T. Akagi, A. Ikegami, Y. Suzuki, J. Yoshida, M. Yamada et al., Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon, Diospyros kaki Thunb.) fruit. Planta, vol.230, pp.899-915, 2009.

R. A. Arnold, A. C. Noble, and V. L. Singleton, Bitterness and astringency of phenolic fractions in wine, Journal of Agricultural and Food Chemistry, vol.28, pp.675-678, 1980.

J. Bogs, M. O. Downey, J. S. Harvey, A. R. Ashton, G. J. Tanner et al., Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves, Plant Physiology, vol.139, pp.652-663, 2005.

T. Bontpart, V. Cheynier, A. Ageorges, and N. Terrier, BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds, New Phytologist, vol.208, pp.695-707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837760

L. Boulekbache-makhlouf, E. Meudec, M. Chibane, J. P. Mazauric, S. Slimani et al., Analysis by high-performance liquid chromatography diode array detection mass spectrometry of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria, Journal of Agricultural and Food Chemistry, vol.58, pp.12615-12639, 2010.

G. Carrier, Y. F. Huang, L. Cunff, L. Fournier-level, A. Vialet et al., Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach, Plant Physiology and Biochemistry, vol.72, pp.87-95, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004748

V. Cheynier, Polyphenols in foods are more complex than often thought, American Journal of Clinical Nutrition, vol.81, pp.223-229, 2005.

B. G. Coombe and C. R. Hale, The hormone content of ripening grape berries and the effects of growth substance treatments, Plant Physiology, vol.51, pp.629-634, 1973.

P. M. Dewick, The shikimate pathway: aromatic amino acids and phenylpropanoid pathway, Dewick PM, Medicinal natural products, 2002.

P. M. Dewick and E. Haslam, Phenol biosynthesis in higher plants, The Biochemical Journal, vol.113, pp.537-542, 1969.

L. Ding, D. Hofius, M. R. Hajirezaei, A. R. Fernie, F. Börnke et al., Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants, Journal of Experimental Botany, vol.58, pp.2053-2067, 2007.

O. Emanuelsson, H. Nielsen, V. Heijne, and G. , ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites, Protein Science, vol.8, pp.978-984, 2006.

S. Fabre, N. Pinaud, E. Fouquet, and I. Pianet, Colloidal behavior of wine galloylated tannins, Comptes Rendus Chimie, vol.13, pp.561-565, 2010.

E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel et al., ExPASy: The proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, vol.31, pp.3784-3788, 2003.

C. Gomez, N. Terrier, and L. Torregrosa, Grapevine MATE-type proteins act as vacuolar H + -dependent acylated anthocyanin transporters, Plant Physiology, vol.150, pp.402-415, 2009.

J. Guo, Y. Carrington, A. Alber, and J. Ehlting, Molecular characterization of quinate and shikimate metabolism in Populus trichocarpa, Journal of Biological Chemistry, vol.289, pp.23846-23858, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01253900

E. Haslam and Y. Cai, Plant polyphenols (vegetable tannins): gallic acid metabolism, Natural Product Reports, vol.11, pp.41-66, 1994.

Y. F. Huang, A. Doligez, and A. Fournier-level, Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping, BMC Plant Biology, vol.12, p.30, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267958

A. Ikegami, A. Sato, M. Yamada, A. Kitajima, and K. Yonemori, Expression of genes involved in proanthocyanidin biosynthesis during fruit development in a Chinese pollination-constant, non astringent (PCNA) persimmon, 'Luo Tian Tian Shi', Journal of American Society of Horticultural Science, vol.130, pp.830-835, 2005.

X. Jiang, Y. Liu, and W. Li, Tissue-specific, developmentdependent phenolic compounds accumulation profile and gene expression pattern in tea plant, 2013.

, PLoS One, vol.8, 62315.

M. Karimi, D. Inzé, and A. Depicker, GATEWAY((TM)) vectors for Agrobacterium-mediated plant transformation, Trends in Plant Science, vol.7, pp.193-195, 2002.

J. A. Kennedy, G. J. Troup, J. R. Pilbrow, D. R. Hutton, D. Hewitt et al., Development of seed polyphenols in berries from Vitis vinifera L. cv, Shiraz. Australian Journal of Grape Wine Research, vol.6, pp.244-254, 2000.

