture content, which resulted in higher irrigation requirement 

than for the reference case. Compared with the scenario No_DA, the RMSE values 



  

for soil moisture content at 30 cm depth decreased by 33%, 40% and 52% for the 

scenarios Only_DA_SM, DA_SM_Bias and DA_SM_Par, respectively. At 50cm 

depth these RMSE-decreases were 39%, 35% and 51% for the scenarios 

Only_DA_SM, DA_SM_Bias and DA_SM_Par, respectively. These results illustrate 

the benefit of joint state-parameter estimation. Model results were strongly influenced 

by the biased soil properties for the scenario Only_DA_SM, where measurement data 

were not used to estimate model bias or soil properties. As model bias was related to 

biased soil properties in these simulations, joint state and parameter estimation 

performed better than the scenario with joint state and bias estimation. 

[Insert Figure 3 here] 

Fig. 4 shows the soil moisture bias for the different ensemble members (scenario 

DA_SM_Bias). The temporal evolution of the bias is shown for the first soil layer and 

the CRP location. The time series of true soil moisture bias (the scenario No_DA) is 

shown for comparison. The mean bias value for No_DA is 0.051 m
3
m

-3
 and 0.033 

m
3
m

-3
 for DA_SM_Bias. The joint state-bias estimation could reduce 35% of the soil 

moisture bias introduced by the biased soil properties.  

[Insert Figure 4 here] 

The CLM model derives the soil hydraulic parameters using a predefined 

pedotransfer function (Oleson et al., 2013). The updated soil texture resulted therefore 

in updated soil hydraulic parameters in CLM. In order to show the influence of 

calibrated soil texture on the soil hydraulic parameters, the temporal evolution of the 

calibrated saturated hydraulic conductivity K and the empirical parameter B which 



  

represent the slope of water retention curve in the Clapp–Hornberger parameterization 

(Clapp and Hornberger, 1978; Oleson et al., 2013) are shown in Fig. 5 (scenario 

DA_SM_Par). The Clapp–Hornberger parameterization can be used to calculate the 

hydraulic conductivity when the soil water retention data are not available. All soil 

hydraulic parameters could be improved in this scenario by assimilating the CRP 

neutron intensity. The mean ensemble values for the soil hydraulic parameters 

approached the reference values over the assimilation period. As the soil properties 

were not updated during the intensive irrigation period, the convergence was slow. 

[Insert Figure 5 here] 

Fig. 6 shows the time series of irrigation amount at the location of the CRP for 

the reference case and for the different estimation scenarios. The reference irrigation 

amount (707.2 mm) was calculated in CLM on the basis of the water deficit method. 

Fig. 6 illustrates that the intensive irrigation period from June to October coincided 

with limited precipitation. The reference irrigation amount was around twice of the 

annual precipitation amount (356.1 mm). The sum of the reference irrigation amount 

(707.2 mm) and annual precipitation (356.1 mm) was about 6% higher than the 

documented potential annual evapotranspiration of citrus trees (Ballester et al., 2011; 

Jimenez-Bello et al., 2015). We used a t-test to compare the estimated annual 

irrigation requirements by the different scenarios with the reference case. Large p 

values (Fig. 6) indicate that the scenarios with data assimilation did not have a 

significantly different irrigation scheduling as compared with the reference case. The 

scenario No_DA has a p value <0.05, which indicates that the estimated irrigation 



  

amounts were significantly different from the reference case. Data assimilation 

(Only_DA_SM) improved results with higher p values (p=0.205). Scenarios with bias 

correction (p=0.819) and parameter estimation (p=0.755) gave better results than the 

scenario of state estimation only (Only_DA_SM). The annual irrigation amounts for 

the grid cell at the location of the CRP are summarized in Fig. 7. Obviously, joint soil 

moisture and bias (or parameter estimation) improved the characterization of 

irrigation requirement. 

[Insert Figure 6 here] 

[Insert Figure 7 here] 

Now we analyze the irrigation results for the scenarios in detail. The better 

characterization of the irrigation demand was found by combining CRP neutron 

intensity assimilation and soil properties estimation (or soil moisture bias estimation). 

Scenarios DA_SM_Bias and DA_SM_Par estimated an irrigation requirement of 

691.0 mm and 685.6 mm, respectively. The scenario Only_DA_SM (i.e., data 

assimilation with state estimation only) gave an irrigation estimation of 797.7 mm. 

CRP neutron intensity assimilation without parameter estimation provided much 

better results than scenarios without data assimilation (No_DA). The estimated 

irrigation amount for the scenario No_DA was 1107.3 mm. These results illustrate that 

irrigation estimation for the case of biased soil properties (i.e., sandier soil in model 

than in reference run) can be improved significantly by the assimilation of CRP 

neutron intensity and even better by including soil properties estimation or bias 

estimation. Data assimilation improved the estimation of irrigation demand and even 



  

resulted in a slightly lower irrigation than for the reference case. 

