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A meta-analysis of Hodgkin lymphoma reveals
19p13.3 TCF3 as a novel susceptibility locus
W. Cozen1,*, M.N. Timofeeva2,3,*, D. Li4,*, A. Diepstra5,*, D. Hazelett1,*, M. Delahaye-Sourdeix2,*,

C.K. Edlund1, L. Franke5, K. Rostgaard6, D.J. Van Den Berg1, V.K. Cortessis1, K.E. Smedby7, S.L. Glaser8,

H.-J. Westra5, L.L. Robison9, T.M. Mack1, H. Ghesquieres10, A.E. Hwang1, A. Nieters11, S. de Sanjose12,

T. Lightfoot13, N. Becker14, M. Maynadie15, L. Foretova16, E. Roman13, Y. Benavente12, K.A. Rand1, B.N. Nathwani17,

B. Glimelius18, A. Staines19, P. Boffetta20, B.K. Link21, L. Kiemeney22, S.M. Ansell23, S. Bhatia17, L.C. Strong24,

P. Galan25, L. Vatten26, T.M. Habermann23, E.J. Duell12, A. Lake27, R.N. Veenstra5, L. Visser5, Y. Liu5,

K.Y. Urayama28, D. Montgomery27, V. Gaborieau2, L.M. Weiss29, G. Byrnes2, M. Lathrop30, P. Cocco31, T. Best32,

A.D. Skol32, H.-O. Adami7,33, M. Melbye6, J.R. Cerhan23, A. Gallagher27, G.M. Taylor34, S.L. Slager23, P. Brennan2,

G.A. Coetzee1, D.V. Conti1, K. Onel32,*, R.F. Jarrett27,*, H. Hjalgrim6,*, A. van den Berg5,* & J.D. McKay2,*

Recent genome-wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified

associations with genetic variation at both HLA and non-HLA loci; however, much of heritable

HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS

totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281

cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3

associated with HL (rs1860661; odds ratio (OR)¼0.81, 95% confidence interval (95%

CI)¼0.76–0.86, Pcombined¼ 3.5� 10� 10), located in intron 2 of TCF3 (also known as E2A), a

regulator of B- and T-cell lineage commitment known to be involved in HL pathogenesis. This

meta-analysis also notes associations between previously published loci at 2p16, 5q31, 6p31,

8q24 and 10p14 and HL subtypes. We conclude that our data suggest a link between the

19p13.3 locus, including TCF3, and HL risk.
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H
odgkin lymphoma (HL) is an aetiologically and histolo-
gically heterogeneous disease characterized by the pre-
sence of rare malignant Hodgkin Reed–Sternberg (HRS)

cells1. It is one of the most common cancers among young adults
in Western countries2,3. Classical HL (cHL) makes up the vast
majority of HL and itself comprises several subtypes. Nodular
sclerosis HL (NSHL) is the most common subtype among
adolescents and young adults and is typically Epstein–Barr virus
(EBV) negative4–6. Mixed cellularity HL (MCHL) is more
common among young children and older individuals and its
tumour cells typically contain EBV (EBV-positive HL)4–6. HL has
a strong genetic component, with a highly increased risk in
monozygotic compared with dizygotic co-twins7 and other
siblings8 of a case, whose risk in turn is several times higher
than the risk to an average person.

It has been demonstrated that HLA is strongly associated
with the risk of HL and that associated loci vary by EBV tumour
status, with EBV-positive cHL associated with HLA-A*01 and
HLA-A*02 class I alleles, and EBV-negative cHL associated with
markers in or near the HLA class II region6,9,10. Three
independent HL genome-wide association studies (GWAS) in
persons of European origin have recently been published; two
included all patients with cHL11,12 and one was limited to
adolescent/young adult patients with NSHL13. The most
significantly associated SNPs in all three GWAS were located at
the 6p21.32 region, which contains the HLA genes. Multiple
independent variants within this region were associated with HL,
with heterogeneity based on EBV tumour status and histological
subtype11–13. Non-HLA risk loci were also identified, including
REL, GATA3 and IL13, some of which showed heterogeneity
by histological subtype or EBV subgroup11,12. These studies
collectively do not explain all genetic susceptibility for HL.

Here we perform a meta-analysis to identify additional variants
associated with HL and to investigate shared and unique
susceptibility loci for different HL histological subtypes and
EBV status-stratified subgroups. This study is the largest to date
for this disease, with 3,097 cases and 11,095 controls included in
the combined discovery and replication sets. We note HL
subtype-specific associations with previously reported SNPs and
identify a new HL susceptibility locus at 19p13.3.

Results
The discovery set included 1,816 cases and 7,877 controls from
three GWAS conducted at the following centres: University of
Southern California (USC)13; International Agency for Research
on Cancer (IARC)12; and University of Chicago (UC)14 (Fig. 1,
Supplementary Fig. 1, Supplementary Table 1). Of the 1,816 cases,
58% were diagnosed between the ages of 15 and 35, 49% were
female and 68% had HL tumours classified as NSHL. EBV
tumour status was available for 1,063 cases; of these 27% were
EBV positive. Fifty percent of the EBV-positive cases were
MCHL. Conversely, 57% and 20% of MCHL and NSHL,
respectively, were EBV positive, roughly similar to the
distribution observed in a California population.5 Adolescents
and young adults aged 15–35 diagnosed with NSHL had the
lowest proportion of EBV-positive tumours (17%), as expected.

