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mtk: A General-Purpose and Extensible R
Environment for Uncertainty and
Sensitivity Analyses of Numerical
Experiments
by Juhui Wang, Robert Faivre, Hervé Richard and Hervé Monod

Abstract Along with increased complexity of the models used for scientific activities and engineering
come diverse and greater uncertainties. Today, effectively quantifying the uncertainties contained
in a model appears to be more important than ever. Scientific fellows know how serious it is to
calibrate their model in a robust way, and decision-makers describe how critical it is to keep the best
effort to reduce the uncertainties about the model. Effectively accessing the uncertainties about the
model requires mastering all the tasks involved in the numerical experiments, from optimizing the
experimental design to managing the very time consuming aspect of model simulation and choosing
the adequate indicators and analysis methods.

In this paper, we present an open framework for organizing the complexity associated with
numerical model simulation and analyses. Named mtk (Mexico Toolkit), the developed system aims
at providing practitioners from different disciplines with a systematic and easy way to compare and
to find the best method to effectively uncover and quantify the uncertainties contained in the model
and further to evaluate their impact on the performance of the model. Such requirements imply that
the system must be generic, universal, homogeneous, and extensible. This paper discusses such an
implementation using the R scientific computing platform and demonstrates its functionalities with
examples from agricultural modeling.

The package mtk is of general purpose and easy to extend. Numerous methods are already
available in the actual release version, including Fast, Sobol, Morris, Basic Monte-Carlo, Regression,
LHS (Latin Hypercube Sampling), PLMM (Polynomial Linear metamodel). Most of them are compiled
from available R packages with extension tools delivered by package mtk.

Introduction

Nowadays, computational modeling has become a common practice for scientific experiments and
discoveries. Global climate models have been used for both short-term weather forecast (Lynch, 2008)
and long-term climate change (Risbey et al., 2014). Environmental models have been developed for
assessing the impact of a waste water treatment plant on a river flow (Brock et al., 1992). Epidemic
models have been elaborated to investigate the mechanism by which diseases spread and to evaluate
strategies to control their outbreaks (Papaix et al., 2014), etc. Most of them become more and more
complex, with many parameters, state-variables and non-linear relationships, etc. Overloading the
model to better mimic observed real data does not seem to be a passing practice but a continuing trend.
Along with increased complexity of the models come diverse and greater uncertainties. Although
computational modeling may improve our understanding of how an evidence emerges, and helps
to get insight into how the elements of the system come together and interplay, one is usually left
with the feeling that another model might produce different results and that some uncertainties have
still remained somewhere in the system. “Under the best circumstances, such models have many degrees of
freedom and, with judicious fiddling, can be made to produce virtually any desired behavior, often with both
plausible structure and parameter values” (Hornberger and Spear, 1981). Although we admit that such a
statement is exaggerating, it is greatly necessary to look into this issue and to try our best effort to get
insight into the sources of such doubts.

Uncertainty and sensitivity analyses, when correctly applied, may help to gain an understanding
of the impact of the various sources of uncertainties and to further assess the system performance and
set up strategies for getting better control over the behavior of the model (Helton et al., 2006; Cariboni
et al., 2007; Marino et al., 2008). Numerous methods and software have been developed (Adams et al.,
2013; Saltelli et al., 2005; Pujol et al., 2015). Most of them are context-specific, domain-specific or theory-
oriented. For example, Dakota was developed in the context of mechanics and large-scale engineering
simulation (Adams et al., 2013). It is a closed complete software package which provides an efficient
implementation of the iterative analysis model for parameter estimation, cost-based optimization, and
sensitivity analysis. Implemented as a C++ library, methods developed in the project Dakota were
widely used in a variety of large scale engineering projects relative to chemical (Salinger et al., 2004)
and mechanical industries (Weirs et al., 2012). SimLab, on the other side, is a representative theory-

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 207

oriented package which covers the global sensitivity analysis techniques derived from Monte Carlo
analysis (Saltelli et al., 2005; Joint Research Centre, 2006). Methods developed from SimLab are widely
used in a large number of fields (Ciuffo et al., 2012). Although the software package offers a module to
link for external model simulation and allows complex models beyond mathematical functions to be
executed, such flexibility seems limited merely to the model implementation. The package obviously
suffers from the lack of generality in the sense that it is difficult to include new methods especially
those not based on Monte Carlo analysis. More ambitious, OpenTURNS (Baudin et al., 2015) builds
on the global methodology promoted by an ESREDA group (de Rocquigny et al., 2008). It provides a
great number of features for quantifying, prioritizing, and propagating uncertainties in computational
models, but its extension requires programming skills that theoreticians and domain experts might not
possess. More flexible and generic, Promethee provides a grid computing environment for numerical
engineering and an interface for integrating R packages (Richet et al., 2009, 2010). When it comes
to the software packages available for the R computing environment, there exists a great number
of packages (Pujol et al., 2015; Dupuy et al., 2015; Monod et al., 2015; Lamboni et al., 2015). We do
not aim at providing an exhaustive review of all the packages here, but we we would like to point
out package sensitivity (Pujol et al., 2015) which implements both the sampling and global analysis
methods such as Sobol, FAST and Morris (Saltelli et al., 2005), package spartan (Alden et al., 2013,
2015) which compiles four widely used techniques for numerical experiments (the consistency analysis
(Read et al., 2012), the robustness analysis (Read et al., 2012), the latin-hypercube sampling technique
(Saltelli et al., 2000) and the eFAST technique (Marino et al., 2008)) and demonstrates their effectiveness
for biological systems, and packages diceDesign (Dupuy et al., 2015) and planor (Monod et al., 2015)
which implement the space-filling sampling technique (Pronzato and Müller, 2012) and the techniques
for regular factorial designs (Monod et al., 2015), respectively.

Although these tools are very useful and greatly contribute to the development and the popularity
of uncertainty and sensitivity analyses, they present some drawbacks. Most of them offer no possibility
to evolve or to integrate methods developed in other contexts. However, uncertainty and sensitivity
analyses are intrinsically trial-and-error processes because of the lack of reliable knowledge and data
about the causes of the uncertainties contained in the model. There is no method which is universal
and suitable for all contexts. Practitioners must repeat, undertake numerous tests, and vary the
parameters and methods until finding the best one fitting to the situation. Sticking to a method which
is inappropriate for the circumstances leads inevitably to a wrong way and to misinterpret the results.
Thus, it is necessary to develop a simple to use, but powerful software package allowing practitioners
to test and compare different methods for their own data. Such an application needs to be easy to
set up, and yet unifying in its ability to include a wide range of methods and powerful to objectively
analyze and rapidly report the results.

