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Abstract – With the ageing population and increased cases of neurodegenerative diseases, there is a crucial need for
the development of new nutritional approaches to prevent and delay the onset of cognitive decline. Neuroinflammatory
processes contribute to neuronal damage that underpins neurodegenerative disorders. Growing evidence sheds light
on the use of dietary n-3 long chain polyunsaturated fatty acids to improve cognitive performances and reduce the
neuroinflammatory responses occurring with age and neurodegenerative pathologies. This review will summarise the
most recent information related to the impact and mechanisms underlying the neuroinflammatory processes in cognitive
disorders. We will also discuss the mechanisms underlying n-3 polyunsaturated fatty acids effect on neuroinflammation
and memory decline.
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Résumé – Acides gras polyinsaturés de la famille des oméga 3, processus neuroinflammatoires et troubles
cognitifs. Le développement d’approches nutritionnelles pertinentes pour prévenir et retarder l’apparition du déclin
cognitif est un enjeu important, compte tenu du vieillissement de la population et de l’augmentation de l’incidence des
maladies neurodégénératives. Les processus neuro-inflammatoires contribuent aux mécanismes neuropathologiques im-
pliqués dans les troubles neurodégénératifs et de la cognition. Des données récentes indiquent l’importance des acides
gras polyinsaturés n-3 alimentaires dans le maintien des performances mnésiques et la régulation de la neuroinflam-
mation liée à l’âge ou à la maladie d’Alzheimer. Dans cette revue, seront présentées des données récentes sur les liens
existants entre le statut nutritionnel en acides gras polyinsaturés n-3, les processus neuro-inflammatoires et les troubles
cognitifs associés, ainsi que les mécanismes qui pourraient être impliqués dans les effets protecteurs de ces acides gras.

Mots clés : Neuroinflammation /microglie / acides gras polyinsaturés n-3 / désordres cognitifs /maladie d’Alzheimer

1 Introduction

It is estimated that 35.6 million people worldwide are
living with dementia which is predicted to increase to 65.7
million by 2030 and 115.4 million by 2050. Neuroinflam-
mation is recognised for its overall role in Alzheimer Dis-
ease (AD) pathology, including the acceleration of neuronal
loss and amyloid beta (Aβ) and Tau mysfolding and deposi-
tion (Krabbe et al., 2013; Krstic et al., 2012). The majority
of AD drug treatments (cholinesterase inhibitors, N-methyl-
D-aspartate (NMDA) receptor antagonists) are poorly effi-
cient and do not delay neuronal death. A new potent strategy
will be to target neuroinflammatory processes. In this regard,
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several approaches that directly or indirectly target inflam-
mation are under development (Glass et al., 2010). Recently,
much attention has been given to long chain (LC) n-3 polyun-
saturated fatty acids (PUFA), eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), which have potent anti-
inflammatory activities, thus interesting for the prevention and
treatment of neuroinflammation and cognitive disorders in AD.

2 Cognitifs maladie d’Alzheimer
Neuroinflammation in neurodegenerative
diseases

Proinflammatory cytokines produced by activated in-
nate immune cells in response to tissue injury, infection or
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inflammation act on the brain through several pathways (hu-
moral, neural and cellular) (Dantzer et al., 2008). Activa-
tion of immune-to-brain communication ultimately induces
the production of brain cytokines by activated glial cells, par-
ticularly microglia (Dinel et al., 2014; Laye et al., 1994).
Neuroinflammation describes the brain inflammatory response
involving not only peripheral immune cells influx in the brain
but also the discrete response of brain innate immune cells
so called microglia. Microglia respond to non sterile stimuli
(pathogens such as virus, bacteria, etc) and get activated pro-
ducing pro and/or anti-inflammatory factors, in particular cy-
tokines but also lipid derived products such as prostaglandins
(PG). The microglia response promotes the clearance of
pathogens, toxic cellular debris and apoptotic cells and there-
fore protects the brain. Indeed, a complete blockade of mi-
croglial activity exacerbates brain damage in adult and sev-
eral ischemic injury models (Lalancette-Hebert et al., 2007).
Microglia is also activated in the brain associated to age-
ing, obesity, and neurodegenerative diseases. The cause of mi-
croglia activation in neurodegenerative diseases such as AD is
rather linked to neuropathological processes such as Aβ syn-
thesis or senescence of microglia cells and reactive oxygen
products (Heneka et al., 2015; Laye, 2010).