For the meta-analysis, we first applied quality control methods
and imputation, which resulted in a total of 1,004,829 SNPs that
were in common between the three studies (Fig. 1, Supplementary
Fig. 2 (ref. 15)). When considering the global GWAS results, there
was some evidence of a general inflation of the test statistic
(l¼ 1.10, and excluding the MHC region, l¼ 1.09). However,
after normalizing for sample size16, the degree of inflation was
modest (l1000¼ 1.03). The discovery meta-analyses of HL and
subtypes were based on the 1,816 overall HL, 1,694 classical, 1,233

NSHL, 792 NSHL diagnosed between 15–35 years old, and 320
MCHL cases, each compared with the same 7,877 controls.
Analyses stratified on EBV tumour status were based on 287
EBV-positive HL and 776 EBV-negative HL compared with 6,863
controls from the subset of studies with EBV testing
(Supplementary Table 1). The individual study results were
combined using an inverse variance-weighted meta-analysis
under the fixed effects model used to generate all P-values
reported below for GWAS associations.

The meta-analysis revealed HL subtype-specific associations
with genotypic variants at 2p16 (REL), 5q31 (IL13), 6p21 (HLA),
8q24 and 10p14 (GATA3) and the two recently described loci at
3p24 (EOMES) and 6q23 (HBS1L-MYB), consistent with previous
reports11–13,17 (Figs 2, 3, Supplementary Table 2 (ref. 15),
Supplementary Fig. 3). As expected, the SNPs near genes coding
HLA class I alleles were strongly associated with EBV-positive HL
and MCHL, but not EBV-negative HL or NSHL, while
associations with SNPs near or in genes coding HLA class II
alleles showed the opposite pattern (Fig. 2). We identified two
SNPs within the regions of 2p16 (REL) and 10p14 (GATA3),
rs13034020 (P¼ 3.2� 10� 6) and rs444929 (P¼ 3.1� 10� 6), in
our analysis that were more significantly associated with HL than
the previously reported SNPs rs1432295 and rs485411 (ref. 11)
in these respective regions (Supplementary Fig. 3). When
conditioned on the previously reported SNPs, the association
between HL and rs13034020 (P¼ 1.2� 10� 3) and rs444929
(P¼ 1.8� 10� 3) remained significant (Supplementary Table 3).
These SNPs, in addition to rs20541 in the IL13 gene region, were
more strongly associated with EBV-negative HL and NSHL
compared with EBV-positive and MCHL (Fig. 2, Supplementary
Table 2). There was little difference in association by subtype/
subgroup for the loci in the 3p24 and 6q23 regions (Fig. 2).

We found a novel susceptibility variant (rs1860661) surpassing
the threshold for genome-wide significance located at chromo-
some 19p13.3 within intron 2 of the TCF3 gene (OR¼ 0.78,
P¼ 2.0� 10� 8, I2¼ 0%) (Fig. 3, Table 1). This variant was also
significantly associated with all HL (OR¼ 0.85, P¼ 0.0024) in the
replication series of 1,163 all HL cases and 2,580 controls of
European descent (Table 1, Fig. 4). In the combined analysis,
rs1860661 was strongly associated with all HL (OR¼ 0.81,
P¼ 3.5� 10� 10), with no evidence of statistically significant
heterogeneity between contributing studies (Phom¼ 0.41,
I2¼ 0%). Inconsistent associations by histologic subtype (MCHL)
and EBV status (EBV-positive HL) between the discovery and
replication sets were likely to be chance findings due to small
numbers (Table 1).

For all HL combined, two other novel variants at chromosome
3q32 (CLSTN2, rs6439924, P¼ 8.3� 10� 8, I2¼ 0%) and chro-
mosome 7p21 (ARL4A-ETV1, rs2058613, P¼ 6.6� 10� 7,
I2¼ 0%) approached genome-wide levels of significance in the
discovery set, but were not significant in the replication set
(Supplementary Table 4).

We used a bioinformatic approach (FunciSNP18) to identify
potential functional variants tagged by rs1860661. By querying
the 20110521 release of 1,000 genomes database19, we identified
four SNPs correlated (r240.5) with the index SNP (rs1860661).
We then extracted publically available ENCODE20 data on
biofeatures, and found that the index SNP rs1860661 and
two correlated SNPs, rs10413888 (r2¼ 0.90) and rs8103453
(r2¼ 0.89), map in or near marks of open chromatin and in
DNAse hypersensitivity sites in TCF3 in CD20þ B-cell lines.
Interestingly, the protective haplotype defined by the minor
alleles G-G-G of all three SNPs potentially enhances the efficiency
of the binding sites for transcription factors ZBTB7a and E2F1
(Fig. 5). The relative frequencies of each nucleotide (based on a
position weight matrix) for the alleles in the ZBTB7A motif of
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index SNP r1860661 are G:99.8% A:0.2% and for rs10413888
(r2¼ 0.90) are T:0.4% G:97.4%. For rs8103453 (r2¼ 0.89) the
E2F1 nucleotide frequencies are A:0% G:97%.

To investigate the function of rs1860661, we measured the
expression levels of TCF3, and its two alternative transcripts, E12
and E47, in lymphoblastoid cell lines (LCLs) derived from
circulating normal B cells from 49 post-therapy HL patients and
25 unaffected controls using linear models to assess correlation
between genotype and TCF3 expression levels (Fig. 5). There was
little evidence for correlation with TCF3 expression levels in this
small sample, with only a weak association observed in LCLs
from controls with the TCF3-E47 isoform (P¼ 0.02), whose
transcription start site is located close to rs1860661 (Fig. 5).
Similarly, there was little evidence in public databases21 that
rs1860661 acts as a TCF3 eQTL, although eQTLs for the two
isoforms were not available. Evidence for downregulation of both
TCF3 isoforms was observed in seven HL-derived cell lines
compared with germinal centre B cells sorted from three different
tonsils (Pt-testo0.05) (Supplementary Fig. 4). Exome sequencing
of the same set of seven HL cell lines identified a TCF3 missense
mutation, p.N551K, (Supplementary Fig. 4) which has also been
observed in Burkitt lymphoma22.

