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Abstract

Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environ-
ment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are 
limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predic-
tions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the 
model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be 
obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading 
date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (Vsat and Pbase, represent-
ing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes 
grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting Vsat and 
Pbase with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, 
respectively. QTL-based Vsat and Pbase estimates were able to predict heading date of an independent validation data 
set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 
8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be 
used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.

Key words: Association genetics, ecophysiological model, gene-based modelling, heading date, phenology, wheat.

Introduction

Hexaploid wheat is native to the Middle East and now occu-
pies 22% of the total cultivated area in the world (Leff  et al., 
2004). Much of this expansion in cultivation area has been 
facilitated by developing adapted wheat cultivars through 
the use of genetic variation for the timing of plant develop-
ment or phenology (Cockram et al., 2007). Short-cycle spring 
wheat cultivars have been selected for regions with a highly 
continental climate that require late planting in the spring to 
avoid frost damage and early harvesting to avoid drought or 
heat stress in summer. In more temperate climatic regions, 

long-cycle cultivars allow planting in autumn to benefit from 
a longer growing season. These adaptations have resulted 
from both historical selection of seed by farmers over centu-
ries of local production, and over the last century or so, from 
breeder selections for phenological variation, particularly for 
heading date

By influencing the time that a crop has to use resources, 
phenology accounts for substantial genetic control of grain 
yield in cultivated plant species. In wheat, the fine tuning 
of cultivar earliness is a prerequisite for matching climatic 

© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
Abbreviations: DOY, day of the year; RMSEP, root mean square error of prediction.
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conditions and realising yield potential in a given environ-
ment (Snape et al., 2001; Reynolds et al., 2009; Foulkes et al., 
2011). In the context of changes in global climate that are 
associated with an increase in the occurrence and intensity of 
drought and heat stress in the main areas of wheat cultivation 
(Lobell et  al., 2011; Semenov and Shewry, 2011), strategies 
based on adaptation through earliness are often proposed to 
avoid these constraints (Gouache et al., 2012; Zheng et al., 
2012). In cultivated conditions, wheat susceptibility to biotic 
and abiotic stress (Slafer and Rawson, 1995; Porter and 
Semenov, 2005; Del Ponte et al., 2007) and fertilizer require-
ments (Hirel et al., 2007; Pask et al., 2012) varies during the 
life cycle. Reciprocally, the efficiency of cultural management 
varies during the crop life cycle. For example, heading date 
is usually taken as a reference point for the last nitrogen fer-
tilization application as this increases grain protein concen-
tration without decreasing grain yield (Gooding and Davies, 
1992; Woolfolk et al., 2002). Therefore, predicting phenology 
of wheat cultivars is essential for choosing the best-adapted 
cultivar for a specific growing region and to plan cultural 
management at the right time.

Wheat phenology depends on vernalization requirements, 
photoperiod sensitivity, and earliness per se (Worland, 1996). 
Substantial progress has been made in understanding the 
genetic control of wheat phenology, and several major genes 
have been cloned. The Ppd-1 genes, located on the homoe-
ologous group 2, are involved in the circadian clock (Beales 
et  al., 2007). Mutations at these loci cause semi-dominant 
photoperiod insensitivity which results in early flowering. 
Photoperiod-insensitive alleles have been identified for each 
of the three homoeologous copies (Mohler et al., 2004; Beales 
et al., 2007; Wilhelm et al., 2009), conferring different degrees 
of photoperiod insensitivity. The allele denoted Ppd-D1a 
creates the earliest-flowering phenotype, followed by Ppd-
A1a and Ppd-B1a (Bentley et  al., 2010). The major effects 
of vernalization requirements are determined by the Vrn 
genes (Worland, 1996; Snape et al., 2001). The Vrn-1 series 
(on homoeologous group 5) are involved in the perception of 
the vernalization signal and the induction of the floral transi-
tion at the shoot apex (Yan et al., 2003). Mutations (inser-
tions or deletions) in the regulatory regions of at least one 
of the three homoeologous Vrn-1 copies are associated with 
dominant spring growth alleles (Fu et  al., 2005). The Vrn-
2 series are located on homoeologous group 4 (Vrn-B2 and 
Vrn-D2) and 5 (Vrn-A2) (Yan et al., 2004), and act as flow-
ering repressors which are downregulated by vernalization 
(Yan et al., 2004). The Vrn-3 series, located on homoeologous 
group 7, has been identified as the ‘florigen’ signal moving 
from leaves to promote the floral transition at the shoot apex 
(Yan et al., 2006; Li and Dubcovsky, 2008). Mutations (SNP, 
insertions-deletions) on the Vrn-D3 series have been shown 
to induce variations for heading date (Bonnin et al., 2008). 
A  Vrn-D4 gene, located in the centromeric region of chro-
mosome 5D, has also been identified (Yoshida et al., 2010). 
Molecular studies have unravelled interactions among these 
major genes, and gene networks showing their inter-relation-
ship have been proposed (Trevaskis et  al., 2007; Distelfeld 
et al., 2009; Shimada et al., 2009; Trevaskis, 2010). No major 

functional genes have yet been identified with earliness per 
se, the characteristic whereby an ‘early’ line will flower more 
quickly than a ‘late’ line if  both are first vernalized and then 
grown under an extended photoperiod regime.

Numerous QTL studies for heading date have been carried 
out in wheat (e.g. Sourdille et al., 2000; Börner et al., 2002; 
Hanocq et al., 2004; Bogard et al., 2011; Carter et al., 2011). 
This growth stage is relatively easier to measure compared 
to other critical growth stages such as the beginning of stem 
elongation or anthesis. Although heading date correlates with 
anthesis date, genetic variability for the heading to anthesis 
date period exists in wheat (unpublished results) and would 
probably require specific studies. Apart from the major genes 
described above, the combined analysis of these QTL studies 
or meta-QTL analysis have revealed small-effect loci on most 
of the wheat chromosomes (Hanocq et  al., 2007; Griffiths 
et al., 2009). However, while these studies identify novel loci, 
their utility is limited in terms of prediction. Indeed, QTL 
analysis of heading date in multiple environments leads to 
an ‘environment-specific’ QTL model as significant QTLs 
and estimated additive effects differ with the environments. 
For example, in a study of a wheat population grown in 10 
environments, the estimated additive effect of the Ppd-D1 
gene varied from 5 to 9 days depending on the environment 
(Bogard et al. 2011).