The sustained expression of inflammatory factors such as
proinflammatory cytokines can lead to neurodegeneration. The
production of proinflammatory response in the brain is there-
fore a double-edged sword representing a fine balance be-
tween protective and detrimental effects and therefore needs
to be tightly regulated. Microglia phenotypes could be cru-
cial in the protective or detrimental role of microglia response
toward neurons. Accordingly, whilst activated M1 cells have
cytotoxic properties, M2a are involved in repair and regen-
eration (Perry et al., 2010). In vivo, microglia express proin-
flammatory cytokines associated with an M1 response (inter-
leukin (IL)-1β, IL-6, IL-12 and tumor necrosis factor (TNF)α)
in response to an immune stimulus (Perry et al., 2010), while
the anti-inflammatory cytokines IL-10 and IL-4 deactivate the
M1 microglial phenotype (Fenn et al., 2012). Microglia senes-
cence, as observed in the ageing brain, impairs microglial
cells number, phagocytic activity and increases a production
of low-grade proinflammatory cytokines such as IL-1β, IL-6
and TNFα at the expense of anti-inflammatory factors such
as IL-10 and IL-4. This state is called inflammaging at the
periphery and in the brain. In addition to producing proin-
flammatory cytokines, senescent microglia also express lipo-
fuscin granules, higher levels of CD86, major histocompat-
ibility complex II (MHC II), toll-like receptors (TLRs) and
complement receptor 3 (CD11b) and display a decreased num-
ber and complexity of processes as described in activated
microglia (Hanisch and Kettenmann, 2007; Tremblay et al.,
2011). They also have reduced phagocytic activities of Aβ as
demonstrated in aged transgenic mice (Heneka et al., 2010).
The mechanisms involved in increased microglia activation
in the ageing brain is not fully understood, although the im-
paired expression of CD200 and CX3CR1, known to be pro-
duced by neurons to maintain microglia in the non-activated
state in the healthy brain, might be involved (Dilger and
Johnson, 2008). In addition, when challenged with either im-
mune stimuli or a stress, aged animals clearly mount an ex-
aggerated neuroinflammatory response, characterized by the

overproduction of proinflammatory cytokines (IL-1β, IL-6,
TNFα, iNOS) compared to young congeners with a longer du-
ration of activation (Barrientos et al., 2009; Godbout et al.,
2005; Sparkman et al., 2005). This phenomenon, first de-
scribed in a mice model of prion disease is called microglia
priming or sensitization (Cunningham et al., 2005). The fail-
ure of aged microglia to polarize from a proinflammatory to
an anti-inflammatory phenotype supports the detrimental role
of primed microglia in neurodegenerative diseases with a self-
sustaining and self-amplifying cycle of neurotoxicity. These
new knowledge therefore stimulate research aiming at devel-
oping drugs targeting the M1 phenotype. Failure to tightly reg-
ulate systemic immune activation and/or brain microglial ac-
tivation leads to significant and prolonged induction of brain
cytokines.

Microglia is also activated by insulin resistance develop-
ing in the ageing brain. Indeed, brain insulin resistance causes
Tau hyper-phosphorylation, increased β amyloid production
and plaque-associated microglial-mediated inflammatory re-
sponses (De la Monte, 2012). Upregulation of cytosolic phos-
pholipase A2 (cPLA2), which release free fatty acids such
as arachidonic acid (AA), has also been reported in neurode-
generative diseases such as AD (Sundaram et al., 2013). AA
metabolisation by cycloxygenases (COX) and lipoxygenases
(LOX) into PG, leukotrienes, thromboxanes (TX) and lipoxins
further triggers the neuroinflammatory response (Ong et al.,
2015).

