S. Chapman, M. Cooper, and G. Hammer, Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments, Australian Journal of Agricultural Research, vol.53, pp.379-389, 2002.

G. Hammer, M. Cooper, F. Tardieu, S. Welch, B. Walsh et al., Models for navigating biological complexity in breeding improved crop plants, Trends in Plant Science, vol.11, pp.587-593, 2006.

S. Chapman, Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials, Euphytica. Springer, vol.161, pp.195-208, 2008.

S. C. Chapman, S. Chakraborty, M. F. Dreccer, and S. M. Howden, Plant adaptation to climate change-opportunities and priorities in breeding, Crop and Pasture Science. CSIRO, vol.63, pp.251-268, 2012.

B. Zheng, K. Chenu, F. Dreccer, M. Chapman, and S. C. , Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for australian bread wheat (Triticum aestivium) varieties? Global Change Biology, Wiley Online Library, vol.18, pp.2899-2914, 2012.

K. Chenu, M. Cooper, G. Hammer, K. Mathews, M. Dreccer et al., Environment characterization as an aid to wheat improvement: Interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia, Journal of Experimental Botany. Soc Experiment Biol, vol.62, pp.1743-1755, 2011.

K. Chenu, R. Deihimfard, and S. C. Chapman, Large-scale characterization of drought pattern: A continentwide modelling approach applied to the Australian wheatbelt-spatial and temporal trends, New Phytologist. Wiley Online Library, vol.198, pp.801-820, 2013.

R. Ortiz-monasterio, K. Sayre, S. Rajaram, M. Mcmahon, and . Others, Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates, Crop Science. Crop Science Society of America, vol.37, pp.898-904, 1997.

R. Richards, J. Hunt, J. Kirkegaard, and J. Passioura, Yield improvement and adaptation of wheat to water-limited environments in Australia-a case study, Crop and Pasture Science. CSIRO, vol.65, pp.676-689, 2014.

R. Yang, S. F. Blade, J. Crossa, D. Stanton, and M. S. Bandara, Identifying isoyield environments for field pea production, Crop Science. Crop Science Society of America, vol.45, pp.106-113, 2005.

. Vega-a-de-la, I. Delacy, and S. Chapman, Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina, Field Crops Research. Elsevier Science Bv, vol.100, pp.73-81, 2007.

S. C. Chapman, M. Cooper, D. G. Butler, and R. G. Henzell, Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield, Aust J Agric Res, vol.51, pp.197-208, 2000.

M. Cooper, D. R. Woodruff, R. L. Eisemann, P. S. Brennan, and I. H. Delacy, A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat: Managed-environments for selection among genotypes, TAG Theoretical and Applied Genetics, vol.90, pp.492-502, 1995.

K. L. Mathews, S. C. Chapman, R. Trethowan, W. Pfeiffer, M. Van-ginkel et al., Global adaptation patterns of Australian and CIMMYT spring bread wheat, Theoretical and Applied Genetics. Springer, vol.115, pp.819-835, 2007.

S. C. Chapman, J. Crossa, and G. O. Edmeades, Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield, Euphytica. Springer, vol.95, pp.1-9, 1997.

S. Alwala, T. Kwolek, M. Mcpherson, J. Pellow, and D. Meyer, A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids, Field Crops Research, vol.119, pp.225-230, 2010.

G. L. Hammer, G. Mclean, S. Chapman, B. Zheng, A. Doherty et al., Crop design for specific adaptation in variable dryland production environments, Crop and Pasture Science. CSIRO, vol.65, pp.614-626, 2014.

W. E. Nyquist and R. Baker, Estimation of heritability and prediction of selection response in plant populations. Critical reviews in plant sciences, vol.10, pp.235-322, 1991.

M. Cooper, R. Stucker, I. Delacy, and B. Harch, Wheat breeding nurseries, target environments, and indirect selection for grain yield, Crop Science. Crop Science Society of America, vol.37, pp.1168-1176, 1997.

S. Chapman, M. Cooper, D. Podlich, and G. Hammer, Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects, Agronomy Journal, vol.95, pp.99-113, 2003.

B. Zheng, B. Biddulph, D. Li, H. Kuchel, and S. Chapman, Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments, Journal of Experimental Botany. Soc Experiment Biol, vol.64, pp.3747-3761, 2013.

K. Chenu, S. Chapman, F. Tardieu, G. Mclean, C. Welcker et al., Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A"gene-to-phenotype" modeling approach, Genetics. Genetics Soc America, vol.183, p.1507, 2009.

M. Jeuffroy, P. Casadebaig, P. Debaeke, C. Loyce, and J. Meynard, Agronomic model uses to predict cultivar performance in various environments and cropping systems. a review. Agronomy for Sustainable Development, vol.34, pp.121-137, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173293

G. J. Rebetzke, K. Chenu, B. Biddulph, C. Moeller, D. M. Deery et al., A multisite managed environment facility for targeted trait and germplasm phenotyping, Functional Plant Biology. CSIRO, vol.40, pp.1-13, 2013.

A. Potgieter, G. Hammer, and D. Butler, Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO, Crop and Pasture Science. CSIRO, vol.53, pp.77-89, 2002.