Ecophysiological models account for both environment 
and genetic effects through a design process that aims to 
dissect traits into ‘environment-independent’ components. 
Genotype × environment interactions then become emergent 
properties of the models (Chapman et  al., 2003; Trewavas, 
2006; Bertin et al., 2010; Yin and Struik, 2010). The use of 
ecophysiological models allows prediction of wheat with a 
good accuracy with root mean square error of prediction 
(RMSEP) for heading date being as low as 4 to 7 days (Weir 
et al., 1984; Asseng et al., 1998; White et al., 2008; He et al., 
2011; Zheng et al., 2013). Ecophysiological models that pre-
dict wheat phenology include: (1) Empirical models based 
on accumulation of thermal time modified by vernalization 
and photoperiod (Weir et al., 1984; Ritchie and Otter, 1985; 
Asseng et  al., 1998) and (2) mechanistic models simulating 
the emission of leaves and spike primordia at the shoot apex 
(Jamieson et  al., 1998). Empirical models rely on the daily 
calculation of vernalization and photoperiod factors reduc-
ing daily thermal time accumulation; once the total accu-
mulated thermal time passes a defined value, a given stage 
is reached. In the mechanistic model Sirius (Jamieson et al., 
1998), photoperiod affects the final leaf number in response 
to the daylength occurring at the two-leaf stage after the flag-
leaf primordium has formed [see details in Brooking et  al. 
(1995)]. The vernalization submodel in Sirius was described 
in Robertson et  al. (1996). Briefly, a vernalization index is 
calculated daily depending on daily mean temperature and 
cardinal vernalizing temperatures (vernalizing effects increas-
ing linearly from 0 to 15°C and decreasing linearly to 0 from 
15 to 17°C). Vernalization is satisfied either when the vernali-
zation index reaches one or when the number of primordia 
on the apex exceeds a maximal attainable final leaf number 
corresponding to the number of leaves produced by a winter 
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cultivar grown in long days at temperatures above 17°C. 
Although these models differ in form, their performances in 
terms of prediction are comparable (Jamieson et al., 2007). 
In addition to agro-climatic inputs (e.g. temperature, photo-
period, sowing date, and soil type), response parameters are 
required to initialize these models. Some of these, termed 
‘genetic parameters’, reflect genetic variations in the model 
and may differ among cultivars. An important property of 
these genetic parameters is their assumed de facto independ-
ence from the environment. Unfortunately, determining these 
parameters’ values requires extensive and time-consuming 
experiments for each cultivar either for them to be measured 
(when this is feasible) or to be optimized.

The concept of a gene-based model has been proposed 
to describe the possible future direction of crop modelling 
to capture the large amount of data generated by molecular 
techniques (White and Hoogenboom, 1996; Chapman et al., 
2002a; Chapman et  al., 2002b; White and Hoogenboom, 
2003; White, 2006; Chapman, 2008; Letort et  al., 2008; 
White, 2009). Gene-based modelling aims to fill the gap 
between ecophysiological modelling and genetics by inte-
grating knowledge from each field into a holistic framework. 
The approach consists of replacing empirically determined 
genetic parameters by genetic coefficients explicitly reflecting 
the allelic composition of the genotypes. For crop improve-
ment, one output of gene-based ecophysiological models 
would be the in silico identification of the best allelic combi-
nation for a given set of environments, so-called ‘ideotypes’ 
(Reymond et al., 2003; Letort et al., 2008; Chenu et al., 2009). 
Examples of gene-based or QTL-based models include: leaf 
elongation rate in Zea mays (Reymond et  al., 2003; Chenu 
et  al., 2008); Prunus quality (Quilot et  al., 2005); phenol-
ogy in Glycine max (Messina et  al., 2006); flowering date 
in Oryza sativa (Nakagawa et  al., 2005); barley (Yin et  al., 
2005); Phaseolus vulgaris (White and Hoogenboom, 2003); 
wheat (White et al., 2008); Brassica oleracea (Uptmoor et al., 
2011); and using knowledge on the gene network regulating 
flowering in wheat (Brown et al., 2013). Particularly relevant 
to the research domain here, White et al. (2008) proposed a 
gene-based model to predict the genetic parameters of the 
CSM-CROPSIM-CERES model for wheat cultivars using 
multiple linear regressions with genetic markers for Ppd-D1 
and Vrn1 genes as predictors. They concluded that, if  gene-
based prediction of wheat phenology appeared feasible, more 
genetic information should be included into the model. More 
recently, Zheng et  al. (2013) estimated the effect of Ppd-
D1 and Vrn1 genes on two phenological parameters of the 
APSIM model (Keating et al., 2003) and obtained high pre-
dictive ability for spring wheats grown across the Australian 
wheat belt. However, their method still requires that experi-
ments be carried out under artificial conditions (artificial 
vernalization and extended photoperiod) to estimate a third 
genotype-specific parameter related to the duration in modi-
fied thermal time between emergence and heading, and is 
therefore not a method that can be applied using only genetic 
information.

The objective of this study is to propose a QTL-based eco-
physiological model to predict heading date in bread wheat 

(Triticum aestivum L.). In contrast with the approaches 
of White et al. (2008) and Zheng et al. (2013), no assump-
tions were made about which genes determined the model 
parameters. The strategy consisted in optimizing two genetic 
parameters of an ecophysiological model (Vsat and Pbase, 
representing vernalization requirement and photoperiod 
sensitivity, respectively) for each of the 210 genotypes of 
an association genetics panel grown under contrasting con-
ditions. Genetic markers associated with model parameters 
were then identified and used to obtain multiple linear models 
predicting Vsat and Pbase by stepwise regression. Finally, pre-
dictions of heading dates using QTL-based parameters were 
tested on an independent set of 88 genotypes grown in six 
environments.

Materials and Methods

Phenotypic data
Heading dates were recorded in various contrasting conditions for 
a large panel of bread wheats comprising different combinations 
of spring/winter and photoperiod sensitive/insensitive accessions. 
Association genetics analyses have been published using this panel 
to study earliness components (Bonnin et al., 2008; Rousset et al., 
2011; Le Gouis et al., 2012). The panel used here is a subset of 210 
accessions from the INRA bread wheat core collection of 372 acces-
sions which aims to represent worldwide wheat diversity (Balfourier 
et al., 2007). The subset aimed to maintain the diversity originally 
present in the entire panel (Rousset et al., 2011). Experiments were 
carried out in France in different location × sowing date combina-
tions. The association genetics panel was grown for three autumn 
sowings and one spring sowing at Clermont-Ferrand (45°46’N, 
03°09’E, 401m a.s.l.) and three autumn sowings and three spring sow-
ings at Le Moulon (48°42’ N, 02°08’ E, 156m a.s.l.) as described by 
Bonnin et al. (2008), Rousset et al. (2011) and Le Gouis et al. (2012). 
Autumn-sown experiments in Le Moulon (2003 to 2005) were sown 
in two randomized complete blocks where 20 seeds of each genotype 
were sown in two 1.2-m-long single rows. In the other experiments, 
10 seeds of each genotype were sown in a single-row. Ear emergence 
day of the main tiller of five to six individual plants was recorded 
when half  of the ear had emerged from the flag leaf. Numbers were 
averaged to obtain heading date for each genotype, reported here as 
day of the year (DOY).