The underlying mechanisms of neuronal degeneration as-
sociated with cognitive decline remain elusive, although it
is thought that several cellular and molecular events are in-
volved which are sensitive to oxidative stress and chronic
neuroinflammation. Indeed, chronic cytokines production has
been proposed to participate in cognitive decline through pro-
cesses related to neuroinflammation, neurodegeneration, struc-
tural remodelling and impaired neurotransmission (Capuron
and Miller, 2011; Delpech et al., 2015a; Laye, 2010). In par-
ticular, the activation of microglia leads to de novo produc-
tion of proinflammatory cytokines (i.e. IL-1β, IL-6 and TNFα),
chemokines, nitric oxide (NO), eicosanoids (i.e. PGE2) and re-
active oxygen species (ROS) (Barrientos et al., 2015; Vauzour,
2012). For example, increased level of IL-1β elevates the pro-
duction of ROS, which in turn, activates mitogen-activated
protein (MAP) kinases such as c-Jun N-terminal kinase (JNK)
and p38, resulting in cell damage and cell death therefore
impairing the long-term potentiation (LTP) and leading to
cognitive decline. In addition, the excessive production of
pro-inflammatory cytokines such as TNFα and IL-1β has
been reported to result in glutamate cytotoxicity by directly
stimulating NMDA receptors while inhibiting gamma-amino-
butyric acid (GABA)-A receptors (Barrientos et al., 2015;
Olmos and Llado, 2014).

Another mechanism by which cytokines may impair
synaptic plasticity (Delpech et al., 2015b) is their capac-
ity to induce the synthesis of indoleamine 2,3-dioxygenase
(IDO), a rate-limiting enzyme degrading tryptophan along
the kynurenine pathway, in activated microglia. Although
cytokine-induced activation of IDO is usually beneficial to
the host (Harrington et al., 2008), sustained brain IDO ac-
tivation can also be deleterious by negatively impacting the
monoaminergic neurotransmission (e.g. serotonin, dopamine)
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and neuronal survival (Capuron and Miller, 2011; Dantzer
et al., 2008). Indeed, increased brain or cerebrospinal fluid
concentrations of kynurenine and its neurotoxic metabolites
have been reported in several neurodegenerative and psychi-
atric disorders (Campbell et al., 2014; Capuron et al., 2011)
suggesting that IDO activation may lead to both functional and
structural alterations in the brain. Consistent with this state-
ment, activation of the kynurenine pathway has been recently
reported to affect human neurogenesis in the hippocampal for-
mation (Zunszain et al., 2012), an important brain structure
involved in cognitive functions and an important site for IDO
production (Andre et al., 2008; Frenois et al., 2007). In ad-
dition, pharmacological or genetic inhibition of IDO activ-
ity prevents induction of cognitive impairments (reviewed in
(Castanon et al., 2014).

Recently, the role of guanosine triphosphate cyclohydro-
lase I (GTP-CH1) in the cognitive effect of chronic inflam-
mation has also been revealed in elderly (Capuron and Miller,
2011). GTP-CH1 is the rate-limiting enzyme of GTP con-
version into 7,8-dihydroneopterin (BH2), which leads to the
production of neopterin at the expense of tetrahydrobiopterin
(BH4) (Oxenkrug, 2011). BH4 is a cofactor of aromatic
amino acid hydroxylase and therefore plays a fundamental
role in dopamine synthesis (Neurauter et al., 2008). Cytokines-
induced GTP-CH1 activation, classically assessed by measur-
ing increased production of neopterin, is therefore able to im-
pair the dopaminergic neurotransmission which is known to
be involved in mood disorders and cognitive dysfunctions, in-
cluding in conditions of chronic immune stimulation (Capuron
et al., 2011).

3 N-3 PUFAs, neuroinflammation
and cognitive disorders

As a result of the lack of effectiveness of current treat-
ments for cognitive disorders, a lot of effort has been in-
vested to enhance the search for new therapeutic targets. Based
on the results obtained in patients taking anti-inflammatory
drugs, a new possibility has been opened studying the as-
sociation of inflammatory processes and brain pathophysiol-
ogy. An important strategy to prevent brain impairment is
based on dietary changes and nutritional supplements, func-
tional foods and nutraceuticals. In this regard, a substantial
amount of recent evidence suggests that many food compo-
nents and in particular n-3 PUFA, could be good candidates
to modulate inflammation both acutely and chronically. LC
n-3 PUFA modulate the inflammatory processes by acting at
the immune system level through the regulation of inflamma-
tory gene expression, especially cytokines and chemokines,
the decrease of inflammatory PG and eicosanoids and the
induction of pro-resolutive factors, resolvins and protectins
that are involved in the resolution of inflammation (Calder,
2013; Serhan, 2007; Serhan et al., 2007). LC n-3 PUFA anti-
inflammatory effects are thought to require their incorporation
into plasma membranes of target tissues, however they have
short-term effect as they are rapidly metabolized into bioactive
products. In particular, EPA, DHA and their bioactive medi-
ators have potent anti-inflammatory and pro-resolving prop-
erties in the periphery (Serhan and Chiang, 2013) and in the