Finally, we selected the subset of 21,608 SNPs included in our
GWAS previously identified as cis-eQTLs in B cells alone or both
B cells and monocytes23. Within this subset, the genomic inflation
factor (l) was estimated as 1.16 (Supplementary Table 5,
Supplementary Fig. 5). A l of 1.16 was not observed within any
of 1,000 random draws of 21,608 SNPs of similar minor allele
frequency (MAF) taken from the complete HL meta-analysis,

(Supplementary Table 5), suggesting a relative overrepresentation
of associated variants within this subgroup.

Discussion
In this meta-analysis of 1,816 HL cases and 7,877 controls, we
have identified a new susceptibility locus for HL at 19p13.3 in the
TCF3 gene and noted associations with previously identified loci
at 2p16—REL, 5q31—IL13, 6p21—HLA region, 8q24 and
10p14—GATA3. TCF3 is essential for the commitment of
lymphoid progenitors to both B-cell and T-cell lineage develop-
ment24–26. In B cells, homodimers of the E47 isoform of TCF3
lead to transcriptional activation of TCF3 target genes including
the B cell-specific transcription factors Oct-2, PU.1 and Bob.1
(ref. 25). A molecular and phenotypic hallmark of cHL is the loss
of B-cell signature in HRS cells, including lack of the B-cell
receptor, and the lineage markers CD19 and CD20. This loss has
been attributed to downregulation of Oct-2, PU.1 and Bob.1 as a
consequence of decreased formation of TCF3-E47 homodimers
due to an increased expression of ABF-1 and ID2, two proteins
that bind to and inhibit TCF3 (refs 26–28). However, it is also
possible that decreased transcription of the TCF3 gene
contributes. Renne et al.26 reported lower average levels of
TCF3 expression in cHL-derived cell lines compared with B-cell
lines, and we observed significantly lower levels of both TCF3
splice variants in cHL-derived cell lines compared with sorted
tonsillar germinal centre B cells. These observations are consistent
with the hypothesis that higher TCF3 levels in HRS precursor
cells may lead to enhanced retention of the B-cell phenotype,

IARC GWAS cases
(n=1,279)
lllumina 660w-Quad
BeadChips
(597,260 SNPs)

IARC Controls
(n=5,752)
lllumina HumanHap300
(317,139 SNPs), CNV370-Duo
(353,202 SNPs), HumanHap550
(558,542 SNPs), Human 1.2M-
Duo (~1,200,000 SNPs) 

USC HL GWAS
(n=380)
IIIumina 610
Quad BeadChip
(599,011 SNPs)

USC HL GWAS
Controls (CGEMS)
(n=1,142)
IIIumina Human Hap550
(v.1.1)
(515,512 SNPs)

UC GWAS (CCSS cases)
(n=214)
Affymetrix Genome-wide
Human SNP Array 6.0

UC GWAS controls
(GAIN) (n=1,016)
Affymetrix

(741,279 SNPs in cases and controls combined)

2 Samples excluded

244,278 SNPs excluded

Meta-analysis based on 1,004,829 variants common across all case and control series
IARC GWAS: 1,241 cases, 5,726 controls,; USC GWAS: 366 cases and 1,137 controls;
UC GWAS: 209 cases and 1,014 controls

5 Samples excluded5 Samples excluded14 Samples excluded26 Samples excluded38 Samples excluded

94,746 SNPs excluded

Imputed with minimac, 1000 genome
Phase I, release 2010-08, 11,210,656 SNPs
for GWAS analysis

Imputed with IMPUTE 2, HapMap Phase III CEU
1,138,465 SNPs for GWAS analysis

Imputed with MACH 2, HapMap Phase III CEU
1,065,076 SNPs for GWAS analysis

150,499 SNPs excluded

QC was performed separately
within each of the control series
based on SNP call rate (<98%),
deviation from HWE (P<1e-07),
MAF (<0.01) or concordance
with case SNPs.

67,000 SNPs excluded

Figure 1 | Quality control for subjects and SNPs in the GWAS discovery meta-analysis. Details for each GWAS have been previously published12–14.
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Figure 2 | Effect of genetic risk variants on the risk of Hodgkin lymphoma. Combined ORs and 95% CIs were derived from combining the three individual

GWAS-specific estimates in a meta-analysis using a fixed-effect model. Individual GWAS estimates (OR and 95% CIs) were derived from the unconditional logistic

regression adjusted for sex, study center (for European Collaborative GWAS only) and significant principal components, assuming additive model of inheritance. P-

values for homogeneity between different subgroups were calculated using Cochran’s Q-statistic. Squares represent summary estimates; the size of the square

represents inverse of the variance of the log ORs; horizontal lines represent 95% CIs; diamonds represent results for the total HL; solid vertical lines represent OR¼ 1.

Note that rs9402684 is substituted for rs7745098 (r2¼0.90), which was not available in all three contributing GWAS. All HL, all subtypes of Hodgkin lymphoma

combined (1,816 cases, 7,877 controls), NS, nodular sclerosis (1,233 cases, 7,877 controls), MC, mixed cellularity (320 cases, 7,877 controls), NSyoung, nodular

sclerosis diagnosed in young adults 15–35 years old (792 cases, 7,877 controls), EBV negative (776 cases, 6,863 controls), EBV positive (287 cases, 6,863 controls).
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thereby conferring a protective effect for HL. A biofeature
analysis suggests that rs1860661 is located in a transcription
factor binding site; however, further study is necessary to
determine whether rs1860661 is a causal SNP and associated
with a true biological effect on TCF3 expression. Interestingly, in
one out of seven HL cell lines, we observed a p.N551K missense
TCF3 mutation, a mutation also found in Burkitt lymphoma
samples22, suggesting that investigation of such mutations in HRS
cells may be warranted.