Ecophysiological model
The ecophysiological model used in this study is based on the accu-
mulation of  thermal time modified by vernalization and photoper-
iod factors. The model works on a daily time-step and calculates, 
for each day, the thermal time accumulated as a function of  daily 
temperature and daily photoperiod. Wheat development is split 
into different phases, and three factors limited to vary between 0 
and 1 reducing thermal time accumulation are calculated based 
on response curves for temperature, accumulated vernalizing days, 
and photoperiod (FT, FV, and FP, respectively). Daily accumu-
lated thermal time (Tt) is modified by vernalization and photo-
period factors (FV and FP) during the phase from emergence to 
heading and leads to the calculation of  a modified thermal time 
(PVTt):

 PVTt Tt FV FP= × ×  (1)

A growth stage is reached when the accumulated modified thermal 
time exceeds the duration of the corresponding phase. The duration 
of the sowing to emergence phase was 148 modified degree days, and 
the duration from emergence to heading (TTemhe) was either fixed 
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at 500 modified degree days or allowed to vary between genotypes 
depending on the optimization strategy (see ‘Optimization of model 
parameters’ section).

The model is a modified version of that proposed by Weir et al. 
(1984). The original form relied on the simulation of a cosinusoidal 
variation of temperature across the day based on daily minimal and 
maximal temperature data. The day is divided into eight three-hours 
periods, and the contribution of temperature across the day is then 
integrated by averaging the contributions of the eight periods [equa-
tion 1 in Weir et al. (1984)]. In contrast, the present model used daily 
mean temperature (TM) only:

 

( )
TM

Tmin Tmax= +
2  (2)

with Tmin  being the daily minimum temperature, and Tmax  the 
daily maximum temperature. FT is calculated from TM and a bilin-
ear function with three cardinal temperatures (Tbase, Topt, and Tmax):

 FT TM T TM Tbase max= ≤0for or ≥  (3)

 
FT

TM T

T T
T TM Tbase

opt base
base opt=

−( )
−( )

< ≤for 
 

(4)

 
FT

T TM

T T
T TM Tmax

max opt
opt max=

−( )
−( )

< ≤for 
 

(5)

Tbase, Topt, and Tmax were set to 1°C, 26°C, and 37°C, respectively, 
as in Weir et al. (1984). FT allows calculation of the contribution of 
TM to the daily accumulated thermal time (Tt):

 Tt FT Topt= ×  (6)

The vernalization factor FV is calculated depending on the number 
of vernalizing days (VDD) accumulated by the crop. VDD accumu-
lates from germination, although FV modifies the daily accumulated 
thermal time only from plant emergence with the effect continuing 
until heading is reached. This is a simplification of the model pro-
posed by Weir et al. (1984) in which the vernalization effect stops 
at floral initiation. Each day, the efficiency of vernalization (Veff) is 
calculated from TM and a function with four cardinal temperatures 
(T1, T2, T3, and T4):

 V TM T TM Teff = < >0 1 4for  or  (7)

 
V

TM T
T T

T TM Teff = −
−

≤ <( )
( )

1

2 1
1 2for

 
(8)

 V T TM T T TM Teff = ≤ ≤ ≤ ≤1 2 3 2 3for for (9)

 
V

T TM
T T

T TM Teff = −
−

< ≤( )
( )

4

4 3
3 4for

 
(10)

T1, T2, T3, and T4 were set to –4°C, 3°C, 10°C, and 17°C, respec-
tively, as in Weir et al. (1984). VDD is then calculated by summing 
Veff from day 1 to day i:

 
VDD Vi

i

eff= ∑
1

 (11)

FV varies between 0 and 1 and is calculated from VDD and a 
function with two parameters, Vbase and Vsat:

 
FV

VDD V
V V

base

sat base

= −
−

( )
( )  (12)

Vbase was set to zero days so that spring wheats with Vsat close to 
zero reach full vernalization (FV = 1) very early. Vsat was considered 
as a genetic parameter, thus varying between genotypes.

Daily photoperiod was calculated as in Weir et al. (1984) by con-
sidering that photoperiod-effective radiation starts and ends when 
the sun is 6° below the horizon. The photoperiod factor (FP) is cal-
culated from daily photoperiod (Ph) and a function with two param-
eters, Popt and Pbase. FP is limited to vary between 0 and 1 and is 
calculated as:

 
FP

Ph P
P P

base

opt base

= −
−

( )
( )

 (13)

Popt was set to 20 h while Pbase was considered as a genetic param-
eter. The model was coded in S language and run using R (R 
Development Core Team, 2013).

Optimization of model parameters
Either two (Vsat and Pbase, 2p strategy) or three (Vsat, Pbase, and TTemhe, 
3p strategy) parameters representing different earliness components 
were optimized. Regarding photoperiod sensitivity, Pbase or Popt 
could have been optimized indifferently (equation 13). The choice 
of Pbase was therefore arbitrary. Regarding vernalization require-
ment, cardinal vernalizing temperatures could have been optimized 
instead of Vsat, but this would probably have required optimizing at 
least two temperatures (T1 and T2 in equation 7 to 9) and therefore 
increased the number of parameters to optimize. In the same way, 
it appeared more relevant to optimize TTemhe, representing earliness 
per se, instead of cardinal temperatures Tbase, Topt, or Tmax.

Pbase was varied between 0 and 10 h with a 0.1 h step (101 values); 
Vsat, between 0 and 130  days with a 1  day step (131 values); and 
TTemhe, between 400 and 800 with a 10 modified degree days step (41 
values). In the 2p strategy, TTemhe was fixed at 500 modified degree 
days. All the Vsat × Pbase (2p strategy) or Vsat × Pbase × TTemhe (3p 
strategy) combinations were generated leading to 101 × 131 = 13 231 
or 101 × 131 × 41 = 542 471 parameter combinations (or ‘parameters 
vectors), for 2p and 3p, respectively. Results obtained with the 2p 
and 3p strategies were compared. Additionally, Vsat and Pbase were 
optimized for the original and the modified version of the Weir et al. 
(1984) model, and results of predictions obtained for the calibration 
data set were compared to check if  our modified version for tem-
perature did not reduce model predictive ability.