brain (Bazinet and Laye, 2014; Laye, 2010; Orr and Bazinet,
2008; Rapoport, 2008). Loss of these regulatory processes can
result in excessive, inappropriate or on-going inflammation
that can cause irreparable damage to host tissues, including the
brain. EPA is a substrate for the COX, LOX and cytochrome
P450 enzymes that produce 3-series eicosanoids (PG and TX)
and 5-series leucotrienes that are increased in macrophages
or neutrophils enriched in EPA and DHA by dietary means
(Calder and Grimble, 2002; Yates et al., 2014). In addition,
other anti-inflammatory and pro-resolving derivates so-called
resolvins, protectins and maresins are produced from EPA and
DHA from the COX and LOX pathways. Resolvin E1 (RvE1),
RvE2 and RvE3 are produced from EPA and RvD1, RvD2
and RvD5 are biosynthesized from DHA (reviewed in Serhan,
2007; Serhan et al., 2011). When produced in the brain, pro-
tectins are referred to as neuroprotectins (Bazan, 2012).

The cellular concentrations of LC n-3 and n-6 PUFA and
their metabolites are determined by their relative dietary in-
take. Increased dietary intake of LC n-3 PUFA has been shown
to significantly alter DHA levels in the brain (Freund Levi
et al., 2014) suggesting that DHA and EPA dietary supplemen-
tation could be used to directly influence neuroinflammatory
pathways (Bazinet and Laye, 2014). DHA entry in the brain is
still a matter of debate. Non esterified DHA freely enters the
brain (Bazinet and Laye, 2014; Song et al., 2010) and recently,
an orphan receptor, the major facilitator superfamily domain-
containing protein 2a (Mfsd2a) has been described as impor-
tant to transport DHA through the BBB (Nguyen et al., 2014).
In retinal cells, adiponectin receptor 1 is key for DHA uptake
and retention (Rice et al., 2015). Once in the brain, DHA exerts
anti-inflammatory/pro-resolutive activities through several ac-
tion modes briefly described below. We will focus on the effect
of LC n-3 PUFA on neuroinflammatory processes, especially
DHA as this LC n-3 PUFA accumulates in the brain, while
EPA does not.

At the periphery, inflammation is tightly regulated to be
quickly resolved. The control and resolution of inflammation
is due to the activation of several negative feedback mech-
anisms: secretion of anti-inflammatory cytokines, inhibition
of pro-inflammatory signalling cascades, shedding of recep-
tors acting as decoy targets for inflammatory mediators, glu-
cocorticoids and activation of regulatory cells. More recently,
pro-resolving lipid mediators have been identified as novel
key regulators of the resolution of inflammation. Resolution
is an active mechanisms allowing tissues to return to home-
ostasis in particular through pushing back invading neutrophils
from the inflamed tissue by new produced factors (Serhan,
2007). Indeed, the LC n-3 PUFA modulate the inflammatory
processes by acting at the immune system level through the
regulation of inflammatory gene expression, especially cy-
tokines and chemokines, the decrease of inflammatory PG
and eicosanoids and the induction of proresolutive factors, re-
solvins and protectins that are involved in the resolution of
inflammation (Calder, 2013; Serhan et al., 2007; Serhan and
Chiang, 2013). LC n-3 PUFA anti-inflammatory effects are
thought to require their incorporation into plasma membranes
of target tissues, however they have short term effect as they
are metabolized in bioactive products quite quickly. In partic-
ular EPA, DHA and their bioactive mediators have potent anti-
inflammatory and pro-resolving properties in the periphery
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(Serhan and Chiang, 2013) and in the brain (Bazinet and Laye,
2014; Laye, 2010; Orr and Bazinet, 2008; Rapoport, 2008).
Loss of these regulatory processes can result in excessive, in-
appropriate or on-going inflammation that can cause irrepara-
ble damage to host tissues, including the brain. Several reports
in humans highlight that higher dietary intake or blood/brain
level of EPA and/or DHA are correlated with lower risk of de-
veloping brain diseases with an inflammatory component in-
cluding AD and PD recently reviewed in (Bazinet and Laye,
2014).