The CRP footprint was composed of 43 CLM grid cells which were irrigated 

separately. The irrigation requirements estimated for the different scenarios are 

displayed in Fig. 8 and compared with the reference scenario. The spatial irrigation 

patterns of scenarios DA_SM_Bias and DA_SM_Par are closer to the reference case 

than the scenario without data assimilation (No_DA). 

[Insert Figure 8 here] 

The single CRP neutron intensity measurement for the coarse scale (600 m) was 

used to update the 43 CLM grid cells at the fine scale (100 m). The spatial distribution 

of soil properties and annual irrigation amount were compared with the reference 

spatial distributions. A higher spatial similarity is associated with lower HD values. 

The HD values were evaluated according to the distance between a CLM grid cell and 

the CRP location. Three classes were defined: (i) distance CRP- grid cell ≤ 100 m; (ii) 

distance CRP- grid cell > 100 m and ≤ 200 m; (iii) distance CRP- grid cell > 200 m 

and ≤ 300 m. The HD values for the comparison of the spatial patterns of soil 

properties for the scenarios No_DA and DA_SM_Par are shown in Fig. 9. The 

similarity of soil properties between background and reference is small due to the 

imposed bias, and the HD values were 580.83, 1186.53, 1203.93 for sand fraction, 

clay fraction and organic matter density, respectively. The scenario DA_SM_Par 

resulted in a spatial distribution of soil properties closer to the reference case, with 

HD values of 69.83 for sand fraction (580.83 for No_DA), 149.96 for clay fraction 

(1186.53 for No_DA) and 185.21 for organic matter density (1203.93 for No_DA) 



  

HD values for sand fraction, clay fraction and organic matter density for the region 

with distance CRP- grid cell ≤ 100 m decreased by 80%, 82% and 64%, compared to 

No_DA, respectively. For the region with distance CRP- grid cell > 100 m and ≤ 200 

m the decreases were 82%, 66% and 67%, respectively. Finally, for the region with a 

distance CRP- grid cell > 200 m and ≤ 300 m the decreases were 78%, 82% and 40%, 

respectively. 

Figure 10 shows the HD values for the comparison of the spatial distribution of 

irrigation amounts with the reference. The figure includes comparisons for all 

different data assimilation scenarios. It is clear that the assimilation of CRP neutron 

intensity (Only_DA_SM) increased the similarity between the spatial distribution of 

estimated annual irrigation amount and the reference irrigation distribution. Soil 

properties estimation and soil moisture bias estimation increased the similarity in 

spatial irrigation pattern further. The HD values for the scenario DA_SM_Bias 

decreased 89% (distance CRP- grid cell ≤ 100 m), 81% (distance CRP- grid cell > 100 

m and ≤ 200 m) and 82% (distance CRP- grid cell > 200 m and ≤ 300 m) compared to 

No_DA. The HD values for the scenario DA_SM_Par, for the same three distance 

classes and in the same order, decreased by 88%, 87% and 85% compared to No_DA. 

[Insert Figure 9 here] 

[Insert Figure 10 here] 

The total annual ET for the different scenarios was also calculated, and also the 

contributions from ground evaporation, evaporation of intercepted water by the 

canopy and canopy transpiration. The ET for the reference scenario was 756.6 mm. 



  

The ET for all other scenarios was very close to the reference. In case of the scenario 

No_DA, too much water was irrigated so that drought stress did not occur. The other 

scenarios with data assimilation resulted in less irrigation, but ET was also close to 

the reference value, indicating that less irrigation was not associated with plant stress. 

For all the scenarios, the ET values did not deviate much from the reference value. 

This is because in all cases an overestimation of the percentage of sand led to 

excessive irrigation and sustainment of potential ET. The largest contribution to the 

ET was the canopy transpiration. The irrigated grid cells were assumed to be fully 

covered by the vegetation, and therefore the ground evaporation was low. The low 

evaporation from the canopy intercepted water maybe related to the fact that the rain 

events occurred mainly in the spring and winter seasons. 