For each genotype, parameter optimization was carried out by 
simulating predicted heading dates for all the Vsat × Pbase (2p strat-
egy) or Vsat × Pbase × TTemhe (3p strategy) combinations, for all exper-
iments of the calibration data set where the genotype was tested, 
and then calculating the RMSEP between observed and predicted 
heading dates:

 
RMSEP

Obs Pred

n
i

i

n
ij ij

=
−( )=∑ 1

2

 
(14)

where Obsij  and Predij  are the observed and predicted heading 
dates of genotype i in DOY for experiment j, and n is the number 
of experiments where genotype i was tested. For each genotype, 
the vector(s) of parameters that resulted in the minimum RMSEP 
across environments was (were) selected.

In order to link parameters to genetic markers, it is necessary to 
unambiguously identify parameter vectors that not only allow accu-
rate prediction of heading date but also reflect the genetic architecture 
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of the accessions making up the panel used in the study. The panel 
used in this study may be split into 53 winter and 157 spring geno-
types, the former being genotypes that did not head in the spring-
sown experiments and apparently had an obligate requirement for 
vernalisation. Parameter optimization was conducted differently 
for these two groups. Optimizations of spring genotypes were car-
ried out using autumn- and spring-sown experiments, while optimi-
zations of winter genotypes were carried out using autumn-sown 
experiments only. As results of optimization were ambiguous in this 
latter case, with multiple parameter vectors minimizing the RMSEP, 
the information that winter genotypes did not head under spring 
sowing was used to filter parameter vectors. This filtering consisted 
in removing sets of parameters that predicted heading dates which 
were earlier than the last heading date recorded plus 10 days in each 
of the spring-sown experiments. When multiple parameter vectors 
led to the minimum RMSEP, a vector of parameters was arbitrarily 
chosen so that Pbase and Vsat were close to the median values of the 
different parameter vectors minimizing the RMSEP.

An additional analysis was performed to test the robustness of 
Pbase and Vsat optimization (2p strategy). The procedure consisted 
in optimizing Pbase and Vsat for each genotype using different sets of 
experiments. Each set of experiments was obtained for each geno-
type by sampling at random nspring–1 of the spring-sown experiments 
and nautumn–1 of the autumn-sown experiments (nspring and nautumn 
being the total number of available spring or autumn experiments 
for a given genotype). For each genotype, optimizations were carried 
out separately for each random set of experiments, and results were 
compared to assess the robustness of the Vsat and Pbase parameters.

Model sensitivity analysis
A basic sensitivity analysis was carried out by running simulations 
of heading date for all the 542 471 Pbase × Vsat × TTemhe parameter 
combinations for each autumn- and spring-sown experiment of the 
calibration data set. Variations of heading date for each experiment 
were modelled as a multiple linear model with Vsat, Pbase, and TTemhe 
as predictors:

 
Y X

i

p

i i= +
=
∑β β0

1

 

The variation of heading date due to each parameter was assessed 
using standardized regression coefficients (SRC) calculated as 
follows:

 
SRC

V X

V Y
i

i= ( )
( )

β 2

 

with

 

V Y V X
i

p

i( ) = ( )
=
∑

1

2β  

where Y represents simulated heading dates; Xi, values of param-
eter i (Pbase, Vsat, or TTemhe); β0, the intercept; and βi, regression coef-
ficient for parameter i.  This showed (as a percentage) how much 
variation of heading date was due to Vsat, Pbase, or TTemhe. The SRC 
were then aggregated for the autumn-and spring-sown experiments 
to show differences in model sensitivity.

Genotype data
Genotype imputation was carried out for 1797 (SSR, DArT, and 
SNP) unmapped markers by random forest regression for all the 
genotypes (Stekhoven and Bühlmann, 2012). Genotype imputation 
allows missing genotype data to be filled by using genetic infor-
mation from relatives. Aside from methods requiring physical or 

genetic map information, random forest regression allows imputa-
tion of genotype data without prior knowledge of marker positions. 
Analysis of imputed data should lead to increased statistical power 
for association genetics, but in this study is essential to allow fitting 
of statistical models linking parameters to genetic markers on the 
whole set of genotypes (otherwise, genotypes with missing data for 
any of the markers involved in the model would have been discarded). 
Genotype imputation of the unordered markers was carried out in 
R using the missForest package (Stekhoven and Bühlmann, 2012). 
The missForest function provides the proportion of falsely classified 
(PFC) entries for each marker. Markers for which genotype impu-
tation resulted in a PFC > 0.2 were discarded before subsequent 
regression analysis. This resulted in 1603 polymorphic genetic mark-
ers including 53 SSR, 451 DArT, and 1099 SNP.

Association genetic analysis
Association analysis was carried out in order to identify genetic 
markers associated to variation of Vsat, Pbase, and TTemhe for the 2p 
and 3p strategies. For each marker, rare genotypes (frequency less 
than 5%) were considered as missing data. This led to a missing data 
rate ranging from 0 to 9% with only 5% of the markers showing 
some missing data. The structure was obtained by Rousset et  al. 
(2011) with 82 SSR markers and was further used by Le Gouis et al. 
(2012). The structure of the panel was taken into account by using 
the relative contribution of each genotype to four ancestral groups 
as covariates in the model. Association genetics was carried out for 
each marker by fitting a linear model as follow:

 y m g g g gij ik i i i i ij= + + + + +1 2 3 4   (15)

where yij is the value of trait j (Vsat, Pbase, or TTemhe) for genotype i, 
mik is the allele of genotype i at marker k, and g g g gi i i i1 2 3 4+ + +  
are the contributions of genotype i to each of four ancestral 
groups. Association analysis was carried out using TASSEL v2.1 
(Bradbury et al., 2007). Adjusted P-values were obtained after 1000 
permutations.

Statistical models to predict Vsat, Pbase, and TTemhe

Only genetic markers associated (P < 0.05) with one of the model 
parameters (Vsat, Pbase, and TTemhe) were considered. First, blocks of 
collinear markers were identified by calculating the correlation coef-
ficient (rLD) between all pairs of loci. Markers were considered col-
linear when rLD ≥ 0.8. Among markers included in a collinear block, 
the marker with the fewest missing data before genotype imputa-
tion was chosen in order to minimize possible errors coming from 
genotype imputation. Linear models for Vsat, Pbase, and TTemhe were 
obtained using multiple linear regressions with backward elimina-
tion of the markers: all the markers associated with Vsat, Pbase, or 
TTemhe and previously filtered for collinearity were included in the 
model and markers with P-values > 0.05 were iteratively removed 
one at a time. The same approach was used to model Vsat and Pbase 
using only associated major genes. This analysis quantified the pro-
portion of variation of model parameters that could be explained 
by additional minor-effect QTLs, compared to known major gene 
effects.