J. Williams, A. P. Hamblin, and R. A. Hook, Agro-ecological regions of Australia. Methodologies for their derivation and key issues in resource management, CSIRO Land, 2002.

B. A. Keating, P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson et al., An overview of APSIM, a model designed for farming systems simulation, European Journal of Agronomy, vol.18, pp.267-288, 2003.

D. P. Holzworth, N. I. Huth, P. G. Zurcher, E. J. Herrmann, N. I. Mclean et al., APSIM-Evolution towards a new generation of agricultural systems simulation, Environmental Modelling & Software, vol.62, pp.327-350, 2014.

B. Zheng, K. Chenu, and A. Doherty, The APSIM-Wheat Module (7.5 R3008)

J. Wang, E. Wang, Q. Luo, and M. Kirby, Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia, Climatic Change. Springer, vol.96, pp.79-96, 2009.

A. Saltelli and C. K. Sensitivity, , 2000.

H. Monod, C. Naud, and D. Makowski, Working with dynamic crop models, evaluation, analysis, parameterization and applications, pp.55-100, 2006.

A. Valade, P. Ciais, N. Vuichard, N. Viovy, A. Caubel et al., Modeling sugarcane yield with a process-based model from site to continental scale: Uncertainties arising from model structure and parameter values, Geoscientific Model Development, vol.7, pp.1225-1245, 2014.

D. Silva, D. Han, L. Faivre, R. Costes, and E. , Influence of the variation of geometrical and topological traits on light interception efficiency of apple trees: Sensitivity analysis and metamodelling for ideotype definition, Annals of botany. Annals Botany Co, vol.114, pp.739-752, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123080

P. Martre, J. He, L. Gouis, J. Semenov, and M. A. , In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management, Journal of Experimental Botany. Soc Experiment Biol, p.49, 2015.

G. Zhao, B. A. Bryan, and X. Song, Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters, Ecological Modelling, vol.279, pp.1-11, 2014.

M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics. Taylor & Francis, vol.33, pp.161-174, 1991.

F. Campolongo, J. Cariboni, and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software, vol.22, pp.1509-1518, 2007.

E. Wang, M. Robertson, G. Hammer, P. Carberry, D. Holzworth et al., Development of a generic crop model template in the cropping system model APSIM, European Journal of Agronomy, vol.18, pp.121-140, 2002.

B. Zheng, E. Holland, and S. Chapman, Wheat modelling: A case study in innovating across CSIRO Grid computing systems, 2013.

R. J. Zomer, A. Trabucco, D. A. Bossio, and L. V. Verchot, Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, vol.126, pp.67-80, 2008.

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00975701

. R-core-team, R: A language and environment for statistical computing

, Austria: R Foundation for Statistical Computing, 2014.

H. Wickham and R. Francois, dplyr: A grammar of data manipulation, 2015.

G. Pujol, B. Iooss, P. Lemaitre-;-gilquin, L. Gratiet, L. L. Touati et al., Sensitivity: Sensitivity analysis, AJ with contributions from, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00936929

H. Wickham, Elegant graphics for data analysis

Y. Springer-new, , 2009.

H. Poorter and J. R. Evans, Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area, Oecologia. Springer, vol.116, pp.26-37, 1998.

H. Poorter and E. Garnier, Ecological significance of inherent variation in relative growth rate and its components. Handbook of functional plant ecology, vol.20, pp.81-120, 1999.

H. Poorter, Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar, Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis, New Phytologist. Wiley Online Library, vol.182, pp.565-588, 2009.

A. M. Manschadi, J. Christopher, G. L. Hammer, and . Others, The role of root architectural traits in adaptation of wheat to water-limited environments, Functional Plant Biology. CSIRO, vol.33, pp.823-837, 2006.

S. C. Chapman, G. L. Hammer, D. W. Podlich, and M. Cooper, Quantitative genetics, genomics and plant breeding, pp.167-187, 2002.

V. Sadras and R. Richards, Improvement of crop yield in dry environments: Benchmarks, levels of organisation and the role of nitrogen, Journal of Experimental Botany. Soc Experiment Biol, vol.65, pp.1981-1995, 2014.

G. J. Rebetzke, R. Fischer, A. F. Herwaarden, . Van, D. G. Bonnett et al., Plot size matters: Interference from intergenotypic competition in plant phenotyping studies, Functional Plant Biology. CSIRO, vol.41, pp.107-118, 2014.

N. Bertin, P. Martre, M. Genard, B. Quilot, and C. Salon, Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits, Journal of Experimental Botany. Soc Experiment Biol, vol.61, pp.955-967, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01189446

X. Yin and P. C. Struik, Modelling the crop: From system dynamics to systems biology, Journal of Experimental Botany. Soc Experiment Biol, vol.61, pp.2171-2183, 2010.

M. Veyradier, J. Christopher, K. Chenu, R. Sievänen, E. Nikinmaa et al., Quantifying the potential yield benefit of root traits, Proceedings of the 7th international conference on Functional-Structural Plant Models, pp.317-319, 2013.