Inspired from these issues, we tried to compile the available methods into a general purpose open
platform and make them become accessible to researchers and practitioners from different disciplines.
Named mtk (Mexico Toolkit), the package we present here builds on an object-oriented framework
using the R scientific computing platform. It provides facilities to interplay with external simulation
platforms and to share data and knowledge with external applications in a seamless manner. It is easy
to use, homogeneous, and offers a unique syntax and semantics for computing and data management.
It is extensible in the sense that it tries to cover a large variety of factor types, and can easily integrate
methods developed in the future without any major effort of reprogramming, even those developed
by researchers not involved in the mtk initiative. It is self-contained and provides efficient tools to
control all the processing tasks involved in the numerical experiments, from experimental design and
model simulation to sensitivity computing and data reporting. Moreover, it is scalable to small or big
projects, suitable for collaborative work in which the domain experts build the model and run the
simulation, and the statisticians take charge of the different tasks of analyses and reporting.

We must note here that although the mtk package is designed to study any type of numerical
simulation, one should not apply any method to any model on any occasion. How to match the
methods to the problems is a difficult issue, which should not be accounted for only by software
engineering but also by advice from domain experts and specialists on model exploration.

Methodology

Based on the computation of specific quantitative measures that allow, in particular, assessment of
variability in output variables and importance of input variables, both uncertainty and sensitivity
analyses are relevant methods for exploring numerical experiments (Saltelli et al., 2005; Faivre, 2013).
Nevertheless, uncertainty and sensitivity analyses meet with different issues. Uncertainty analysis
seeks to asses the impacts of the uncertainties contained in the inputs of the model on the outputs. It
deals with the question of what level of uncertainty might be induced by the uncertainties contained
in the inputs, and focuses on describing the probability distribution of the outputs as a function of
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Figure 1: By decomposing the activities involved in uncertainty and sensitivity analyses into elemen-
tary tasks and using filters to connect them, we can cope with the heterogeneity of the approaches
used in uncertainty and sensitivity analyses and unify them within a consistent and easily extensible
framework.

the uncertainties contained in the inputs. In the simplest case, this probability distribution might
be computed analytically from the characteristics of the uncertainties contained in the inputs. But
in practice, the models are usually too complex to allow for any analytical solutions, and modern
statistical methods must be used to estimate or approximate the probability distribution of the outputs.
Various methods are already available. Among them, simulation methods seem to be the most
representative and universal.

On the other hand, sensitivity analysis aims to identify the sources of the uncertainties and quantify
their relative contributions. It deals with the question of which inputs exhibit the most important
uncertain behaviors against the model, and allows us to focus on the ones that matter and ignore those
that are less significant. Sensitivity analysis can be used to meet various objectives and goals such as
identifying and prioritizing the most influential inputs, identifying non-influential inputs in order to
fix them to nominal values, mapping the output behavior as a function of the inputs by focusing on a
specific domain of inputs if necessary, calibrating model inputs using available information, etc. Terms
such as influence, importance, ranking by importance, and dominance are all related to sensitivity
analysis.

Sensitivity and uncertainty analyses rely on large and heterogeneous collection of approaches
and tools. In this study, we try to find a consistent framework to unify the different approaches
and tools. Our framework is a workflow-based one, which consists in decomposing the procedures
of the uncertainty and sensitivity analyses into a series of elementary and generic tasks that can
be manipulated and presented in a standard and homogeneous way. Each activity involved in the
uncertainty and sensitivity analyses can be considered either as an elementary task or a combination
of the elementary tasks. Appropriate combination and scheduling of the tasks allow to handle
situations of any complexity. This workflow-based approach results in a unified way to cope with the
heterogeneity of the activities involved in uncertainty and sensitivity analyses, and leads to a generic
and extensible design.

The resulting workflow builds on five main tasks: i) choosing the input factors and their distribu-
tion uncertainties; ii) building the experimental design by factor sampling; iii) managing the model
simulation; iv) analyzing the results obtained from the simulation; v) preparing to present and report
the results. Thus, all approaches can be considered as a partial or complete combination of the main
tasks. Moreover, filters are available and can be added to cope with atypical and complex situations.
They are often used to convert or import data in order to connect the main tasks.

Architecture and design

Building on an object-oriented framework, the mtk package follows the recommendation for S4 classes
and methods available in R (Chambers, 2008). As shown in Figure 2, it comprises three mandatory
components: the factor unit, the workflow unit, and the data import and export unit. Each unit is part
of a service mission and manages the exchange of data and services with other units via interfaces.
Thus, a unit knows other units and communicates with them only through the interfaces. This practice
promotes efficient software engineering when multiple teams are involved, and makes the long-term
software maintenance easier (Chambers, 2014).

The factor unit

The factor unit manages data and services with regard to the parameters and inputs of the model. It
also ensures efficient support to manage the uncertainty behaviors that we know about the model.
When running an uncertainty or sensitivity analysis, the first thing to do is to determine what the
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Figure 2: A general view of the system. The system is mainly composed of three components: a unit
to manage the factors and their uncertainties, a unit to manage the processes and workflow, and a unit
to manage the collaboration with external resources.