Validation of the QTL-based model
The QTL-based model was validated on a set of  88 independ-
ent genotypes grown for two years (2006 and 2007)  in Estrées-
Mons (49°53’N, 3°00’E, 85m a.s.l.), Le Moulon (48°40’N, 
2°10’E, 156m a.s.l.), and Joze (45°86’N, 3°30’E, 300m a.s.l.) 
as described in Bordes et  al. (2013). These six location × sow-
ing date combinations were not used for model calibration. For 
each genotype, predicted Vsat and Pbase (2p strategy) or Vsat, Pbase, 
and TTemhe (3p strategy) were obtained from the corresponding 
models linking genetic markers to ecophysiological parameters.  
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The ecophysiological model was then used to predict heading 
dates for each genotype using parameters as estimated by the 
genetic markers. Quality criteria used to assess the QTL-based 
model included the RMSEP between observed and predicted 
heading dates and the coefficient of  determination (R2).

Results

Model sensitivity analysis

Standardized regression coefficients (SRC) ranged from 0 to 
72%, 0 to 20%, and 27 to 88% for the Vsat, Pbase,and TTemhe 
parameters, respectively (Fig.  1). In autumn-sown experi-
ments, the model was much more sensitive to TTemhe and Pbase 
(SRC ranging from 79 to 88% and 11 to 20%, respectively) 
than to Vsat (SRC ranging from 0 to 0.01%) (Fig. 1). In con-
trast, in spring-sown experiments, the model was highly sen-
sitive to Vsat (SRC ranging from 70 to 72%) and less so to 
TTemhe (SRC ranging from 27 to 29%) or Pbase (SRC ranging 
from 0 to 0.01%; Fig. 1). These trends were expected as cold 
temperatures experienced by the crop in autumn-sown exper-
iments generally allows full vernalization, while development 
of wheat sown under long days in the spring is not expected 
to be limited by photoperiod.

Optimization of the ecophysiological model parameters

For each of the 53 winter genotypes (lines that did not head in 
srping-sown experiments and were parameterized using only 
autumn-sown experiments), the number of parameter vectors 
leading to the minimum RMSEP with the 2p strategy ranged 
from 1 to 86 and half  of the genotypes showed more than 
eight unique parameter vectors that minimized the RMSEP. 
Depending on the genotype, standard deviations ranged from 
0 to 42 days and 0 to 0.6 h for Vsat and Pbase, respectively. After 
filtering of these parameter vectors, the number of vectors 
ranged from 1 to 39 with half  of these genotypes having <5 
parameter vectors selected. Standard deviations for Vsat and 
Pbase decreased, ranging from 0 to 8 days and 0 to 0.2 h for 
Vsat and Pbase, respectively. Regarding the 157 spring geno-
types for which optimization was carried out using autumn- 
and spring-sown experiments, the number of parameter 
vectors selected for each genotype ranged from 1 to 16 and 
75% of genotypes had only one unambiguous parameter 
vector. Standard deviations ranged from 0 to 2.9  days and 
from 0 to 0.28 h for Vsat and Pbase, respectively. When mul-
tiple parameters vectors were found minimizing RMSEP, a 
vector of parameters was arbitrarily chosen so that Pbase and 
Vsat were close to the median values of the parameter vectors 

Fig. 1. Sensitivity analysis of a modified version of the Weir et al. (1984) phenological model. Standardized regression coefficients showing the 
percentage of variation of heading date explained by each model parameter (Vsat, Pbase, and TTemhe) were calculated in each autumn- and spring-sown 
experiment used to optimize the model for the genotypes of the calibration data set. This figure is available in colour at JXB online.
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minimizing the RMSEP. As shown by standard deviations of 
Vsat and Pbase, for the spring genotypes and after filtering for 
the winter genotypes, all the possible vectors had relatively 
similar values for Vsat and Pbase. Similar results were obtained 
with the 3p strategy. Similarly close values of Vsat and Pbase 
were obtained for each genotype when multiple optimizations 
were carried out using different random sets of experiments 
(ESM; Fig. 1). Across genotypes, standard deviations of Vsat 
and Pbase ranged from 0 to 12 days and from 0 to 0.4 h, respec-
tively. This demonstrated that the optimization procedure was 
sufficiently robust to reliably parameterize each genotype.

In the 2p analysis, Vsat varied from 6 to 127 days and Pbase 
from 0 to 9 h among genotypes. Based on Shapiro-Wilk tests, 
distributions of Vsat and Pbase could not be considered as 
Gaussian (P-values <0.001 and <0.01, respectively). Both 
parameters showed multimodal distributions suggesting the 
presence of major genes with large effects segregating in this 
material (Fig.  2A and 2B). A  significant but small positive 
correlation coefficient (r) was found between Vsat and Pbase 
(r = 0.32, P < 0.001, data not shown).

In the 3p analysis, Vsat varied from 7 to 130 days among 
genotypes; Pbase, from 0.1 to 8.8 h; and TTemhe, from 400 to 
740 modified degree days. The distributions of  optimized 
parameters Pbase and TTemhe were skewed towards extreme 
values (7 h and 400°C days, respectively; Fig.  2D and 2E). 
Moreover, the correlation between these two parameters was 
highly negative (r = –0.70, P < 0.001, data not shown), indi-
cating possible compensations between these parameters and 
making it difficult to identify parameter vectors that inde-
pendently reflect genotype photoperiod sensitivity and earli-
ness per se.

Prediction of heading date using the ecophysiological 
model with optimized parameters

Depending on the environment, the difference between the 
latest and the earliest heading date varied from 24 to 66 days, 
thus reflecting the large genotypic variability for heading date 
in this germplasm (Table  1). In autumn-sown experiments, 
this difference varied from 24 to 36 days while it was higher 
in spring-sown experiments, ranging from 60 to 66  days 
(Table 1).

Across the 10 location × sowing date combinations, pre-
dicted heading dates obtained using the modified Weir et al. 
(1984) model with Vsat and Pbase optimized parameters (2p 
strategy), explained 97% of the variation with an RMSEP of 
3.1 days (Fig. 3). Separate analyses for the spring and winter 
genotypes showed RMSEP of 3.2 and 2.1, and R2 of 0.98 and 
0.89, for these two groups of genotypes, respectively (data not 
shown). Considering each location × sowing date combina-
tion separately, RMSEP and R2 ranged from 1.5 to 5.5 days 
and 0.73 to 0.97, respectively (Table 1), thus showing that the 
model reproduced genotypic variability for heading date in 
the set of environments used for model calibration.