As expected, previously published subtype (histology) and
subgroup (tumour EBV status) associations with SNPs in 2p16,
5q31, 6p31.2, 8q4 and 10p14 regions were observed11–13,
although at higher significance levels due to the increased
power of the meta-analysis, supporting the proposition that
cHL is aetiologically heterogeneous. There are clear associations
between HLA class I loci and risk of both EBV-positive HL and
MCHL, and between HLA class II, IL13, REL and GATA3 loci
and risk of both EBV-negative HL and NSHL. Our data are
inconclusive at this time regarding subset heterogeneity for
rs1860661.

Thus, our data suggest a link between the 19p13.3 locus,
including TCF3, and HL risk. Although we did not demonstrate
functionality of rs1860661, it is located in a gene that is known to
be downregulated in HL and thus merits further study. Because
HL is a rare cancer, amassing substantial numbers of patients for
a GWAS study is difficult. Nevertheless, our meta-analysis
increased the ability to detect additional loci, to the level of an
OR of 1.25 for a MAF of 30% with 80% power, in line with other
meta-GWAS. Even so, we considered the potential for the
existence of additional risk HL alleles by assessing the evidence
for association within genetic variants linked with gene expres-
sion levels in B-cell lymphocytes (eQTLs)23 compared with
unselected genetic variants. The existence of additional, as yet
unidentified risk variants for HL is suggested by the observation
that eQTLs were enriched among the top associations with HL as
compared with non-eQTLs (Supplementary Table 5).

Methods
Ethics. All studies were approved by the following human subjects protection
committees at the respective institutions: The University of Southern California
Institutional Review Board, The Mayo Clinic Institutional Review Boards, The
WHO International Agency for Research on Cancer Human Subjects Committee,
The University of Chicago Institutional Review Board, Ethics Committees of Dijon
and Lyon University Hospitals, Medical Ethical Review Committee of the UMCG,
The Regional Ethical Review Board in Stockholm, The Scientific Ethics Committee
for the Capital Region of Copenhagen, Research Ethics Committee for Wales
08/MRE09/72, West of Scotland Research Ethic Committee REC4 09/S0704/73,
Multi-Centre Research Ethics Committee for Scotland 06/MRE00/83 and the
Northern & Yorkshire Regional Ethics Committee. All patients and replication
controls signed informed consent. De-identified publically available GWAS
data were obtained for the control comparisons in the three-discovery-set
GWAS.

Source of subjects and GWAS discovery. The discovery of meta-analysis was
undertaken by two centres (IARC and USC) and was based on summary data from
three previously reported GWAS providing genotype data on 1,816 HL cases and
7,877 controls of European descent: The European Collaborative GWAS12 and The
University of Southern California (USC)13/University of Chicago (UC)14 GWAS
studies were combined for a single meta-analysis.

The European Collaborative GWAS, presented elsewhere12, included 1,241 HL
cases aged 13–80 (median age¼ 33 years) from five European-based HL studies
and 5,726 generic controls aged 17–94 (mean age¼ 62) used in the initial GWAS
scan. In addition to the cHL cases described in the initial GWAS, 41 non-cHL
cases were also included in the total. The distribution of cases among the five
European-based HL studies is as follows: The EPILYMPH Study (N¼ 196)29, the
Scotland and Newcastle Lymphoma Group and the Young Adult Hodgkin Disease
Case–Control Study (N¼ 397)30, The Scandinavian Lymphoma Aetiology Study
(SCALE) (N¼ 344)31,32 and the Northern Dutch Hodgkin Lymphoma Study
(N¼ 304)33. The distribution of the controls by study is as follows: Alcohol-Related
Cancers and Genetic Susceptibility in Europe Study (N¼ 323)34; The International
Agency for Research on Cancer Central Europe Study (N¼ 443)35; The Pancreatic
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Figure 3 | Results of a meta-analysis of three GWAS of Hodgkin

lymphoma. (a) Manhattan plot of genome-wide results of a case–control

comparison of 1,816 Hodgkin lymphoma patients and 7,877 controls of

European origin. P-values were determined for each SNP based on the

overall meta-analysis using a fixed-effects model. Five loci surpassed the

genome-wide significance level of P¼ 5� 10� 8, including four previously

reported SNPs at 6p21 (HLA class II) and 5q31 (IL13) and one novel SNP

(rs1860661 at 19p13.3) located in TCF3. Noteworthy loci from previous

reports replicated here at P¼r0.05 are also shown, including those at

2p16 (REL), 3p24 (EOMES), 6q23 (HBS1L-MYB), 8q24 and 10p14 (GATA3),

in addition to two novel loci at 3q32 (CLSTN2) and 7p21 (ARLA4-ETV1) from

this meta-analysis that did not replicate. Note that data for rs7745098 at

6q23 were not available in all three contributing GWAS, thus data for

rs9402684 at r2¼0.90 was substituted. Variants with I2 values Z75%

indicative of significant heterogeneity were excluded. (b) Regional plot of

the 19p13.3 locus. Results (� log10P) are shown for SNPs genotyped and

imputed within the region. The diamond represents the most significant

SNP in the locus and the r2 values for the other SNPs are indicated by

different colours depending on the LD level in the CEU population. The

genes within the region are annotated and shown as arrows. (c) Linkage

disequilibrium map of the 19p13.3 locus (red represents r240.9).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4856 ARTICLE

NATURE COMMUNICATIONS | 5:3856 | DOI: 10.1038/ncomms4856 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Cancer Cohort Consortium (N¼ 321)36; The Nijmegen Biomedical Study
(N¼ 1,769)37 and The Wellcome Trust Case–Control Consortium (N¼ 2870)38.
Cases were genotyped at the Centre National de Génotypage using the Illumina

Infinium Human660-Quad BeadChip (Illumina San Diego, CA). Multiple
sources of generic controls were genotyped on compatible Illumina BeadChips
platforms.