 

5. Discussion 

The proposed data assimilation and parameter estimation (or bias estimation) can 

improve the soil moisture and irrigation estimation. The joint state-parameter 

estimation is the best scenario, and reduced the RMSE values of soil moisture content 

more than 50%, the spatial similarity of irrigation amount was increased and the HD 

values were decreased by 86% on average. The novelty of this work was the 

assimilation of the new CRP data in combination with irrigation scheduling. In 

general, classical parameter estimation tends to focus on uncertainty in the parameter 

estimates only, while neglecting partial or all of the other uncertainty sources (Liu and 

Gupta, 2007). We did not aim to compare the parameter estimation methodology with 



  

other methodologies in this study. The synthetic CRP neutron intensity observations 

were assimilated in CLM and the synthetic study potentially overestimated the 

performance of the proposed method.  

In a real-world application, the model will show systematical biases and also the 

implementation of the project area in the model is a strong simplification which might 

generate additional bias. A complication for the application of the data assimilation 

system in a real-world application is therefore the presence of model structural bias, 

and parameter estimation could compensate for this bias so that the estimated 

parameter values are not necessarily closer to the true parameter values. The approach 

will try to identify the effective parameter values that maximize model performance at 

that scale (Wagener et al., 2007). Therefore, as an alternative, instead of updating 

states and parameters jointly, also states and bias could be estimated jointly. It was 

shown in this paper that both approaches gave improvements. Although uncertainty of 

soil hydraulic parameters is important in the context of irrigation scheduling, it might 

be difficult to infer better estimates of soil hydraulic parameters due to other sources 

of uncertainty like model structural bias. On the other hand, this does not need to 

hamper successful operational implementation of the proposed method. Hendricks 

Franssen et al (2011) demonstrated the feasibility of operational prediction of 

groundwater levels (Franssen et al., 2011), coupled to operational optimization of 

groundwater management at the same site (Bauser et al., 2012). The water works 

Zurich applied this methodology (Franssen et al., 2011) now for the period 2009-2015, 

with consistent better predictions than for the open loop run. However, in the 



  

operational implementation on-line parameter estimation was avoided and only states 

were updated. It is therefore possible that for on-line irrigation scheduling a 

conservative, potentially less successful strategy should be followed where only states 

are updated. This synthetic study showed that state updating only also would improve 

irrigation scheduling considerably. We believe therefore that although in a real-world 

case study results will be less favorable than in the synthetic study, data assimilation 

with updating states only, or joint updating of states and bias (or parameters) in case 

of a systematic bias, will improve irrigation scheduling compared to a scenario 

without data assimilation. 

An additional challenge for the real world application is the forward modeling of 

the CRP neutron intensity. The measured CRP neutron intensity needs to be corrected 

for variations in the incoming high-energetic neutrons, the atmospheric pressure and 

humidity, lattice water and organic carbon content of the soil, and aboveground 

biomass. The aboveground biomass of citrus trees is temporally variable related to the 

growth of the oranges (or lemons) over the year. The impact of vegetation water 

content on the CRP neutron intensity is still under active study. In principle, an 

empirical methodology is suited to correct for the influence of aboveground biomass 

on measured neutron count intensity (Baatz et al., 2015). In this study, the 

synthetically measured CRP neutron intensity was applied uniformly at the CRP 

footprint and a simple multiscale data assimilation scheme was proposed to update the 

field scale CLM simulation using coarse scale CRP neutron intensity. This may not be 

optimal as all the grid cells within the CRP footprint contribute differently to the 



  

measured CRP neutron intensity. The soil spatial heterogeneity in the CRP footprint 

was introduced by adding a random spatially correlated noise. Heterogeneous land 

cover was not considered in this study. However, the spatial variability of ecosystem 

parameters could be a further confounding parameter influencing the results. 

Altogether, accounting for temporally variable biomass in the COSMIC operator does 

not seem a large limitation, but spatially variable soil moisture conditions within the 

cosmic ray probe footprint, are a serious challenge. 

Furthermore, the weather forecast is essential to the irrigation scheduling. This 

aspect was not considered in this work. If the precise precipitation forecast cannot be 

obtained, the irrigation requirement cannot be estimated accurately. 

A further important complication for real-world applications is that farmers want 

to irrigate the citrus based on their own experience, and in combination with the low 

water prices they might not want to follow the suggested irrigation scheduling. 

Altogether, we feel that the methodology is suited for real-world applications and can 

improve irrigation scheduling compared to more traditional scheduling, but that the 

farmer participation is the most critical factor, besides model structural bias and soil 

moisture heterogeneity within the cosmic ray probe footprint.  

Therefore, the successful real application of the proposed method needs: a 

calibrated land surface model, an improved COSMIC operator in which the measured 

cosmic-ray neutron intensity is corrected for above and below ground biomass, not 

too large spatial variability of soil moisture content within the cosmic ray probe 

footprint and a precise weather forecast including uncertainty characterization and 



  

participation of farmers. 