The modified 2p strategy described above was also com-
pared to a 2p strategy using the original Weir et  al. (1984) 
model, i.e. where thermal time was calculated using a three-
hourly time step. The results with the original model showed 

an RMSEP ranging from 2.4 to 10 days with percentage of 
variance explained from 56 to 95% depending on the experi-
ment (Table  1, numbers in parentheses), i.e. the modified 
model using thermal time based on daily mean temperature 
performed better than the original model, at least on this 
data set.

The results obtained with the 3p strategy applied to the 
modified Weir model (optimization of Vsat, Pbase, and TTemhe) 
were slightly better than those for the 2p strategy modified 
Weir model, showing an RMSEP of 2.6 days and an R2 of 
0.98 across all the 10 experiments of the calibration data set 
(data not shown). For the 3p model, a separate analysis for 
the different experiments showed RMSEP ranging from 1.4 
to 5.0 days and R2 from 0.84 to 0.98 depending on the experi-
ment (Table 1).

Association genetics analysis

For the 2p strategy using the modified Weir et  al. (1984) 
model, the genetic analysis identified 43 and 66 markers asso-
ciated with Vsat and Pbase (P < 0.05), respectively. The percent-
age of variance explained by each associated marker varied 
from 4 to 21% and 3 to 17% for Vsat and Pbase, respectively. 
Most of the markers (90%) associated with either Vsat or Pbase 
explained less than 10% of the variation. Only markers that 
were co-located at known major gene loci (Ppd-D1, Vrn-A1 
and Vrn-B1) explained greater than 10% of parameter vari-
ations. No marker was associated with both Vsat and Pbase. 
All genomic regions associated to variations of Vsat and Pbase 
had been previously detected as associated to variations of 
heading date in this panel (Bonnin et al., 2008; Rousset et al., 
2011; Le Gouis et al., 2012).

The results for the 3p strategy identified 37, 2, and 3 mark-
ers associated with Vsat, Pbase, and TTemhe (P < 0.05), respec-
tively. While the number of markers associated with Vsat 
appeared consistent between the 2p (40 markers) and 3p (37 
markers) strategies, the number of genetic markers associated 
with Pbase dropped between the 2p (66 markers) and 3p (two 
markers) strategies. The marker for the photoperiod-sensitiv-
ity gene Ppd-D1, which was previously associated with Pbase 
in the 2p strategy, was associated to TTemhe in the 3p strategy.

QTL-based prediction of ecophysiological model 
parameters

After filtering markers obtained with the 2p strategy for col-
linearity, 28 and 36 markers were available to model Vsat and 
Pbase, respectively. The statistical model predicting Vsat com-
prised 11 markers located on chromosomes 2D, 4A, 4B, 5A, 
5B, and 7A (Table  2) and explained 71% of the genotypic 
variation for Vsat (Fig. 4A). The most prominent markers in 
this model were those associated with Vrn-A1 (markers Vrn.
A1ex7 and Vrn.A1pr) and Vrn-B1 genes (markers vern.5B.
Sins.8761 and Vrn.B1int1) and one marker located on chro-
mosome 2D (FdGogat.2D.Y.545). Markers Vrn.A1ex7, 
vern.5B.Sins.8761, Vrn.A1pr, and FdGogat.2D.Y.545 
explained 39.5, 16.1, 4.6, and 5.3% of the variation of Vsat 
(Table 2). Two markers for each of the Vrn-A1 and Vrn-B1 
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genes were selected in the model, suggesting that there may 
be different polymorphic regions in these genes responsible 
for variations of vernalization requirement. Allelic effects (in 

absolute value) on Vsat ranged from 2.1 to 36.6 days (Table 2). 
Coefficients of the model for the alleles of the Vrn.A1ex7 
marker agreed with the expectation that spring allele ‘22’ 

a

c d

e

b

Fig. 2. Distributions of the Vsat (a, c), Pbase (b, d) and TTemhe (e) parameters of a modified version of the Weir et al. (1984) phenological model optimized 
for the 210 genotypes of a wheat-association genetics panel when two (Vsat and Pbase; a, b) or three (Vsat, Pbase, and TTemh; c, d, and e) parameters were 
optimized. This figure is available in colour at JXB online.
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decreased the vernalization requirement (Table  2) (Rousset 
et al., 2011). The statistical model predicting Pbase comprised 
12 markers located on chromosomes 1A, 2B, 2D, 3B, 5A, 
5B, 6A, 6B, 7A, and 7B (Table 2) and explained 68% of the 
genotypic variation for Pbase (Fig.  4B). The main explana-
tory markers were for the Ppd-D1 gene (PpdD1.PromDel), 
an SNP (cfn5828), and an SSR (gpw1107), which explained 
27.4, 15.3, and 12.2% of the variation of Pbase, respectively 
(Table  2). Allelic effects (in absolute value) on Pbase ranged 
from 0.1 to 1.5 h (Table 2). Coefficients of the model for the 
alleles of the PpdD1.PromDel marker agreed with the expec-
tation that insensitive allele ‘2’ decreased the value of Pbase.

Models obtained using only the known associated major 
genes for Vsat (Vrn-A1, Vrn-B1, and LUMINIDEPENDENS) 
and Pbase (Ppd-D1 and Vrn-A3) were calculated. Clearly, it 
appeared that prediction of Vsat was already reasonable when 
using only Vrn-A1, Vrn-B1, and LUMINIDEPENDENS 
as predictors (R2 = 0.61, data not shown) although the use 
of additional loci allowed reaching R2  =  0.71 (Fig.  4A). 
However, prediction of Pbase using Ppd-D1 and Vrn-A3 was 
poor (R2  =  0.36, data not shown) and benefited from the 
inclusion of additional genetic markers (Fig. 4B).

For the 3p strategy, 16 markers were identified for Vsat, 
explaining 73% of the variation (data not shown). The model 
and QTL-based predictions of Vsat were very similar for the 
2p and 3p strategies. However, the model for Pbase comprised 
only one marker (wPt-1664, not associated to Pbase in the 2p 

strategy) and explained only 5% of Pbase (data not shown). 
In the same way, model TTemhe comprised only three mark-
ers (wPt-1664, Ppd-D1, and wPt-7108 associated to Pbase in 
the 2p strategy) and explained 25% of the variation for this 
parameter (data not shown).