Classes Definition Nature

‘mtkFactor’ Entity used to represent a factor Instantiable
‘mtkExpFactors’ Entity used to collect all the factors involved Instantiable

in the experiment
‘mtkDomain’ Entity used to define the uncertain domain Instantiable

of a factor
‘mtkLevels’ Entity used to define a discrete probability Instantiable

distribution
‘mtkValue’ Triplet used to define a typed variable Virtual
‘mtkParameter’ Entity used to define a parameter Instantiable
‘mtkFeature’ Entity used to represent complex Instantiable

relationships among factors
‘mtkProcess’ Entity used to manage a process Virtual
‘mtkExpWorkflow’ Entity used to manage the workflow Instantiable
‘mtkExperiment’ Entity to manage a simplfied version of Instantiable

workflow
‘mtkParsor’ Entity used to parse XML files Instantiable
‘mtkReporter’ Entity responsible for advanced data reporting Virtual
‘mtkResults’ Entity used to hold results produced by a Virtual

process
‘mtkDesigner’ Entity used to manage design process Instantiable
‘mtkSystemDesigner’ Entity used to manage design method Instantiable

implemented as a system application
‘mtkNativeDesigner’ Entity used to manage methods design Instantiable

implemented as an R function
‘mtkMorrisDesigner’ Entity used to manage the process Instantiable

implementing the method Morris

Table 1: The principal classes used in the mtk package to manage the factors and the processes involved
in numerical experiments.

parameters and inputs to the model are and, among them, which parameters and inputs exhibit
uncertainties. Such kinds of parameters and inputs are referred to as factors. Since the uncertainty of
the factor is restricted within a domain, we usually set it up with a probability distribution function.
The factor unit is the component which is responsible for managing the information about the factors
and their uncertainty domains such as the arguments to the probability distribution function, whether
the factors are correlated and how they correlate, and so on. An important feature of the mtk package is
its capability to manage factors with complex characteristics. They might be qualitative or quantitative
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Figure 3: Data model used to manage the factors and their uncertainties. The model is represented
using the UML notation (Fowler, 2003), and the referred classes are presented in Table 1.

as well as continuous or discrete.

Table 1 defines the classes used in the mtk package to manage the factors and their uncertainties,
and Figure 3 shows the data model in UML notation (Fowler, 2003). It provides a consistent framework
for both representing and handling information useful for describing the factors and their uncertainty
domains precisely. We have focused on describing the relevant data and their relationships and
sought to give a consistent data framework which can be considered as general as possible and
easily extensible to integrate new methods developed in the future even by researchers not involved
in the mtk initiative (for more discussion, please refer to Section Representing the factors and their
uncertainties in an homogeneous and extensible way).

The workflow unit

This component manages and orchestrates the execution and progress of the processes involved in the
numerical experiments. In this task, a process takes much more than calling a more or less sophisticated
function within the software package. This is able to analyze information from the context, to define a
strategy taking into account the availability of data and services (which might be local or remote, and
if locally available, might be implemented as an independent system application, an R function, or
an internal element of the mtk package), and finally to select the appropriate processing to launch,
to formulate the produced results, and to make them available to other components of the system or
independent applications outside the system.

In the current version, the mtk package supports four types of processes: the parser for XML
files, the experimental design, the model simulation, and the computation of sensitivity indices. Each
process possesses descriptors to inform about its state and progress: whether the process is ready to
run or it is running or it has already run and produced the results that we expected. The workflow
manager has the control over the launching and evolution of all the processes involved. Before
invoking a process, the workflow manager makes sure that all required resources are available and
that they are coherent with the state of the process. After the execution of a process, it checks the
consistency of the results and makes them available for other processes.

As shown in Table 1 and Figure 4, processes are organized into a hierarchical structure by inher-
itance. The common components of the processes are summarized within an abstract class named
‘mtkProcess’. The child classes inherit the components from their parent classes higher in the hierarchi-
cal structure. For example, ‘mtkDesigner’ is a process which inherits the common components defined
within the ‘mtkProcess’ and adds new features specific to the experimental design. The process
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mtkDesignerResult mtkSystemDesigner
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plot()
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print()
show()
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◄ call
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Figure 4: UML data model for organizing the processes and workflow implemented in the mtk
package. The referred classes are presented in Table 1. To make the schema readable, only the elements
related to the Morris method for experimental design are shown. The prefix Native is used to refer
to the process implemented as an R function, and the prefix System is used when the process is
implemented as an independent system application.

‘mtkMorrisDesigner’ shares common components with other methods from experimental design and
further appends new features specific to the Morris method (Saltelli et al., 2005). From Figure 4, we
can also note that each process is associated with a specific class for managing the results produced
by the process. In fact, results produced by methods from uncertainty and sensitivity analyses are
very different both in terms of contents and in terms of structures. Some methods produce data which
could be represented within a data frame, and some others produce results that can be formulated
only in the format of a list. Classic approaches require that we must always be concerned with the
structure used to hold the data, and develop bespoke functions for each type of the results (Chambers,
2014). The object-oriented approach allows us to be released from such constraints. The classes that
hold the data are not only responsible for data storage but also for the services to transform and report
the data. For example, the experimental design is no longer treated only as a function to produce
data in some specific format, but considered as a process which is an active element not only capable
of generating and reporting the data but also capable of checking their consistency and setting up
relationships with other components of the system.

The data import and export unit

Based on widely used open standards such as XML, URI (Uniform Resource Identifier), Web services,
etc., the data import and export unit allows elements of the package to communicate and to be extended
with external resources such as independent platforms or applications for model simulation, Web
services that supply data or methods for experimental design and sensitivity analysis, etc. For instance,
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the workflow for a sensitivity analysis might be generated from independent external platforms and
coded into an XML file; the mtk package can import the XML file, set up the workflow, and run it
automatically. This can be referred to as one of the methods that the mtk package uses to integrate
external platforms as a collaborative component.

The package also provides serializing functions allowing to save the internal status of the work-
flow into an XML file so that independent external applications could collect information about the
processes and data involved in the workflow, and further wrap them as an internal component (see
Section Conclusions and perspectives).

Features and functions

Representing the factors and their uncertainties in an homogeneous and extensible way

In the mtk package, we sought to provide a consistent and easily extensible framework for both
representing and handling information useful for describing the factors and their uncertainty domains
precisely. For example, the concept feature was introduced to address the issue about the diversity of
the factors in their types and relationships. Mathematically speaking, a feature is a simple triplet that can
be used to make come together a variable name, a data type and a numerical value. The feature concept
is simple but fundamental to both the scalability of the implemented methods and the extensibility of
the package. In fact, factors used in uncertainty and sensitivity analyses may have different formats
and be defined on various domains. In addition, they may be qualitative or quantitative, continuous
or discrete, ordered or unordered, etc. Furthermore, several factors may be linked by constraints in
space or time, and they may be either correlated or hierarchical as well. Therefore, we need a unified
framework to cope with such a variety of factors. The concept of a feature has accomplished this goal.
It allows to set up a universal framework for depicting the factors and their relationships and leads to
a consistent and unified schema to manage the heterogeneity of the factors: an ordered list of features
associated with a factor can be used to describe the spatial and temporal location of a factor, and one or
more features can be applied to a group of factors to catch the relationship of any complexity among
them, etc.