EPA is a substrate for the COX, LOX and cytochrome P450
enzymes that produce 3-series eicosanoids (PG and TX) and
5-series leucotrienes (LT) that are increased in macrophages
or neutrophils enriched in EPA and DHA by dietary means
(Calder and Grimble, 2002; Yates et al., 2014). As the enzy-
matic pathway used to convert EPA into the 3 and 5 series
derivates is the same than the one used to convert arachidonic
acid (AA), a n-6 PUFA, into series 2 derivates, the higher level
of EPA allow to produce more 3 series derivates that are less
proinflammatory. Thus, EPA results in decreased production
of proinflammatory eicosanoids from AA and increased pro-
duction of weaker proinflammatory eicosanoids. In addition,
other anti-inflammatory and pro-resolving derivates so-called
resolvins, protectins and maresins are produced from EPA and
DHA from the COX and LOX pathways. Resolvin E1 (RvE1),
RvE2 and RvE3 are produced from EPA and RvD1, RvD2
and RvD5 are biosynthesized from DHA (reviewed in Serhan,
2007; Serhan et al., 2011). When produced in the brain, pro-
tectins are referred to as neuroprotectins (Bazan, 2012). Impor-
tantly, resolvin synthesis is increased in the blood or peripheral
tissues of both humans and laboratory rodent with enriched
levels of EPA and DHA by dietary means (Calder, 2015). The
anti-inflammatory activity of these compounds is linked to the
inhibition of the synthesis of proinflammatory cytokines such
as IL-1β and TNFα and the inhibition of trans-endothelial mi-
gration of neutrophils into tissues, preventing the infiltration
of these cells in inflamed tissues therefore protecting from ex-
cessive inflammation (Ariel and Serhan, 2007; Calder, 2015).
Some of the biological activities of resolvins are mediated by
specific G-protein coupled receptors. Indeed, RvD1 activates
lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2)
and orphan receptor G protein coupling receptor 32 (GPR32)
to limit leukocyte infiltration in tissues and attenuate the pro-
duction of proinflammatory cytokines (Fredman et al., 2014;
Wang et al., 2014). Interestingly, RvD1 promotes the synthe-
sis of pro-resolvin miRNAs and elicits macrophage polariza-
tion toward an M2-like phenotype (Pierdomenico et al., 2015).

LC PUFA cannot be synthesized by vertebrates and must
be obtained from diet. Therefore, the cellular concentrations
of LC n-3 and n-6 PUFA, and their relative derived bioac-
tive products are determined by their relative dietary intake.
Increased dietary intake of LC n-3 PUFA has been shown to
significantly alter DHA levels in the brain (Freund Levi et al.,
2014) suggesting that DHA and EPA dietary supplementation
could be used to directly influence neuroinflammatory path-
ways (Bazinet and Laye, 2014). DHA entry in the brain is
still a matter of debate. Non esterified DHA freely entries the
brain (Bazinet and Laye, 2014; Song et al., 2010). Recently,
an orphan receptor, the major facilitator superfamily domain-

containing protein 2a (Mfsd2a) has been described as impor-
tant to transport DHA through the BBB (Nguyen et al., 2014).
Once in the brain, DHA exerts anti-inflammatory/proresolutive
activities through several action modes briefly described be-
low. However, poor studies studied in humans the effect
of LC n-3 PUFA supplementation on neuroinflammation or
microglia activity in vivo.