Predictions of heading date and model validation

Observed heading dates were compared to heading dates 
predicted by optimized or QTL-based parameters obtained 
with the 2p strategy for the autumn-sown experiments of the 
calibration data set. Across autumn-sown experiments of the 
calibration data set, predictions with optimized parameters 
explained 91% of the variation with an RMSEP of 2.2 days 
(Fig.  5A) while predictions with QTL-based parameters 
explained 68 % of the variation with an RMSEP of 4.2 days 
(Fig.  5B). Relationships between observed and predicted 
heading dates with optimized parameters across the autumn 
sown experiments showed RMSEP of 2.3 and 2.1 days and 
R2 of 0.90 and 0.89 for the spring and winter genotypes, 
respectively. In comparison, when QTL-based parameters 
were used, spring and winter genotypes showed RMSEP of 
4.1 and 4.3 days and R2 of 0.66 and 0.67, respectively. This 
separate analysis did not show any prediction bias between 
the spring and winter genotypes. When considering individ-
ual experiments, R2 ranged from 0.92 to 0.97 (median equal to 
0.94) and RMSEP from 1.5 to 3.7 days (median equal to 2.2) 

Table 1. RMSEP and percentages of variance explained (R2) of the relationships between observed and predicted heading dates 
simulated with a modified version of the Weir et al. (1984) phenological model for the calibration and validation data sets grown in 
contrasting location × sowing date combinations using optimized (calibration data set only) or QTL-based parameters (calibration and 
validation data sets)a

Data set Location Sowing date n Mean (min.; max.) Optimized parameters QTL-based parameters

2p 3p 2p 3p

RMSEP R2 RMSEP R2 RMSEP R2 RMSEP R2

Calibration Clermont- Ferrand 27/10/2004 206 139 (126; 154) 2.3 (5.2) 0.93 (0.87) 2.0 0.94 3.6 0.68 5.0 0.34
08/11/2005 62 143 (133; 157) 3.7 (2.4) 0.93 (0.89) 3.0 0.94 4.5 0.68 5.3 0.31
23/02/2006 75 149 (140; 165) 5.5 (8.1) 0.73 (0.56) 3.5 0.84 8.2 0.41 8.7 0.27
20/11/2008 210 143 (130; 159) 2.4 (3.6) 0.92 (0.84) 1.9 0.94 4.3 0.62 5.5 0.32

Le Moulon 20/10/2003 171 146 (125; 161) 2.0 (10.0) 0.97 (0.95) 1.4 0.98 4.2 0.76 6.3 0.42
05/04/2004 114 181 (160; 226) 5.4 (7.9) 0.95 (0.91) 5.0 0.95 17.6 0.63 14.6 0.68
20/10/2004 164 143 (121; 156) 1.9 (8.1) 0.96 (0.90) 1.5 0.97 4.1 0.73 5.9 0.41
04/04/2005 122 178 (160; 223) 4.0 (6.2) 0.94 (0.93) 4.1 0.94 13.4 0.56 10.6 0.62
20/10/2005 165 146 (132; 162) 1.5 (8.6) 0.96 (0.91) 1.6 0.96 4.3 0.69 6.5 0.34
07/04/2006 131 179 (160; 220) 2.6 (4.8) 0.97 (0.90) 2.5 0.97 15.0 0.54 15.4 0.48

Validation Le Moulon 26/10/2006 88 127 (100; 141) - - - - 5.6 0.59 6.6 0.38

23/10/2007 88 142 (115; 157) - - - - 5.0 0.61 7.0 0.37

Joze 29/10/2006 88 133 (112; 146) - - - - 5.7 0.57 7.7 0.31

25/10/2007 88 147 (134; 160) - - - - 8.6 0.48 10.9 0.30

Estrées- Mons 17/10/2006 88 135 (104; 151) - - - - 5.6 0.63 8.0 0.41

22/10/2007 88 148 [129; 160) - - - - 6.7 0.58 9.0 0.31

a Unusual spring sowings are highlighted in bold. Results obtained with optimized parameters on the calibration data set with the original model from 
Weir et al. (1984) are shown in parentheses. Results obtained after optimization of two (2p) or three (3p) parameters are shown. The number of wheat 
genotypes (n), the mean and the range of variation of heading dates (in days) are indicated. Genotypes and location × sowing date combinations of the 
validation data set were not used to optimize parameters or calibrate the QTL-based model and are therefore totally independent.

 at IN
R

A
 C

entre de C
lerm

ont-Fd/T
heix on O

ctober 14, 2014
http://jxb.oxfordjournals.org/

D
ow

nloaded from
 

http://jxb.oxfordjournals.org/


Page 10 of 17 | Bogard et al.

when heading dates were predicted with optimized param-
eters (Table  1) while R2 ranged from 0.62 to 0.76 (median 
equal to 0.68) and RMSEP from 3.6 to 4.5  days (median 
equal to 4.3) when heading dates were predicted with QTL-
based parameters (Table  1). Compared to results obtained 
using optimized parameters, RMSEP was increased by 0.8 to 
2.8 days (median increase of 2.0 days) and R2 decreased by 
0.21 to 0.30 (median decrease of 0.25) when heading date was 
predicted using QTL-based parameters.

The model was next tested on a set of 88 independent 
genotypes grown in six independent location × sowing date 
combinations. Differences between the earliest and the latest 
genotypes varied from 26 to 47 days in this validation data set 
(Table 1). This largely covered the range of variation observed 
in the calibration data set for autumn sowings which varied 
between 24 and 36 days (Table 1). Across all of the validation 
data set, heading dates predicted with QTL-based parameters 
explained 73% of the variation with an RMSEP of 6.3 days 
(Fig. 6). When looking at each location × sowing date combi-
nation of the validation data set separately (Table 1), RMSEP 
ranged from 5.0 to 8.6 (median equal to 5.6 days) and R2 from 
0.48 to 0.63 (median equal to 0.58).

In comparison to the 2p strategy, QTL-based prediction 
results obtained with the 3p strategy showed reduced pre-
dictive ability for both the calibration and validation data 
sets. Separate analyses for each autumn-sown experiment 

of the calibration data set showed RMSEP ranging from 
5 to 6.5  days and R2 ranging from 0.31 to 0.42 (Table  1). 
Considering experiments of the validation data set separately, 
RMSEP ranged from 6.6 to 10.9 days and R2 from 0.30 to 
0.41 (Table 1).