The factors and their uncertainties are represented with the class ‘mtkFactor’. This class has four
primary attributes and two associative attributes:

name The name of the factor used in the workflow.

id The name of the factor used in the simulation model if it is different.

type The type of the values associated with the factor.

unit A unit of measurement associated with the values of the factor if it exists.

domain An object of the class ‘mtkDomain’ to describe the uncertainty of the factor.

featureList A list of objects from the class ‘mtkFeature’ to provide additional information about the
underlying factor such as spatial or temporal location, relationships among a group of factors,
etc.

The attributes name, id, type and unit are simple strings, and the associative attributes domain and
featureList are objects of the classes ‘mtkDomain’ and ‘mtkFeature’ respectively.

There are two ways that can be used to define the factors: interactively within an R session or by
parsing an XML file. The interactive definition of the factors within an R session is implemented with
the function make.mtkFactor(), and the following examples demonstrate this function. The definition
of the factors from an XML file might be considered as a component of the data import and export unit
which will be discussed in the next section.

# Load mtk package:
library(mtk)

# Define a continuous factor:
make.mtkFactor('A', distribName = 'unif', distribPara = list(min = 0, max = 1))

# Define a new discrete factor:
make.mtkFactor('D', distribName = 'discrete',

distribPara = list(type = 'categorical',
levels = c('a', 'b', 'c'), weights = rep(1/3, 3)))

The first example shows how to define a factor named A, whose uncertainty is defined by a continuous
uniform distribution over the interval [0, 1]. The second example demonstrates the definition of a
categorical factor which is named D, and takes values from the set {a, b, c} and each with a probability
equal to 1/3.
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Formalizing the data and services for collaborative work

The language XML has been used to overcome the heterogeneity of data and services exchanged
between the mtk package and external resources. Indeed, one of the main difficulties that we met
in building the mtk package was the variety of data and services that need to be managed in the
context of uncertainty and sensitivity analyses. Data and services might be local or remote, and
implemented in R or other programming languages. They might also have different structures and
various formats. Instead of putting emphasis on the data and services themselves, we have chosen to
focus on the structure of the data and services that the package exchanges with external resources,
and to formalize them according to the XML standards. XML schemas were elaborated and used to
tackle the issue of numerical experiments in the open collaborative framework (Richard et al., 2013).
By reformalizing the elements involved in the experimental design, the model simulation control,
the workflow management and the data reuse, the XML schemas lead to a unified representation
of the data and services that an open collaborative framework needs to produce or consume. Thus,
managing the heterogeneity of data and services involved in the uncertainty and sensitivity analyses
is greatly simplified and highly standardized. From the point of view of programming, it is reduced to
the development of a class which is able to parse the XML files following the defined XML schemas.

The XML parsing has been realized with the class ‘mtkParsor’, and its use is very simple. We just
need to specify the path to access the XML file and the workflow into which the extracted information
will be directed. The following code shows how to construct a parser from an XML file, which is
delivered with the distribution package. Note that the XML file is usually produced by an external
platform, and thus the XML parsing mechanism can also be used as a way to integrate the mtk package
with external applications.

# Create a parser to parse the XML file : './WWDM.xml'.
# Note that the XML file is delivered within the package "mtk"

parser <- mtkParsor('./WWDM.xml')

Organizing the implementation of the methods hierarchically and presenting them with
a unified syntax

To collect all the available methods into a unique framework and to present them under a unified
syntax, we adopted a workflow-based approach which consists in decomposing the procedures
of sensitivity analysis into a series of elementary and generic processes, and organizing them into
a hierarchical structure. Each activity involved in sensitivity analysis can be considered either as
an elementary process or a combination of elementary processes. Appropriate combination of the
processes allows the handling of situations of any complexity.

Taking the experimental design as an example, this is part of the mission services provided by the
workflow management unit. The mtk package offers a generic and easily extensible implementation
of a Web-based open framework, and such an implementation needs to be carefully thought and
designed. In fact, the methods used to generate the experimental design might be complex and
complicated. Besides the inherent variety of the contexts where the methods were developed, they
might be implemented locally or remotely and in different programming languages and according
to various protocols. Furthermore, the experimental design might be generated on-line or off-line.
To provide the package with an architecture easy to extend and the ability to cope with different
situations, a general purpose class ‘mtkDesigner’ is derived from the abstract class ‘mtkProcess’ so
that users can extend the framework to fit to specific circumstances (please see the class organization
presented in Figure 4). The ‘mtkDesigner’ class inherits the following slots from the class ‘mtkProcess’,
which enable the Web-based computing:

protocol The protocol used to run the process. It may take on values such as "mtk", "R", "system" and
"http", where the value "mtk" indicates that the process is implemented as an internal element
of the mtk package, the value "R" that the process is implemented as a native R function, the
value "system" that the process is implemented as an independent application, and the value
"http" that the process is implemented with Web service technologies.

site The site where the processing is implemented.

service The name of service which realizes the underlying tasks.

To make importing methods implemented locally as an independent R function easier, a class
‘mtkNativeDesigner’ derived from ‘mtkDesigner’ is provided together with its constructor as follows:

mtkNativeDesigner(design = NULL, X = NULL, information = NULL)

This class can deal with two scenarios, whereby either the method of experimental design is
implemented as an independent function in R or the experimental design was generated off-line. The
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first example below shows how to construct an experimental design from a method implemented as
an independent R function, and the second shows how to import an experimental design generated
off-line.

# Set up an experimental design with a method implemented
# by an R function named 'mc04()'

sampler <- mtkNativeDesigner(design = mc04(factors,
distribution, parameters, size = 20))

# Set up an experimental design by importing the design produced
# off-line which is stored as a data.frame named 'plan'.

sampler <- mtkNativeDesigner(X = plan,
information = list(method = 'Morris', size = 20))

Note that the technical details mentioned before are just intended for importing in live external
elements into package mtk. When it comes to the elements already integrated in the package, one
does not need to care about how the methods are physically implemented (locally or remotely, as
an R function or through a Web service, etc. ). To use a method, it is only necessary to instantiate
an object from the underlying class. For instance, to set up an experimental design with the method
Morris wherever it is implemented physically, we just need to instantiate an object of the class
‘mtkMorrisDesigner’.