F. Khater, D. Fournand, S. Vialet, E. Meudec, V. Cheynier et al., Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis, Journal of Experimental Botany, vol.63, pp.1201-1214, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02646338

M. Lambert, E. Meudec, A. Verbaere, G. Mazerolles, J. Wirth et al., A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines, Molecules, vol.20, pp.7890-7914, 2015.

J. M. Landete, Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health, Food Research International, vol.44, pp.1150-1160, 2011.

K. Li, M. R. Mikola, K. M. Draths, R. M. Worden, and J. W. Frost, Fedbatch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli, Biotechnology and Bioengineering, vol.64, pp.61-73, 1999.

Y. Liu, L. Gao, L. Liu, Q. Yang, Z. Lu et al., Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis), The Journal of Biological Chemistry, vol.287, pp.44406-44417, 2012.

, INRA Institut National de la Recherche Agronomique on, 2016.

D. Lizarraga, C. Lozano, J. J. Briedé, J. H. Van-delft, S. Touriño et al., The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts, FEBS Journal, vol.274, pp.4802-4811, 2007.

H. Maeda and N. Dudareva, The shikimate pathway and aromatic amino acid biosynthesis in plants, Annual Review of Plant Biology, vol.63, pp.73-105, 2012.

G. Michel, A. W. Roszak, V. Sauvé, J. Maclean, A. Matte et al., Structures of shikimate dehydrogenase AroE and its paralog YdiB. A common structural framework for different activities, The Journal of Biological Chemistry, vol.278, pp.19463-19472, 2003.

R. Milo and R. L. Last, Achieving diversity in the face of constraints: lessons from metabolism, Science, vol.336, pp.1663-1667, 2012.

F. Monteiro, M. Sebastiana, M. S. Pais, and A. Figueiredo, Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars, PLoS One, vol.8, 2013.

D. M. Mousdale, M. S. Campbell, and J. R. Coggins, Purification and characterization of a bifunctional dehydroquinase-shikimate: NADP oxidoreductase from pea seedlings, Phytochemistry, vol.26, pp.2665-2670, 1987.

R. M. Muir, A. M. Ibáñez, and S. L. Uratsu, Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia), Plant Molecular Biology, vol.75, pp.555-565, 2011.

R. Niemetz and G. G. Gross, Enzymology of gallotannin and ellagitannin biosynthesis, Phytochemistry, vol.66, 2001.

V. Ossipov, J. P. Salminen, S. Ossipova, E. Haukioja, and K. Pihlaja, Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway, Biochemical Systematics and Ecology, vol.31, pp.3-16, 2003.

J. E. R-development-core-team-;-richman, Y. C. Chang, S. Kambourakis, K. M. Draths, E. Almy et al., Reaction of 3-dehydroshikimic acid with molecular oxygen and hydrogen peroxide: products, mechanism, and associated antioxidant activity, R Foundation for Statistical Computing, vol.118, pp.11587-11591, 1996.

S. A. Singh and D. Christendat, Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway, Biochemistry, vol.45, pp.7787-7796, 2006.

S. A. Singh and D. Christendat, The DHQ-dehydroshikimate-SDHshikimate-NADP(H) complex: insights into metabolite transfer in the shikimate pathway, Crystal Growth & Design, vol.7, pp.2153-2160, 2007.

S. Singh, J. Stavrinides, D. Christendat, and D. S. Guttman, A phylogenomic analysis of the shikimate dehydrogenases reveals broadscale functional diversification and identifies one functionally distinct subclass, Molecular Biology and Evolution, vol.25, pp.2221-2232, 2008.

C. P. Song, Y. Guo, Q. Qiu, G. Lambert, D. W. Galbraith et al., A probable Na + (K + )/H + exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana, Proceedings of the National Academy of Sciences, vol.101, pp.10211-10216, 2004.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, pp.2725-2729, 2013.

N. Terrier, L. Torregrosa, A. Ageorges, S. Vialet, C. Verriès et al., Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway, Plant Physiology, vol.149, pp.1028-1041, 2009.

C. Verriès, J. L. Guiraud, J. M. Souquet, S. Vialet, N. Terrier et al., Validation of an extraction method on whole pericarp of grape berry (Vitis vinifera L. cv. Syrah) to study biochemical and molecular aspects of flavan-3-ol synthesis during berry development, Journal of Agricultural Food Chemistry, vol.56, pp.5896-5904, 2008.