A further possible improvement is the consideration of irrigation below ET 

requirement, known as deficit irrigation (DI), which can reduce water demand to meet 

the maximum ET (Fereres and Soriano, 2007). 

 

6. Conclusions 

This study investigated the assimilation of synthetic measurements of coarse 

scale CRP neutron intensity in CLM for updating field scale root zone soil moisture 

content. The synthetic study mimicked a drip irrigated citrus farmland near Valencia, 

Spain. CLM was driven by biased soil properties and the joint estimation of soil 

moisture and soil properties (or soil moisture bias) was evaluated in a data 

assimilation framework using the state augmentation method. The non-linear 

measurement operator COSMIC was used to simulate the CRP neutron intensity on 

the basis of the soil moisture profile estimated by the CLM model. Fast neutron 

intensity was assimilated directly, and both soil moisture and soil properties (soil 

moisture bias) were updated using the LETKF in combination with the CLM model. 

The horizontal and vertical weights for the different CLM grid cells in the CRP 

footprint were also considered using a Gaussian window function. 

The results show that assimilating CRP neutron intensity can improve joint soil 

moisture and soil properties estimation, and irrigation scheduling. Data assimilation 

schemes that remove soil moisture bias or update soil properties on the basis of CRP 

neutron intensity outperform data assimilation without bias or parameter estimation. 



  

The joint soil moisture and soil parameter estimation with simple multiscale 

assimilation strategy of CRP neutron intensity can potentially be used for irrigation 

scheduling in the future. The main challenges for the real world application are: 

model calibration to remove the bias, forward modeling of cosmic-ray neutron 

intensity under high vegetation coverage, precise weather forecasts and cooperation of 

farmers.  
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Table 1 Summary of perturbation parameters for atmospheric forcing data 

Variables Noise 
Standard 

deviation 

Time 

Correlation 

scale 

Forcing Cross 

Correlation 

Precipitation 

Shortwave radiation 

Longwave radiation 

Air temperature 

Multiplicative 

Multiplicative 

Additive 

Additive 

0.5 

0.3 

20 W/m
2 

1 K 

24 h 

24 h 

24 h 

24 h 

[ 1.0,-0.8, 0.5, 0.0, 

-0.8, 1.0,-0.5, 0.4, 

0.5, -0.5, 1.0, 0.4, 

0.0, 0.4, 0.4, 1.0] 
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Figure 1. Schematic overview of the different steps of the irrigation optimization 

procedure 

  



  

 

 

Figure 2. Soil moisture content at 30 cm (upper graph) and 50 cm (lower graph) 

depth at the CRP location for the different simulation scenarios  

  



  
 

Figure 3. RMSE values for soil moisture content at 30 cm depth (left graph) and 50 

cm depth (right graph) for the different scenarios at the CRP location 

 

  



  

 

 

Figure 4. Temporal evolution (collected every three days) of soil moisture bias for the 

first soil layer at the CRP location (scenario DA_SM_Bias). The true soil moisture 

bias was calculated from the scenario No_DA and is shown in blue. The unit of x-axis 

is for time steps of 3 days. 

 

  



   

 

Figure 5. Temporal evolution (collected every three days) of saturated hydraulic 

conductivity K of soil (K_10cm) and the empirical parameter B of the 

Clapp–Hornberger parameterization (B_10cm) at the CRP location for the scenario 

DA_SM_Par. The unit of x-axis is for time steps of 3 days. 

  



  

 

Figure 6. Irrigation requirement as function of time at the CRP location for the 

different scenarios; t-test statistics (p-value) with significance level 0.05 for 

comparing the calculated irrigation distribution with reference irrigation are also 

shown for the different scenarios (large p-values indicate high similarity) 

  



  

 

 

Figure 7. Annual irrigation requirement according to the different scenarios at the 

CRP location 

  



  

 

Figure 8. Annual irrigation calculated for different simulations scenarios and 

compared to the reference scenario 

  



   

Figure 9. Hausdorff distance values for background soil properties (sand fraction, clay 

fraction and organic matter density) and estimated soil properties (scenario 

DA_SM_Par). Results are plotted as function of the distance between model grid cells 

and the CRP location 

 

  



  

 

 

Figure 10. Hausdorff distance values of calculated annual irrigation requirement, 

compared to reference irrigation, for different scenarios. Results are plotted as 

function of distance between model grid cells and CRP location 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

Highlights 

 

• Joint assimilation, parameter and bias estimation, and irrigation were evaluated 

• Synthetic cosmic-ray neutron intensity data were used to update the soil 

moisture 

• Horizontal and vertical weighting was introduced in data assimilation 

• Soil moisture, soil properties and model bias were updated jointly in assimilation 

• Joint state-parameter resulted in the best estimation 

 

 