# Set up an experimental design with the method 'Morris' with parameters.
sampler <- mtkMorrisDesigner(listParameters = list(size = 20))

Currently, the mtk package supports three kinds of elementary processes: designer, evaluator and
analyser. Each manages one of the principal activities involved in uncertainty and sensitivity analyses,
and is associated respectively with the experimental design, the model simulation and the sensitivity
computing.

We should point out again that within the mtk package, all processes involved in the sensitivity
analysis are managed in the same way just as the designer is managed. For instance, the common
properties involved in the model simulation are put into the class ‘mtkEvaluator’ which is itself
derived from the class ‘mtkProcess’. Also, the models might be implemented locally or remotely,
written in R or in another programming language, and the simulation might be produced on-line or off-
line. If the model is implemented locally, the specific class proposed is the class ‘mtkNativeEvaluator’
with the associated constructor as follows:

mtkNativeEvaluator(model = NULL, Y = NULL, information = NULL)

This class has the same syntax as the class ‘mtkNativeDesigner’, and this is one of the biggest advan-
tages of using the mtk package. It provides a homogeneous way and mechanism to manipulate all the
methods and functions managed by the package. For example, if we want to simulate the Ishigami
model (Ishigami and Homma, 1990) which describes the dynamics of a non-linear function with three
factors, it does not take more than to set up a model evaluator (or simulator) with the code as follows:

# Simulate the 'Ishigami' model which has no parameter.
simulator <- mtkIshigamiEvaluator()

As well, to use the Morris method to compute the sensitivity indices is not harder than to write the
following code:

# Set up a process to compute the sensitivity indices with the Morris method
analyzer <- mtkMorrisAnalyser(listParameters = list(nboot = 20))

Managing efficiently the activities with a workflow-based approach

A workflow is an orchestrated and repeatable sequence of activities that are responsible to transform
data and to provide services. The mtk package organizes the activities into standardized and elemen-
tary processes. Before invoking a process, the workflow ensures that the process is ready to run and
the needed data are available and consistent with the state of the process. After running the process,
the workflow manages the results, makes them available, and ensures that they can be successfully
reused. Indeed, some processes are very time-consuming, and they require enormous computing
power to produce results. This is especially true for complex model simulations which may take days
or even weeks on a cluster before making the simulated data available. Therefore, it is important to
avoid restarting a process if no new data has been produced even if the workflow needs to be restarted
to incorporate new elements. For instance, suppose that an experiment was designed with the Monte
Carlo method and analyzed with the multiple regression method, and one wishes to analyze the same
simulated data with another method. In this case, it would be possible to reuse the experimental
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design and the simulated data already obtained. The workflow implemented in the mtk package
manages these kinds of constraints and enables to maximize the reuse of resources. An example of
this approach will be presented in Section A case study.

The workflow management has been implemented with the class ‘mtkExpWorkflow’, which can be
created in two ways: either interactively within an R session or automatically through an XML file.

The interactive method is the most common procedure used by R users, and it consists of four steps:
i) defining the factors and their uncertainties; ii) specifying the processes involved in the sensitivity
analysis; iii) forming a workflow; and iv) running the workflow and reporting the results. The example
below presents the construction and execution of a workflow to analyze the Ishigami model with
the Basic Monte Carlo method for the experimental design and the regression method for sensitivity
computing.

# Load the mtk package:
library(mtk)

# Specify the factors and their uncertainty domains:
x1 <- make.mtkFactor(name = 'x1', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
x2 <- make.mtkFactor(name = 'x2', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
x3 <- make.mtkFactor(name = 'x3', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
ishi.factors <- mtkExpFactors(list(x1, x2, x3))

# Specify the processes involved:
designer <- mtkBasicMonteCarloDesigner(listParameters = list(size = 20))
simulator <- mtkIshigamiEvaluator()
analyser <- mtkRegressionAnalyser(listParameters = list(nboot = 20))

# Form the workflow:
experiment <- mtkExpWorkflow(expFactors = ishi.factors,

processesVector = c(design = designer,
evaluate = simulator, analyze = analyser))

# Run the workflow and report the results:
run(experiment)
summary(experiment)

The automatic method consists of controlling the workflow through an XML file in which all the
information necessary for the definition and execution of the workflow is specified. The XML files
can be created manually by users or even more often by external platforms. The latter allows to
manage the mtk workflow from an external platform and offers a way to carry out uncertainty and
sensitivity analyses without having to get out of the modeling or simulation platform. Once the XML
file is formed, the mtk package takes control over the XML file and provides facilities for information
extraction, and workflow initialization and control.

The example below shows how to build a workflow from an XML file. Note that the XML file used
here can be found in the supplementary material provided with the distributed package.

# Load the mtk package:
library(mtk)

# Create a workflow from the XML file: './WWDM.xml'
expXML <- mtkExpWorkflow(xmlFilePath = './WWDM.xml')

# Run the workflow and report the results
run(expXML)
summary(expXML)

Extending the package with new or existing methods

In order to encourage researchers to publish their methods through the mtk framework, we provide
facilities to easily import available methods directly into the system. The mtk package comes with
three tools: mtk.designerAddons(), mtk.evaluatorAddons(), and mtk.analyserAddons().

The tool mtk.designerAddons() is a function that allows users to turn new or existing methods
for experimental designs developed as R functions into classes compliant with the mtk package.

This function has the following prototype:

mtk.designerAddons(where, library, authors, name, main, summary = NULL,
print = NULL, plot = NULL)

where NULL or a string to denote the file containing the R function to convert.
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library NULL or a string to denote the name of a package containing the R function to convert if it is
provided via a package.

authors NULL or the copyright information about the authors of the R function.

name A string to name the method when used with the mtk package.

main The name of the R function implementing the method.

summary NULL or a special version of the summary method provided in the file where or in the package
library.

plot NULL or a special version of the plot method provided in the file where or in the package library.

print NULL or a special version of the print method provided in the file where or in the package library.

No constraints are imposed on the function to convert except for the format of its inputs and
outputs. The R function implementing the method must have at least the three arguments: factors,
distribNames, and distribParameters. The argument factors takes as values either a number or a list
of names for enumerating the factors to analyze. The arguments distribNames and distribParameters
are both lists, whose elements are used to specify the uncertainty domains of the factors.