Table 1 | The association of the G allele of SNP rs1860661* with risk of Hodgkin lymphoma by EBV subgroup and histological
subset.

SNP N MAF OR (95% CI) Pw Phom
z I2w

(Ca) (Co) (Ca) (Co)

Discovery
All HL 1,816 7,877 0.35 0.41 0.78 (0.72–0.85) 2.0� 10� 8 0.38 0
Classical 1,694 7,877 0.35 0.41 0.78 (0.71–0.85) 2.3� 10�8 0.05 67
NS 1,233 7,877 0.35 0.41 0.76 (0.68–0.85) 8.3� 10� 7 0.24 30
MC 320 7,877 0.34 0.41 0.69 (0.56–0.84) 2.1� 10�4 0.12 53
EBV-neg 776 6,863 0.38 0.41 0.83 (0.74–0.93) 1.3� 10� 3 0.36 0
EBV-pos 287 6,863 0.37 0.41 0.84 (0.70–1.01) 0.06 0.64 0
NS (15–35 y/o) 792 7,877 0.35 0.41 0.76 (0.67–0.85) 6.3� 10�6 0.18 42

Replication
All HL 1,163 2,580 0.39 0.43 0.85 (0.76–0.94) 2.4� 10� 3 0.42 0
Classical 1,080 2,580 0.39 0.43 0.86 (0.77–0.96) 6.4� 10� 3 0.32 0
NS 854 2,580 0.39 0.43 0.83 (0.74–0.93) 1.7� 10� 3 0.23 30
MC 155 2,580 0.46 0.43 1.03 (0.80–1.32) 0.81 0.71 0
EBV-neg 513 2,580 0.35 0.43 0.73 (0.63–0.84) 2.05� 10� 5 0.82 0
EBV-pos 177 2,580 0.48 0.43 1.12 (0.90–1.39) 0.33 0.23 31
NS (15–35 y/o) 505 2,580 0.38 0.43 0.81 (0.70–0.93) 3.2� 10� 3 0.93 0

Combined
All HL 2,979 10,457 0.35 0.41 0.81 (0.76–0.86) 3.5� 10� 10 0.41 0
Classical 2,774 10,457 0.35 0.41 0.81 (0.76–0.87) 1.5� 10�9 0.06 56
NS 2,087 10,457 0.35 0.41 0.79 (0.73–0.86) 9.4� 10� 9 0.25 26
MC 475 10,457 0.34 0.41 0.81 (0.69–0.94) 0.03 0.01 63
EBV-neg 1,289 9,443 0.38 0.41 0.79 (0.72–0.86) 1.6� 10� 7 0.51 0
EBV-pos 464 9,443 0.37 0.41 0.94 (0.82–1.08) 0.41 0.14 45
NS (15–35 y/o) 1,297 10,457 0.35 0.41 0.78 (0.71–0.85) 8.6� 10�8 0.41 0

Ca, cases; Co, controls; 95% CI, 95% confidence interval; EBV-neg, EBV negative; EBV-pos, EBV positive; HL, Hodgkin lymphoma; MAF, minor allele frequency; MC, mixed cellularity; NS, nodular sclerosis;
OR, odds ratio.
*19p13.3, position 1601134.
wP-value generated from a meta-analysis using the fixed effects model.
zP-value from Cochran’s Q-statistic.
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Figure 4 | Forest plot of discovery and replication ORs and 95% CIs for the association between 19p13.3 TCF3 rs1860661 and Hodgkin lymphoma by

study. ORs and 95% CIs were derived from the unconditional logistic regression adjusted for sex and significant principal components (for individual

GWAS analysis only), assuming additive model of inheritance. Squares represent ORs; the size of the square represents inverse of the variance of the log

ORs; horizontal lines represent 95% CIs; diamonds represent summary estimate combining the study-specific estimates with a fixed-effects model; solid

vertical lines represent OR¼ 1; the dashed vertical line represents the overall OR. P-values for homogeneity between different subgroups were calculated

using Cochran’s Q-statistic. Samples sizes are as follows: combined discovery and replication (3,097 cases and 11,095 controls); overall discovery

(1,816 cases and 7,877 controls) consisted of European Collaborative GWAS (1,241 cases and 5,726 controls); USC GWAS (366 cases and 1,137 controls);

UC GWAS (209 cases and 1,014 controls); overall replication (1,163 cases and 2,580 controls) consisted of Mayo Clinic (234 cases and 223 controls);

EPILYMPH (64 cases and 141 controls); French Replication Series (LYSA/CNG Evry France) (366 cases and 1,696 controls); UK Replication Series