Higher dietary intakes of DHA are correlated with lower
risk of developing several neurodegenerative and neuropsy-
chiatric diseases that are associated with inflammatory com-
ponent (AD, depression, etc.) thus it was hypothesized that
one mechanism may be via anti-inflammatory signalling in the
brain (Bazinet and Laye, 2014; Laye, 2010) Epidemiological
studies have provided more consistent support for n-3 PUFA’s
anti-inflammatory properties than randomized controlled trials
(RCTs) (Sijben and Calder, 2007). Indeed, several epidemi-
ological and observational studies report that a higher level
of blood n-3 PUFAs is associated with lower proinflamma-
tory cytokine production (Alfano et al., 2012; Farzaneh-Far
et al., 2009; Ferrucci et al., 2006; Kiecolt-Glaser et al., 2007,
2011). In a cohort of elderly subjects, depressive individu-
als with an elevated plasma n-6/n-3 ratio were found to ex-
hibit higher levels of the proinflammatory cytokine TNFα and
of IL-6 (Kiecolt-Glaser et al., 2007). F2-isoprostane, an ox-
idative marker and telomere length an indicator of immune
cell ageing, are decreased in the blood of subjects supple-
mented with EPA/DHA (Kiecolt-Glaser et al., 2013). Addi-
tionally, LC n-3 PUFA supplementation in elderly subjects re-
duced the levels of inflammatory cytokines produced by blood
leukocytes stimulated in vitro (Meydani et al., 1991). The pro-
duction of PGE2 by monocytes is inversely correlated to the
EPA content of leukocytes obtained from aged subjects after
the consumption of dietary complements containing different
doses of EPA (Rees et al., 2006). However, even if most of
randomized trials with LC n-3 PUFAs have reported consis-
tent decreased inflammation in groups with high baseline in-
flammation (stressed students, elderly, diabetics, and hyper-
triglyceridemic subjects), results are mixed (Fritsche, 2006).
Indeed, DHA/EPA dietary supplementation in healthy sub-
jects blunted the endocrine stress response and the increase in
body temperature, with or without impact on cytokine produc-
tion after bacterial endotoxin administration (Ferguson et al.,
2014; Michaeli et al., 2007). AD patients supplemented with
a DHA-rich diet display reduced release of proinflammatory
cytokines (IL-1β, IL-6, GM-CSF) from stimulated peripheral
blood mononuclear cells (Vedin et al., 2008). In addition, stu-
dents with DHA/EPA supplementation show a decreased anx-
iety and proinflammatory cytokines production only in ex vivo
stimulated immune cells but not in the plasma (Kiecolt-Glaser
et al., 2011). However, decreased plasma cytokines level was
observed in students with the higher increase of LC n-3 PUFA
after supplementation, reinforcing the necessity in RCT of
evaluate both basal level of LC n-3/n-6 PUFA before and af-
ter dietary interventions. A potential explanation of conflicting
results from randomised controlled trials might be that some
condition-specific clinical end points are more sensitive mark-
ers to LC n-3 PUFA treatment than immune markers. For in-
stance, a LC n-3 PUFA-enriched diet (Souvenaidr© formula-
tion) revealed improved cognitive decline in mild AD patients
without taking any AD drug, by influencing synaptic plasticity
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along with cognitive tasks (Scheltens et al., 2012). Addition-
ally, as lifestyle habits impact on cognition and the onset of
dementia, the efficacy of a LC n-3 PUFA enriched diet on
neuroinflammatory markers might be revealed if included in
a multidomain intervention trial. The Finnish geriatric inter-
vention study to prevent cognitive impairment and disability
(FINGER) study is the first long-term randomised controlled
trial showing a beneficial impact on cognition in at-risk older
individuals of a multiple intervention (nutritional guidance, ex-
ercise, cognitive training and social activity) (Ngandu et al.,
2015). The development of such strategies points out the im-
portance of assessing the subject’s lifestyle habits in particular
from mid-life (Fratiglioni et al., 2004, 2007).

4 How do n-3 PUFA mechanisms control
neuroinflammation?

Whether decreased brain DHA level through dietary means
is proinflammatory in absence of proinflammatory stimulus
has been poorly studied in animal models. In vivo, chronic di-
etary n-3 PUFA deficiency significantly increased the produc-
tion and release of IL-6 and TNFα in the blood (McNamara
et al., 2010) while it was not the case in adult and aged mice
brain (Delpech et al., 2015a; Mingam et al., 2008; Moranis
et al., 2012). However, DHA decrease in the brain during
post-natal period strongly affects microglia activity (Madore
et al., 2014). On the opposite, the expression of brain proin-
flammatory cytokines following systemic LPS administration
(Delpech et al., 2015a; Mingam et al., 2008), brain ischemia-
reperfusion (Lalancette-Hebert et al., 2011) or spinal cord in-
jury (Huang et al., 2007) is reduced in the brain of rodents with
higher level of DHA by genetic or dietary means. Short-term
exposure to dietary EPA reduced IL-1-induced spatial memory
deficit and anxiolytic behavior (Song et al., 2004, 2008) and
improved LPS and Aβ-induced inhibition of LTP in both adult
and aged rats (Minogue et al., 2007). Furthermore, DHA and
NPD1 infusion in the brain is acutely protective toward brain
cytokine production and microglia activation (Lukiw et al.,
2005; Orr et al., 2013). In addition, DHA increase in the brain
protects from the effect of bacterial endotoxin-induced synap-
tic plasticity impairment and ageing (Delpech et al., 2015a,
2015c; Labrousse et al., 2012).