The output produced by the function must be formatted as a named list with two elements: main
and information. The element main is a data.frame containing the produced experimental design
and the element information is a named list whose elements are used to provide optional information
about the method used.

If the summary(), print() and plot() methods provided within the package mtk are not concise
enough to describe the underlying experimental design, or the method developers wish to report it in
a specific way, they can replace these methods by new ones.

The example below shows how to use the function mtk.designerAddons() to convert an existing
method into mtk compliant classes so that the method can be seamlessly used with the package. In
order to demonstrate the potential of the package, we have chosen to import an existing method
implemented in an independent package: the method "Morris" of the package sensitivity (Pujol et al.,
2015). The file morris_sampler.R contains the program codes used to wrap the original function so that
the inputs and outputs meet the requirement of the tool mtk.designerAddons(). In this example, the
wrapped function is renamed sampler.morris(). In order to better outline the produced experimental
design, a new method of the function plot() for ‘morris’ objects has been provided via the function
plot.morris().

# Load the mtk package:
library(mtk)

# Convert the file 'morris_sampler.R' to a mtk compliant class 'mtkMorrisDesigner':
mtk.designerAddons(where = 'morris_sampler.R',

authors = 'G. Pujol, B. Ioos, and A. Janon',
name = 'Morris', main = 'sampler.morris', plot = 'plot.morris')

# Integrate the new class into the mtk package
source('mtkMorrisDesigner.R')

Here, the mtk.designerAddons() tool generates a file named mtkMorrisDesigner.R which can be
integrated directly into the mtk package via the R command source().

The other two tools mtk.evaluatorAddons() and mtk.analyserAddons() operate in the same
way as mtk.designerAddons() does. They can be used respectively to integrate simulation mod-
els and to integrate methods for computing the sensitivity indices. An example of using the tool
mtk.evaluatorAddons() can be found in the next section.

A case study

In this section, we present an example of a decision support model analyzed with the mtk package.
The model used in Munier-Jolain et al. (2002) is a dynamic model simulating the effect of weeds
(meadow foxtail) on the yield of a crop of wheat as a function of different agricultural practices,
including soil preparation, weeding and crop varieties. The flow is simulated at a yearly time step.
Five state variables are used, and their dynamics are modeled with a system of non-linear first order
difference equations.

The model builds both on input variables describing the agricultural practices and on parameters
describing the effect of the agricultural practices on the state variables of the model. The input variables
are supposed to be fixed, but some parameters are uncertain. We will use the mtk package: i) to
analyze the effect of the uncertainty of the parameters on the wheat yield (the state variable Y), and ii)
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State Variable Definition Initial Value

S Number of seeds of foxtail by m2 68 000
found in the cultivated plot.

d Number of foxtail plants by m2 400
found at the beginning of the season.

SSBa Number of seeds of foxtail by m2 3 350
found on the surface of the soil
after tillage.

DCSa Number of seeds of foxtail by m2 280
found under the surface of the soil
after tillage.

Y Yield of wheat on the plot —
(ton per m2)

Table 2: The state variables used in the Weed model and the initial values of the state variables
characterizing the population of foxtail at t = 0.

to determine the sensitivity of the state and output variable Y to the uncertainties contained in the
different parameters.

The model takes into account three types of input: i) the initial values of the state variables
characterizing the population of foxtail at t = 0 (see Table 2), ii) the year by year agricultural practices
(tillage, weeding, cultivated crop varieties), and iii) 16 parameters of the model (they are supposed to
be fixed, but contain some uncertainties).

Agricultural practices applied each year to the crop are described with the help of three binary
variables: Soil, Herb, and Crop. If the soil is tilled, we set Soil = 1, otherwise Soil = 0. Similarly, we
set Herb = 1 if herbicide is applied, Herb = 0 otherwise , and Crop = 1 if the cultivated plant is a
variety of winter wheat, Crop = 0 otherwise. In this paper, we explore a simplified model where only
winter wheat is supposed to be cultivated (Crop = 1) and the tillage is always realized every other
year. Also, only two scenarios of the weeding treatment are explored: i) systematic treatment each
year, and ii) systematic treatment except the third year.

Since the factors (parameters with uncertainty) are supposed to be fixed, their uncertainties can
be represented with common probability distribution functions. Table 3 shows the domains of
uncertainties associated with such parameters.

The computing code of the model is enclosed in the supplementary material provided with
the package and in Faivre et al. (2013). Note that to integrate the model into the mtk package, we
do not need to reprogram the model, but just wrap the main function WEED.simule() in the file
WeedModel_v2.R, say, so that its inputs and outputs conform with the requirement of the function
mtk.evaluatorAddons() presented in Section Extending the package with new or existing methods.

Once the model is wrapped, we append it to the mtk package so that it can be seamlessly used
with the mtk package.

# Load the package mtk:
library(mtk)

# Transform the model into a mtk compliant class:
mtk.evaluatorAddons(where = 'WeedModel_v2.R', authors = 'D.Makowski(2012)',

name = 'Weed', main = 'WEED.simule')
# Load the mtk compliant class generated before into the mtk package:

source('mtkWeedEvaluator.R')

Uncertainty analysis

Recall that realizing a numerical experiment with the mtk package is composed of four steps: i) choose
the factors and specify their uncertainties; ii) set up the processes involved in the numerical experiment;
iii) form a workflow; and iv) run the workflow and report the results.

First, the uncertain domains associated with the factors are defined with function make.mtkFactor().
Sixteen factors are considered, and each is assumed to follow a uniform distribution whose range is
fixed according to Table 3. The code below shows how we defined the uncertain domains of the factors
within R.