(ELCCS (York)/Scotland and Newcastle Epidemiological Study of Hodgkin Disease (499 cases and 520 controls). The Scandinavian SCALE study

is not included as rs1860661 could not be genotyped in controls using Sequenom.
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The USC HL GWAS included 366 European-origin cases (from an original 380)
from four sources, (age range 7–58, mean age¼ 29.5); 233 patients, diagnosed o45
years of age between 2000 and 2008, were ascertained from two California SEER
registries13, and 133 patients, diagnosed between the ages of 7 and 58 from 1975
through 2006, were ascertained from two USC twin registries: the population-based
California Twin Program and volunteer International Twin Study7,39. Of the 366
HL cases, 251 (69%) were diagnosed as NSHL; 72 (20%) as MCHL; 11 (3%) as
other cHL; 11 (3%) as lymphocyte predominant HL; and 21 (5%) as not specified.
Of the 129 specimens tested for EBV by in situ hybridization40, 107 (83%) were
negative and 22 (17%) were positive. 90% of the NSHL and 50% of the mixed
cellularity tumours were EBV negative. Fourteen cases from the original analysis13

were removed due to additional QC measures. Controls were 1,137 (from an
original 1,142) European-origin females aged 25–42 who were breast cancer
controls in the Cancer Genetic Markers and Susceptibility Project (CGEMS)41,42.
USC cases were genotyped using the Illumina 610 Quad BeadChip and controls
were genotyped using the Illumina HumanHap550 (v.1.1).

The third GWAS was conducted at UC14, in which cases consisted of 209 (from
an original 214) HL patients diagnosed prior to age 21 (mean age¼ 16) who were
participants in the Children’s Cancer Survivor Study, a retrospective study of
14,358 survivors of childhood cancer diagnosed before 21 years of age and

surviving at least five years43. Of these, 142 (68%) were diagnosed as NSHL and 18
(9%) as MCHL. Five cases from the original analysis14 were removed due to
additional QC measures. Tumour EBV status was not available. Controls were
1,014 (from an original 1,016) cancer-free individuals of European ancestry (464
males and 550 females) from the Genetic Association Informative Network
schizophrenia study cohort (phs000021.v1.p1)44. Cases were genotyped at UC on
the Affymetrix Genome-Wide Human SNP Array 6.0. Permission was obtained for
use of CGEMS and GAIN results from dbGAP (dbgap.ncbi.nlm.nih.gov/aa/
dbgap)41.

Stringent quality control was performed on the genome-wide genotypes by each
of the three GWAS centres that conducted a GWAS based on standard
procedures12–14. To refine associations with previously reported loci and to identify
new disease loci, we imputed untyped genotypes using IMPUTE2 (refs 15,45) and
HapMap Phase III (http://hapmap.ncbi.nlm.nih.gov) reference genotypes for the
USC and UC HL GWAS data and minimac15,46 software and 1000 Genome Project
data release 2010–08 reference genotypes19 for the European Collaborative
GWAS12. Poorly imputed SNPs, defined by an r2o0.30 with MACH1 (ref. 46)/
minimac15 or an information measure (Is) o0.30 with IMPUTE2 (ref. 33), were
excluded from the analyses. Each GWAS study used a 10% threshold for
missingness.

PositionPosition

Scale
chr19:
CTCF

1,610,000 1,615,000 1,620,000 1,625,000

rs114211059–0.5025

ZBTB7A/LRF:

Motif:

Genomic sequence:

rs10413888

TCF3 total controls

2–Δ
C
t

2–Δ
C
t

2–Δ
C
t

2–Δ
C
t

2–Δ
C
t

2–Δ
C
t

10

8

6

4

2

0

10

8

6

4

2

0

10

8

6

4

2

0

4

2

3

1

0

2.5

2.0

1.5

1.0

0.5

0.0

8

6

4

2

0

NS

TCF3 isoform E47 controls

TCF3 isoform E47 patientsTCF3 total patients TCF3 isoform E12 patients

TCF3 isoform E12 controls

NSP=0.022

NS NS NS

rs8103453 rs1860661AF: 0.40 AF: 0.38 AF: 0.41

ZBTB7A/LRF:

B
its

E2F1:

rs10413888–0.8991
rs8103453–0.8894

rs1860661 rs11883185–0.6961
rs1004514–0.5443

20 kb
1,630,000 1,635,000 1,640,000 1,645,000 1,655,000

hg19
1,660,0001,650,000

DNasel
H3K27Ac
H3K4me2
H3K4me3

Txn
Factor ChIP

E47

TCF3

E12

1

2

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

–d

B
its

2

1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

–d

B
its

2

1

0
1 2 3 4 5 6 7 8

Position
9 10 11 12 13 14 15

–d

AA GA GG AA GA GG AA GA GG

AA GA GG AA GA GG AA GA GG

Figure 5 | Bioinformatic and expression analysis of the TCF3 SNP. (a) Browser view of TCF3 genomic region. Position of ENCODE data for the chromatin
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is displayed next to the SNP name, with allele frequency for Europeans in 1,000 genomes19. (b) TCF3 expression levels determined on RNA isolated from

lymphoblastoid cell lines generated by transformation of blood B cells obtained from healthy controls (n¼ 25) and post-therapy Hodgkin lymphoma

(n¼49) patients, using qRT–PCR. Linear models were used to assess correlation between genotype and TCF3 expression levels.
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Technical validation of the three novel SNPs with genome-wide significance was
performed in the IARC European Collaborative GWAS (300 discovery set case
samples and 90 HapMap Ceu Samples) and USC GWAS (36 discovery case
samples) using the same TaqMan probes. Concordance for rs1860661, rs6439924
and rs2058613 across GWAS and replication genotyping platforms was between
99.6% for the European Collaborative GWAS and 100% for the USC GWAS.