Proper neuronal membrane lipid composition is crucial
to maintain neuronal signalling. Neuronal membranes, which
are highly enriched in DHA (Bazan et al., 2011), are sus-
ceptible to oxidative damage and metabolic perturbations.
As most receptors are embedded, damage to the membrane
would disrupt all forms of neuronal communication (Gomez-
Pinilla et al., 2008). With ageing, lipid composition and fat
deposition distribution are disturbed in the brain, most likely
due to decreased liver peroxisomal β-oxidation (Yang et al.,
2014; Zamzow et al., 2014), which is responsible for spe-
cific fatty acids synthesis such as DHA (Ferdinandusse et al.,
2001). In addition, along with the decreased level and activ-
ity of the enzyme delta 6-desaturase (Yehuda et al., 2005),
the higher cholesterol content in the ageing neuronal mem-
brane decreases membrane fluidity of the BBB (Yehuda et al.,
2002). Both in vivo and in vitro studies have reported anti-
inflammatory activities of DHA in the brain especially in mi-

croglia (Laye, 2010; Orr and Bazinet, 2008). At the cellu-
lar level, brain DHA modulates several proinflammatory sig-
nalling pathways in microglia such as TLR signalling and
nucleotide-binding oligomerization domain protein (NOD)
signalling (De Smedt-Peyrusse et al., 2008; Liu et al., 2012),
inhibits JUNK (Ma et al., 2009), and reduces or blocks NF-kB
signalling (De Smedt-Peyrusse et al., 2008; Orr et al., 2013).
The inhibitory effect of DHA on proinflammatory signalling
pathway could be mediated by both non-genomic and genomic
effect. Indeed, DHA influences membrane composition of mi-
croglial cells and the TLR4 positioning, decreasing the binding
of its ligand LPS (De Smedt-Peyrusse et al., 2008). DHA also
impairs the phospholipid raft assembly of EPA and DHA in the
plasma membrane (Rockett et al., 2011; Ruth et al., 2009). In
addition, genomic effect of DHA has been reported thanks to
its effect on specific receptors either located at the membrane
such as GPR120 or GPR40 and/or the regulation of the perox-
isome proliferator activated receptor (PPARγ) (Calder, 2013).
The anti-inflammatory activity of DHA could also derive from
its direct effect on invading macrophages or microglia. Both
in vitro and in vivo data highlight that DHA blocks invading
macrophages and microglia activation and the signalling path-
way (NF-kB) in the brain and spinal cord of several inflamma-
tory rodents models (De Smedt-Peyrusse et al., 2008; Figueroa
et al., 2012; Lim et al., 2013; Lu et al., 2013). Recent data
highlight that in vitro DHA has not only anti-inflammatory
activity but also promotes microglia to a M2 phenotype with
increased Aβ42 phagocytosis (Hjorth et al., 2013).

In the brain, LC n-3 PUFA could also yield protective in-
fluence indirectly, through the synthesis of bioactive derivates
with pro-resolutive activities. Indeed, several in vitro stud-
ies performed on microglia show that several LC n-3 PUFA
pro-resolving derivatives have potent effects. As an example,
RvD1 triggers anti-inflammatory activities and potentiates IL-
4-induced expression of M2 markers in microglial cells and
the signaling pathways involved in these processes, in particu-
lar the PPARγ signalling pathways (Li et al., 2014; Odusanwo
et al., 2012; Wang et al., 2014). In addition, RvD1 inhibits
the activation of several proinflammatory signalling pathways,
including NFkB and MAPK in microglia cells which ex-
press RvD1 receptors ALX (Xu et al., 2013). Another impor-
tant mediator of anti-inflammatory activity of DHA is NPD1
(Bazan, 2006, 2012). This DHA derivative inhibits leukocyte
infiltration, COX-2 expression, and NFκB activation in vivo
and in vitro (Marcheselli et al., 2010). In addition, aspirine-
triggered NPD1 (AT-NPD1), recently discovered as a new po-
tent neuroprotective derivative of DHA, could also exert strong
anti-inflammatory and pro-resolutive activities (Bazan et al.,
2012).