# "table3.data" is a file referring to the Table 3 defined in the text.
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Factors Definition Min Value Max Value

mu Annual decline rate 0.76 0.92
v Proportion of non aborted seeds 0.54 0.66
phi Loss of the fresh seeds 0.50 0.61
beta.1 Proportion of the foxtail seeds 0.86 1.05

found under the surface after tillage
beta.0 Proportion of the foxtail seeds 0.18 0.22

found under the surface without tillage
chsi.1 Proportion of the foxtail seeds 0.27 0.33

found on the surface after tillage
chsi.0 Proportion of the foxtail seeds 0.045 0.055

found on the surface without tillage
delta.new Germination rate for fresh seeds 0.14 0.17
delta.old Germination rate for old seeds 0.27 0.33
mh Efficiency of the herbicide 0.88 1.08
mc Mortality rate caused by cold weather 0 1
Smax.1 Number of the seeds harvested 400 490

per plant (winter variety)
Smax.0 Number of the seeds harvested 266 326

per plant (spring variety)
Ymax Potential yield t/ha 7.2 8.8
Rmax Parameter used to calculate the loss 0.0018 0.0022
Gamma Another parameter used to 0.0045 0.0055

calculate the loss

Table 3: The factors and their domains of uncertainties used in the Weed model. The domains of
uncertainties are all modeled with a uniform probability distribution whose range is fixed from Min
Value to Max Value.

table3 <- read.table("table3.data", header = TRUE)
facteurs <- list()
for(i in 1:16){

facteur.i <- as.character(table3$Factors)[i]
facteurs[facteur.i] <- make.mtkFactor(name = facteur.i,

distribName = "unif",
distribPara = list(min = table3$MinValue[i],

max = table3$MaxValue[i]))
}
weedFactors <- mtkExpFactors(facteurs)

Here, the Basic Monte Carlo method is used for the experimental design, and 1000 samples are
generated. The code below shows the underlying procedure:

plan <- mtkBasicMonteCarloDesigner(listParameters = list(size = 1000))

Two instantiations of the model are evaluated, and they correspond to the cases that weeding
treatment is applied every year and that the weeding treatment is not applied only for the third
year, respectively. Note that the agricultural practices are encapsulated into the argument decision:
decision = 1 represents the first scenario and decision = 2 represents the second.

weed.case1 <- mtkWeedEvaluator(listParameters = list(decision = 1, outvar = 3))
weed.case2 <- mtkWeedEvaluator(listParameters = list(decision = 2, outvar = 3))

Consequently, two workflows are built, and they will be used to manage the analyses of the two
models defined above.

exp1 <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = plan, evaluate = weed.case1))

exp2 <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = plan, evaluate = weed.case2))

set.seed(2) # to fix the seed of the random generator for exp1
run(exp1)
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set.seed(2) # to fix the seed of the random generator for exp2
run(exp2)

Sometimes, users may choose not to use the reporting tools provided with the mtk package to present
their results. The function extractData() allows them to fetch the data managed by the mtk package
as independent data structures supported by the R computing platform and to manipulate them freely.
Hereinafter, the simulated results (1000 simulations per year for 10 years) are stored in two variables:
Y1 and Y2. Notice that we are only interested in the yields of the third year (outvar = 3) since they are
the only data which can reflect the effect of weeding treatment.

Y1 <- unlist(extractData(exp1, name = 'evaluate'))
Y2 <- unlist(extractData(exp2, name = 'evaluate'))

dev.new()
par(mfrow = c(2,2))
hist(Y1, main = '',

xlab = 'Yield with herbicide systematically applied (t/ha)')
hist(Y2, main = '',

xlab = 'Yield without applying herbicide for the 3rd year (t/ha)')
hist(Y1-Y2, main = ' ', xlab = 'Loss in yield (t/ha)')
hist(100*(Y1-Y2)/Y1, main = ' ', xlab = 'Relative loss in yield (%)')

summary(Y1-Y2)

The results are illustrated in Figure 5. It shows that the average loss is 0.33 t/ha, the median loss is
0.25 t/ha, and the 1st and 3rd quartiles of the distribution are equal to 0.12 and 0.48 t/ha respectively.
The uncertainty analysis shows that the yield loss due to non-application of the weeding treatment has
a one-in-two chance of exceeding 0.25 t/ha, and has a one-in-four chance of being less than 0.12 t/ha
and a one-in-four chance of exceeding 0.48 t/ha. We can claim that the loss in yield is moderate, even
taking into account the uncertainties of the factors.

Sensitivity analysis

The uncertainty analysis described above allows the estimation of the uncertainties about the yield
losses, but it gives no information about where the uncertainties come from and which factors have
the most important impact on them. In this section, we will discuss how to use the mtk package to
calculate the sensitivity indices for the factors and how to identify the most influential factors according
to their sensitivity. Two methods will be presented: Morris (Saltelli et al., 2005) and PLMM (Polynomial
Linear metamodel; Faivre, 2013). These examples demonstrate how easy it is to use the mtk package
to compare very different methods.

The R code below shows the sensitivity analysis with the Morris method. We can note the efficiency
and effortlessness of the mtk package to fulfill such a procedure: We are neither concerned about
where the methods are implemented (locally or remotely) nor worried about how data are organized
within the processes.

# Specify the processes and form the workflows:
morris.sampler <- mtkMorrisDesigner(listParameters = list(r = 500, type = 'oat',

levels = 4 , grid.jump = 2, scale = TRUE))

weed.treated <- mtkWeedEvaluator(listParameters = list(decision = 1,
outvar = 3))

weed.no.treated <- mtkWeedEvaluator(listParameters = list(decision = 2,
outvar = 3))

morris.analyser <- mtkMorrisAnalyser()

exp.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = morris.sampler,
evaluate = weed.treated, analyze = morris.analyser))

exp.no.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = morris.sampler,
evaluate = weed.no.treated, analyze = morris.analyser))

# Run the workflows:
set.seed(2)
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Figure 5: Histogram presenting the yields simulated with the Weed model (1000 simulations per year
for 10 years). 1) Yields observed with applying herbicide every year (top-left) and without applying
herbicide for the 3rd year (top-right); 2) Loss in yield due to not applying herbicide for the 3rd year
expressed in t/ha (bottom-left) and in percentages (bottom-right).

run(exp.treated)
set.seed(2)
run(exp.no.treated)

# Report the results:
plot(getProcess(exp.treated, name = 'analyze'))

title("With herbicide every year")
plot(getProcess(exp.no.treated, name = 'analyze'))

title("With no herbicide the 3rd year")

Note that we make use one more time of the class ‘mtkWeedEvaluator’ to manage the model
simulation, and that only the yields of the third year (outvar = 3) are explored.
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Figure 6: Sensitivity analysis results shown in graphical form for the outputs Y with respect to the
16 parameters with uncertainty, calculated with the Morris method for the Weed models: 1) with
herbicide applied every year (top) and 2) without applying herbicide for the 3rd year (bottom). In the
Morris method, the index µ∗ (on the x-axis) is used to detect input factors with an important overall
influence on the output, and the index σ (on the y-axis) is used to detect factors involved in interaction
with other factors or whose effect is non-linear.
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Figure 6 shows the results of the sensitivity analysis obtained with the Morris method for the two
scenarios of agricultural practices. Remember that in the method Morris, the index µ∗ is used to detect
the factors with important overall influence on the output and the index σ is used to detect the factors
involved in interaction with other factors or whose effect is non-linear.