Replication series and genotyping. Novel SNP associations were further
validated in an independent replication series comprising 1,281 cases and 3,218
control subjects from multiple case–control or case series. DNA from the European
subjects was genotyped at the Centre National Genotypage (1,047 HL cases and
2,995 controls from four contributing studies, mean age¼ 42). The EPILYMPH
replication set included 64 cases aged 18–78 at diagnosis and 141 controls aged
18–81 from the Czech Republic, France, Germany, Ireland, Italy and Spain29;
the French replication series included 366 cases aged 15–93 at diagnosis from a
prospective biologic study carried out by LYSA (Lymphoma Study Association)47

and 1696 French controls genotyped by the Centre National Genotypage (CNG
Evry, France); the UK replication series included 499 cases aged 15–90 at diagnosis
and 520 controls aged 16–87 at participation from the ELCCS (York) case–control
study48, the Scotland and Newcastle Epidemiological Study of Hodgkin’s disease30

and the Young Adult Hodgkin’s Disease Case–Control Study; and the
Scandinavian Lymphoma Aetiology Study (SCALE) replication series included 118
cases aged 18–75 and 638 controls aged 19–75 from Sweden and Denmark31,32, not
included in the discovery GWAS. The Mayo Clinic Replication series included 234
cases ages 18–89 at diagnosis and 223 internal medicine or family medicine clinic
controls seen for routine appointments49 (mean age of Mayo Clinic cases and
controls¼ 44 years), genotyped at the Molecular Genomics Core of USC. A subset
of European controls was also genotyped at the Centre National Genotypage using
the Illumina Sentrix HumanHap300 BeadChip (French controls, n¼ 1,696) or
Sequenom (SCALE31 controls, n¼ 638). A TaqMan Pre-Designed SNP Genotyping
Assay Mix (containing probes and primers) was used for each SNP (Applied
Biosystems, Carlsbad, CA, assay-on-demand order code C__32302340_10 for
rs6439924 and C__11969900_10 for rs1860661). No assay could be designed for
rs2058613 and therefore a proxy variant (R2¼ 1.0, D0 ¼ 1.0 in CEU) rs6946457
(assay C__2678118_10) was genotyped. Similarly, rs1860661 could not be
genotyped by Sequenom in the SCALE31 controls as this assay was not able to be
designed for this platform. The performance of the assays was validated at the
Centre National Genotypage by re-genotyping CEU HapMap samples (US
residents with Northern and Western European ancestry) and comparing the
results to HapMap genotypes (http://hapmap.ncbi.nlm.nih.gov) (IARC) and by
re-genotyping 32 samples from the GWAS and comparing the results to the array
based genotypes (USC). Within the study samples, duplicate genotyping
concordance was greater than 99%.

Statistical analysis. All calculations were performed using PLINK50 (http://
pngu.mgh.harvard.edu/Bpurcell/plink), SAS version 9.2 (SAS Institute, Cary, NC,
USA) and R15.1 (R project). LocusZoom51 was used for regional visualization of
results. LD statistics were calculated based on HapMap3 release 2 using SNAP
Proxy Search52. In each of the three discovery GWAS analyses, quality control
included removal of individuals with cryptic relatedness and a genotyping call rate
of o0.95. In addition, SNPs with a call rate of o0.95, a MAF of o0.01 in the data,
deviation from Hardy–Weinberg equilibrium (Po1� 10� 5), or whose genotypes
resulted from artifacts were removed. Associations between SNP genotypes and HL
risk were evaluated under a log-additive model of inheritance adjusting for sex,
study centre (European Collaborative GWAS only) and significant principal
components to control for population stratification53.

A meta-analysis using a fixed effects model weighted on the inverse of the
variance was conducted based on GWAS summary statistics for the log-additive
model of inheritance54. Only variants available in all three GWAS studies,
successfully genotyped/imputed, with no evidence of ambiguous strand calls
between studies, were included. We examined overdispersion using P-values from
the meta-analysis to generate Quantile–Quantile plots and estimate an inflation
factor l, calculated as a ratio of the median of the observed l2 statistics for
association from the Wald tests over the median (¼ 0.455) of the l2 distribution
with 1 df54 (Supplementary Figs 1 and 2). The HLA region was excluded when
calculating the l to reduce the inflation due to numerous SNPs in LD capturing
this previously known locus. Associations between the risk alleles and HL and
subtypes were assessed using logistic regression to estimate ORs and 95% CIs and
P-values within individual studies. Cochran’s Q-statistic to test for heterogeneity
and the I2 statistic to quantify the proportion of the total variation due to
heterogeneity was calculated. Fixed-effect values Z75% are considered the
characteristic of large heterogeneity and corresponding variants were excluded
from the analysis. Replication analyses were conducted using logistic regression to
estimate ORs, 95% CIs and P-values within individual studies. Study-specific
estimates were summarized using a meta-analysis procedure as described above.

FunciSNP functional annotation. To integrate chromatin biofeature annotations
with 1000 Genomes19 genotyping data, we used an in-house developed R package
FunciSNP18, available at www.Bioconductor.org. We selected publicly available

data sets relevant to the development of the B-cell lineage and thus the following
ENCODE data sets were employed to filter correlated SNPs that lie within putative
enhancer regions with Gene Expression Omnibus accession IDs: B cells CD20þ
RO01778 DGF Peaks (GSM1014525), B cells CD20þ RO01778 DNaseI HS Peaks
(GSM1024765, GSM1024766), B cells CD20þ RO01794 HS Peaks (GSM1008588),
CD20þ (RO 01778) H3K4me3 Histone Mod chromatin immunoprecipitation
(ChIP)-seq Peaks (GSM945229), CD20þ RO01794 H3K27ac Histone Mods by
ChIP-seq Peaks (GSM1003459), CD20þ (RO01794) H3K4me3 Histone Mod
ChIP-seq Peaks (GSM945198), CD20þ CTCF Histone Mods by ChIP-seq
Peaks (GSM1003474), CD20þ H2A.Z Histone Mods by ChIP-seq Peaks
(GSM1003476), CD20þ H3K4me2 Histone Mods by ChIP-seq Peaks
(GSM1003471). To define other physical map features (transcription start sites,
50UTR, 30UTR), we downloaded annotations from the February 2009 release of the
human genome (GRCh37/hg19) available from the UCSC genome browser55.
Finally, we used the highly conserved set of predicted targets of microRNA
targeting at www.mircode.org (miRcode 11, June 2012 release), and conserved
high-quality microRNA target species from www.microRNA.org (June 2010
release).