J. Christopher, A. Manschadi, G. Hammer, and A. Borrell, Developmental and physiological traits associated with high yield and stay-green phenotype in wheat, Crop and Pasture Science. CSIRO, vol.59, pp.354-364, 2008.

J. Snape, K. Butterworth, E. Whitechurch, and A. Worland, Waiting for fine times: Genetics of flowering time in wheat, Euphytica. Springer, vol.119, pp.185-190, 2001.

M. Reynolds, M. J. Foulkes, G. A. Slafer, P. Berry, M. A. Parry et al., Raising yield potential in wheat, Journal of Experimental Botany. Soc Experiment Biol, vol.60, pp.1899-1918, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00964196

M. Bogard, C. Ravel, E. Paux, J. Bordes, F. Balfourier et al., Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model, Journal of Experimental Botany. Soc Experiment Biol, vol.65, pp.5849-5865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632186

R. A. Richards, Selectable traits to increase crop photosynthesis and yield of grain crops, Journal of Experimental Botany, vol.51, pp.447-458, 2000.

M. A. Parry, M. Reynolds, M. E. Salvucci, C. Raines, P. J. Andralojc et al., Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency, Journal of Experimental Botany. Soc Experiment Biol, p.304, 2010.

X. Zhu, S. P. Long, and D. R. Ort, Improving photosynthetic efficiency for greater yield, Annual Reviews, vol.61, pp.235-261, 2010.

M. Reynolds, J. Foulkes, R. Furbank, S. Griffiths, J. King et al., Achieving yield gains in wheat, Plant, Cell & Environment. Wiley Online Library, vol.35, pp.1799-1823, 2012.

R. Fischer, Increasing yield potential in wheat: Breaking the barriers, Workshop Proc. Cd, pp.150-166, 1996.

M. Lopes, M. Reynolds, Y. Manes, R. Singh, J. Crossa et al., Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a "historic" set representing 30 years of breeding, Crop Science, vol.52, pp.1123-1131, 2012.

D. Yang, Y. Luo, Y. Ni, Y. Yin, W. Yang et al., Effects of exogenous ABA application on postanthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics, The Crop Journal, vol.2, pp.144-153, 2014.

J. T. Christopher, M. Veyradier, A. K. Borrell, G. Harvey, S. Fletcher et al., Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics, Functional Plant Biology. CSIRO, vol.41, pp.1035-1048, 2014.

M. Babar, M. Reynolds, M. Van-ginkel, A. Klatt, W. Raun et al., Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat, Crop Science Society of America, vol.46, pp.1046-1057, 2006.

R. S. Pinto, M. P. Reynolds, K. L. Mathews, C. L. Mcintyre, J. Olivares-villegas et al., Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, vol.121, pp.1001-1021, 2010.

G. Rebetzke, A. Condon, G. Farquhar, R. Appels, and R. Richards, Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations, Theoretical and Applied Genetics. Springer, vol.118, pp.123-137, 2008.

M. F. Dreccer, A. F. Herwaarden, . Van, and S. C. Chapman, Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration, Field Crops Research, vol.112, pp.43-54, 2009.

H. Abbad, E. Jaafari, S. Bort, J. Araus, and J. , Comparative relationship of the flag leaf and the ear photosynthesis with the biomass and grain yield of durum wheat under a range of water conditions and different genotypes, Agronomie, vol.24, 2004.

E. A. Tambussi, J. Bort, J. J. Guiamet, S. Nogués, and J. L. Araus, The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield, Critical Reviews in Plant Sciences. Taylor & Francis, vol.26, pp.1-16, 2007.

K. Chenu, Characterising the crop environment-nature, significance and applications, pp.321-348, 2015.

P. Martre, B. Quilot-turion, D. Luquet, M. Memmah, K. Chenu et al., Crop physiology: Applications for genetic improvement and agronomy, 2015.

L. Cabrera-bosquet, G. Molero, J. Bort, S. Nogués, and J. Araus, The combined effect of constant water deficit and nitrogen supply on WUE, NUE and ?13C in durum wheat potted plants, Annals of Applied Biology. Wiley Online Library, vol.151, pp.277-289, 2007.

V. Sadras and D. Rodriguez, Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia, Field Crops Research, vol.118, pp.297-305, 2010.

T. R. Sinclair, L. C. Purcell, and C. H. Sneller, Crop transformation and the challenge to increase yield potential, Trends in Plant Science, vol.9, pp.70-75, 2004.

D. Wallach, S. Buis, P. Lecharpentier, J. Bourges, P. Clastre et al., A package of parameter estimation methods and implementation for the STICS crop-soil model, Environmental Modelling & Software, vol.26, pp.386-394, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01321209

B. Dumont, V. Leemans, M. Mansouri, B. Bodson, J. Destain et al., Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environmental Modelling & Software, vol.52, pp.121-135, 2014.

C. D. Messina, D. Podlich, Z. Dong, M. Samples, and M. Cooper, Yield-trait performance landscapes: From theory to application in breeding maize for drought tolerance, Journal of Experimental Botany. Soc Experiment Biol, vol.62, pp.855-868, 2011.