We note that most factors have sensitivity indices µ∗ and σ close to 0 either with or without
weeding treatment. This shows that such factors have little effect on the yield performance.

On the contrary, when weeding is applied, the factor Ymax (the maximum yield potentially ob-
tained with the underlying soil and the underlying cultivated wheat variety) has a sensitivity index
µ∗ larger than 1. This means that the factor Ymax has significant influence on the yield performance
and that the main part of the variability of the yield performance might be explained by the uncer-
tainties contained in the factor Ymax. Furthermore, some factors exhibit σ values slightly different
from 0 meaning that their effect may be non-linear or interacting with others factors but with low
consequences on the output.

Such a conclusion seems natural and easy to understand. In fact, when weeding treatment is
applied, almost all foxtail is eliminated; their influences are wiped out and only the potential yield
parameter Ymax becomes decisive for the yield performance.

On the other hand, when no weeding is applied the 3rd year, the index µ∗ associated with the
factor Ymax is not the only one to move away from 0, but also the factors mc, mu, mh, and beta.1.
Meanwhile, the indices σ associated with the factors mc, mu, and beta.1 are all increased significantly.
This means that when no weeding is applied, Ymax is no longer the only factor having significant
impacts on the yield and the factors mc, mu and beta.1 also imply effects on the yield performance
either in a non-linear way or in interaction with other factors.

To assess the relevance of the results, we have analyzed the same models with other methods. The
methods RandLHS (Latin Hypercube Sampling; Carnell 2012) and PLMM are used respectively for the
experimental design and the sensitivity analysis. The code below demonstrates the procedure. Note
that we reuse the two simulators of the Weed models weed.treated and weed.no.treated previously
defined.

# Specify the processes and form the workflows:
lhs.sampler <- mtkRandLHSDesigner(listParameters = list(size = 1000))
plmm.analyser <- mtkPLMMAnalyser(listParameters = list(degree.pol = 2))

exp.plmm.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = lhs.sampler,
evaluate = weed.treated, analyze = plmm.analyser))

exp.plmm.no.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = lhs.sampler,

evaluate = weed.no.treated, analyze = plmm.analyser))
# Run the workflows:

set.seed(2)
run(exp.plmm.treated)
set.seed(2)
run(exp.plmm.no.treated)

# Report the results of the workflows:
plot(exp.plmm.treated, legend.loc = 'topleft')
plot(exp.plmm.no.treated, legend.loc = 'topleft')

Figure 7 shows the results of the sensitivity analysis obtained for the PLMM method with a
polynomial metamodel of degree 2. The results uphold the conclusions obtained with the Morris
method. The analyses were performed first with a regression modeling of the output on all the cross
products of polynomials of factors with degree 2, and then extended by proceeding to a stepwise
selection of explanatory variables. Figure 7 highlights that most of the main effects of the factors
mc, mu, mh and Ymax are linear or polynomial and that interactions between factors are mainly
between Ymax and beta.1. We can also notice that the R2, the percentage of variance explained by our
metamodel, is close to 1 (zone marked with a dashed line).

Conclusions and perspectives

There is a rapidly growing trend to utilize uncertainty and sensitivity analyses for quantifying the
uncertainties contained in a model and further assessing their impacts on the behaviors of the model.
Numerous methods and theories emanating from different fields have been put forward, but the
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Figure 7: Sensitivity indices of the output Y with respect to the 16 parameters with uncertainty,
calculated by the PLMM method with a polynomial metamodel of degree 2 for the Weed models: 1)
with herbicide applied every year (left) and 2) without applying herbicide for the 3rd year (right).
The y-axis represents the R2 value corresponding to the fraction of the total variance of the output
explained by the factors, and the dashed line shows the fraction of the total variance of the output
explained by the metamodel.

issue related to software development is still lagging behind. The tools proposed are usually bespoke,
context-specific and self-contained, and suffer from lack of generality and extensibility. Herein, we
have developed a general-purpose framework to compile the available methods into a unique software
platform which is able to provide the practitioners from different disciplines with a systematic and
easy way to compare and find the best method for uncertainty discovery and sensitivity analysis.

The mtk package should be the first generic R platform available for uncertainty and sensitivity
analyses, which allows us to collect all the methods actually available into a unique system, and
present them according to the same semantics and with the same syntax. This makes the methods
easy to use and their comparison effective since methods can be run with exactly the same data and in
the same environment.

Building on an object-oriented framework and exploring the XML standards, the mtk package
places its focus on the interoperability, and provides facilities for interplaying with other applications
and sharing data and knowledge in a seamless way.

It is fully open-source and easy to extend. It allows users to add their own methods and models
to the package easily. The power of a workflow-based approach allows researchers to organize
their computing effectively and to extend the investigation in a quick manner. By decomposing the
workflow into generic and elementary tasks, complex processing can be set up by combining the
elementary tasks and be managed easily with the package. Moreover, the Web-based technologies
and computing implemented in the package make its extension even more flexible since users have
access to different ways to realize the extension: using the inheritance mechanism provided with
the object-oriented framework, directly integrating native R functions, building the extension as an
independent application, etc. Note also that the mtk package always presents the methods and models
in the same way, wherever they are implemented (locally or remotely) and no matter how they are
implemented (as an internal element of the package or an independent external application, etc. ).

In spite of the advanced features, the mtk package is still work in progress. Future plans include
implementing support for High Performance Computing to improve the efficiency for time-consuming
processes (Leclaire and Reuillon, 2014). Further, a new version of the serialization function is also
planned so that external platforms can easily integrate the mtk package as an internal component.
Actually, state and data of the workflow managed by the package mtk can be exported into XML files,
and used by external applications or platforms. Fine-tuning with real world examples is necessary
so that an external application can use such information to wrap the mtk package as its internal
component. When it comes to the issue of efficient large data management, we are studying the
possibility to use the package ff for memory-efficient storage (Adler et al., 2014).
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