In the ageing brain, microglial activation, production of
proinflammatory cytokines such as IL-1β and alterations in
hippocampal LTP with age are attenuated by EPA (Lynch
et al., 2003, 2007). A 2-month fish-oil dietary supply increases
DHA in the brain, prevented proinflammatory cytokines ex-
pression and astrocytes morphology changes in the hippocam-
pus and restored spatial memory deficits and Fos-associated
activation in the hippocampus of aged mice (Labrousse et al.,
2012). To the extent that the level of peripheral cytokines
reflects that of cytokines in the brain, these results suggest
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that dietary n-3 PUFAs modulate neuroinflammation and as-
sociated neurobehavioural effects in elderly individuals. How-
ever, the direct effect of DHA on the brain immune system is
difficult to ascertain since primary injury in these animal mod-
els of neuroinflammation was also improved. Chronic neu-
roinflammation in the brain of patients with AD could in-
dicate that the resolution of inflammation is dysfunctional.
To support this notion, while proinflammatory stimuli such
as LPS promoted resolvin pathways activation in microglia,
Aβ42 had an opposite or insignificant effect suggesting that
pro-resolutive pathways are impaired in AD (Zhu et al., 2015).
This is further substantiated by the observation that the lipoxin
A4 (LXA4) level is decreased in postmortem brain tissue and
cerebrospinal fluid samples from AD patients (Wang et al.,
2015b). Very recently, it was shown that upon Aβ40 expo-
sure, peripheral blood mononuclear cells from AD patients se-
creted less LXA4 and RvD1 together with the disease progres-
sion. Importantly, dietary supplementation of DHA prevented
this reduction (Wang et al., 2015a), suggesting that long chain
n-3 PUFAs protect from the Alzheimer-associated inflamma-
tion through the promotion of pro-resolving signaling. Inter-
estingly, LOX and LTB4 expression increases while LXA4 de-
creases in the brain of aged and AD mice models (Dunn et al.,
2015).

Recent data show that 12 and 5-LOX are widely expressed
in the brain where it mainly localizes in neuronal cells. In vivo
overexpression of 5-LOX increases phosphorylation of spe-
cific Tau epitopes, and neuronal cells transfected with 5-LOX
show a significant increase in tau phosphorylation even when
their ability to generate Aβ is completely blocked, suggest-
ing that the effect on tau is independent from Aβ (Chu et al.,
2012). Interestingly, Tau-mice treated with zileuton (a potent
5-LOX inhibitor) displayed a significant improvement in mem-
ory and synaptic function together with a decreased tau phos-
phorylation level (Chu and Pratico, 2013; Giannopoulos et al.,
2014). The use of PD146176, a specific 12/15 LOX inhibitor,
also improved memory deficits and decreased Aβ plaques and
neurofibrillary tangles in a genetic mice model of AD (Chu
et al., 2015). All together, these data suggest the importance
of using DHA and/or its mediator to target neuroinflammatory
processes in the management of neurodegenerative diseases.
This new therapeutic strategy is of particular importance since
the target of proinflammatory pathways with COX-2 inhibitors
is puzzling as (1) they poorly cross the BBB, (2) some of
AA derivatives dependent on COX-2 are proresolutive and (3)
COX-2 inhibitors are poorly efficient in AD (Aid and Bosetti,
2007, 2011; McGeer and McGeer, 2007).

5 Conclusion

Chronic neuroinflammation, demonstrated by the activa-
tion of microglia and astrocytes as well as the release of re-
active oxygen species and cytokines, has a considerable inter-
est in cognitive disorders, and is a target site for developing
for prevention and treatment of neurodegenerative diseases. In
this regard, n-3 PUFAs are an interesting dietary strategy to
limit dementia. A better understanding of the effects of n-3 PU-
FAs and their derivatives in microglia are therefore warranted.
Nonetheless, it is worth noting that it is not clear whether the

n-3 PUFAs derivatives with anti-inflammatory activity access
the brain to interact directly with microglia. While it is bi-
ologically plausible that peripheral inflammatory modulation
may reflect brain health, further human studies are required
to elucidate whether dietary n-3 PUFAs target microglia. The
use of imaging techniques like positron emission tomography
(PET) imaging to measure in vivo changes in microglia activa-
tion (Cagnin et al., 2007) would be of high benefit to decipher
this important question.
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