FunciSNP18 was run with the following settings: a window size of 1 Mb around
the index SNP was used with r240.5. To determine whether FunciSNP-generated
SNPs potentially affect the binding of known transcription factors, position-specific
weight matrices were employed from Wang et al.56 To distinguish between neutral
and potentially damaging (or activating) variants, both alleles of the SNP were
scored by adding up the total matrix score of each of 119 transcription factor
motifs for each of the possible start sites in a window around the SNP and flagging
the start positions that surpassed a threshold of 80% of the maximum score for
each motif. In addition, the scoring was weighted by the difference between
maximum and minimum score at each position, so that unconserved and
noncritical sites did not influence the score. SNPs that were found within the
binding sites of 80% maximum or better were reported along with the score of the
alternate allele. A quality score derived from the ratio of the difference in scores/
1� (maximum allelic binding to the TF at that position) was used to rank the
SNPs and classify them as neutral, damaging or activating.

TCF3 expression experiments. LCLs were generated from blood samples col-
lected from 74 individuals, including 25 healthy controls and 49 post-therapy cHL
patients (from blood samples collected at least 1 year after completion of all
therapies) by infection of PBMCs with the EBV strain B95-8. Genotyping of the
LCLs was carried out using a TaqMan SNP assay. Expression levels were assessed
using quantitative reverse transcriptase PCR which was performed on all cell lines
using the TCF3 assay and isoform-specific primer sets. Association between TCF3
gene expression levels and TCF3 genotype was assessed by linear regression,
separately for cHL cases and controls, using PLINK50.

To compare TCF3 expression in cHL cell lines to normal tonsillar germinal
centre B cells, germinal centre B cells were sorted from three independent tonsils
(CD19þCD38þ IgD� ). HL-derived cell lines, that is, L428, L540, L591, L1236,
KM-H2, SUPHD1 (available from Braunschweig, Germany) and DEV (A. van den
Berg Laboratory)57, were cultured in RPMI 1640 medium (Lonza Walkersville,
Walkersville, MD) supplemented with 5–20% fetal calf serum, 100U ml� 1

penicillin/streptomycin and ultraglutamine (Lonza Walkersville) in a 5% CO2

atmosphere at 37 �C.
DNA isolation and genotyping (TaqMan SNP assay, C_11969900_10) was

carried out using standard procedures. RNA was isolated using Trizol (Invitrogen,
Carlsbad, USA) and DNAse treated (Ambion, Foster City, CA). The RNA
concentration was measured with a NanodropTM 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, USA) and integrity was evaluated by the
Experion system. cDNA was synthesized using 500 ng input RNA, Superscript II
and random primers according to the manufacturer’s protocol (Invitrogen).
quantitative reverse transcriptase PCR was performed on all samples using the
TCF3 assay and isoform-specific primer sets in triplicate. Relative expression levels
were calculated using TBP as housekeeping gene and data were expressed as the
2-deltaCt values. A t-test was used to test for TCF3 expression level differences in
cHL cell lines compared with germinal centre B cells.

TCF3 mutation analysis. In an ongoing whole-exome sequencing analysis, we
noted a missense mutation (p.N551K) in the TCF3 gene in one out of seven
HL-derived cell lines, that is, SUPHD1. To confirm the presence of the mutation
and expression of the mutant allele, we amplified cDNA of the SUPHD1 cell line by
PCR with AmpliTaq Gold DNA Polymerase, PE Buffer II and MgCl2 (Applied
Biosystems) and primers designed for the region of interest (Primer Express,
Applied Biosystems). Primers were ordered with an M13-tail (underlined), to allow
direct sequencing of the PCR product (forward 50-gtaaaacgacggccagtcggaggagga-
gaagaaggag-30 and reversed 50-ggaaacagctatgaccatggcttggtctgcgctttgtc-30). PCR
products were run on an agarose gel to check efficiency and purified by high pure
PCR product purification kit (Roche, Mannheim, Germany) and sent for
sequencing (LGC Genomics).

HL GWAS genetic variants in eQTLs. From the HL GWAS meta-analysis, we
selected a subset of genetic variants that were (cis) eQTLs in (B cells alone or both

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4856

8 NATURE COMMUNICATIONS | 5:3856 | DOI: 10.1038/ncomms4856 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://hapmap.ncbi.nlm.nih.gov
http://pngu.mgh.harvard.edu/~purcell/plink
http://pngu.mgh.harvard.edu/~purcell/plink
www.Bioconductor.org
www.mircode.org
www.microRNA.org
http://www.nature.com/naturecommunications


B cells and monocytes), based on Fairfax et al.23 Variants located within the HLA
region (Position 6:25,000,000 to 6:35,000,000) were excluded due to the very high
degree of LD, leaving 21,608 SNPs. We used a permutation procedure to consider
the range of l expected by chance by randomly drawing 1,000 subsets (with
replacement) of 21,608 SNPs taken from the complete HL meta-analysis 885,168
non-MHC genetics variants of the original HL meta-analysis. We then estimated l
within each of randomly selected 1,000 subsets of 21,608 SNPs.
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