Discussion

Gene-based modelling assists in integrating knowledge from 
plant ecophysiology and genetics (Chapman et  al., 2002a; 
Chapman et  al., 2002b; White and Hoogenboom, 2003; 
White, 2006; Letort et  al., 2008; White, 2009). One out-
come of this is to improve ecophysiological modelling and 
the prediction of cultivar performance. Another outcome 
is to assist in quantitatively assessing the effect of genes by 
explicitly accounting for genotype × environment interac-
tions. In terms of targeting breeding, these outcomes can 
open the way to the identification of ideotypes for current 
and/or future climate environments (Chenu et al., 2009). In 
this study, we proposed a QTL-based ecophysiological model 
to predict heading date in bread wheat. Two parameters (Vsat 
and Pbase) of an ecophysiological model were optimized for 
each genotype of an association genetics panel representa-
tive of the wheat germplasm (Balfourier et al., 2007; Rousset 
et al., 2011). Multiple linear models predicting Vsat and Pbase 
using associated genetic markers were obtained by stepwise 
regression. Predictions of heading dates using QTL-based 
parameters were tested on a data set with independent geno-
types and environments. The conditions required to identify 
parameter vectors which reflect genotypic differences and the 
ability to predict heading date using QTL-based parameters 
are discussed.

Identifying parameter vectors reflecting genetic 
differences

The first condition for a successful gene-based modelling 
approach is to use an ecophysiological model with adequate 
predictive capabilities. In particular, the ability of the model 
to deal with complex genotype × environment interactions 
relevant to the studied process is a key feature. The ecophysi-
ological model used in this study was a modified version of a 
model proposed by Weir et al. (1984), with a simplification of 
the calculation of accumulated daily temperature. The origi-
nal formulation relies on the simulation of a cosinusoidal 
variation of temperature across the day from daily minimal 
and maximal temperature data. Temperature across the day 
is then integrated by averaging the contributions of the eight 
three-hour temperatures each day [equation 1 in Weir et al. 
(1984)]. In the present study, as in other major wheat crop 
models Sirius (Jamieson et  al., 1998) and APSIM (Keating 
et al., 2003), we used daily mean temperature as an input and 
therefore ignored temperature variation across the day. The 
two formulations may give different results because of the 
non-linearity of the response curves used. However, the for-
mulations used by Weir et al. (1984) and the one used in the 
present study are extremely empirical and do not reflect the 

Fig. 3. Relationship between observed and predicted heading dates 
obtained with two optimized parameters (2p strategy) of a modified version 
of the Weir et al. (1984) phenological model for a wheat calibration data set 
grown in 10 location × sowing date combinations. Autumn- and spring-
sown experiments are shown with closed symbols and stars, respectively. 
Winter genotypes headed only in autumn-sown experiments while spring 
genotypes headed in autumn- and spring-sown experiments. Symbols for 
autumn-sown experiments are filled in white and grey for winter and spring 
genotypes, respectively. Linear regression (solid) and bisecting (dashed) 
lines are shown. The number of data points (n), the percentage of variance 
explained (R2) and RMSEP are indicated.
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current knowledge on the underlying physiological processes 
(Brown et  al., 2013). Hence, the use of the original or the 
modified model can only be justified by comparing their pre-
dictive power. Results obtained with the present model and 
the original Weir et al. (1984) model indicated that calculation 
of thermal time accumulation using daily mean temperature 
performed better than using the original formulation (Weir 
et  al. 1984), at least on this data set (Table  1). We did not 
investigate further why our degraded version of the model 
performed better with our data set as this was not the primary 
objective of our study.

We also modified the original model by suppressing the 
intermediate phase from emergence to double-ridge and by 
assuming that thermal time accumulation from emergence 
to heading was affected by vernalization and photoperiod 
factors throughout the phase. This is an oversimplification 

as vernalization mainly affects the phase from emergence to 
double-ridge (Ritchie, 1991), although it may also have minor 
effects from double-ridge to heading (Griffiths et al., 1985). 
These modifications were applied because no observations 
of double-ridge were available, and the model could not be 
parameterized for this growth stage. Again, while still quite 
empirical, the model showed good capability in predicting 
heading dates of an extremely diverse genetic panel with con-
trasting sowing dates (Table 1). Prediction errors were com-
parable to the ones reported by previous studies, which varied 
from 4 to 7 days (Weir et al., 1984; Asseng et al., 1998; White 
et al., 2008; He et al., 2011).

The second condition for a successful gene-modelling 
approach relies on an ability to unambiguously parameter-
ize the model for a large number of genotypes. Most of 
the studies linking genetic markers and parameters of an 

Table 2. Chromosome locations, allelic effects, standard errors (SE), P-values, and individual percentage of variance explained (R2) of 
the markers used to predict the Vsat and Pbase parameters of a modified version of the Weir et al. (1984) phenological modela

Parameter Marker (reference allele) Chromosome location Allele Allelic effects SE P-value R2 (%)

Vsat Intercept - - 53.9 9.2 <0.001 -

Vrn.A1ex7 (11) 5A 12 –24.7 10 <0.05 39.5
22 –28.3 4 <0.001

vern.5B.Sins.8761 (del) 5B ins 13.3 5.7 <0.05 16.1
Vrn.A1pr (11) 5A 22 7.0 5.3 0.19 4.6

25 –29.9 15.1 <0.05
33 17.9 8.6 <0.05
44 36.6 11.1 <0.01
55 –1.7 6.5 0.80

FdGogat.2D.Y.545 (C) 2D T –9.4 3.9 <0.05 5.3
Vrn.B1int1 (11) 5B 22 –13.1 5.8 <0.05 0.6
cfn5274 (T) 2D G –6.6 4.0 0.10 1.4
cfn5187 (T) 4A C 2.1 4.3 0.62 1.1
cfn5114 (T) 4A C 8.0 4.2 0.06 0.6
cfn5680 (A) 7A G 7.0 3.5 <0.05 0.6
wPt-7062 (0) 4B 1 10.0 4.2 <0.05 0.7
cfn5405 (T) na C –6.7 3.3 <0.05 0.6

Pbase Intercept - - 4.85 0.4 <0.001 -
PpdD1.PromDel (1) 2D 2 –1.5 0.2 <0.001 27.4
cfn5828 (A) 2D G –0.5 0.2 <0.01 15.3
gpw1107 (149) 3B 153 0.4 0.3 0.23 12.2

169 0.5 0.3 0.15
171 0.7 0.4 0.12
173 0.1 0.3 0.83
175 –0.4 0.5 0.41
177 –0.1 1.1 0.94
179 –0.5 1.1 0.66

wPt-7063 (0) 6A 1 0.3 0.2 0.13 2.4
cfn5539 (A) 2B G 0.4 0.2 0.07 3.5
cfn4818 (T) 7A G 0.6 0.3 0.08 1.5
cfn4764 (A) 5A C –0.5 0.2 <0.05 1
cfn5634 (T) 6B C –0.4 0.2 <0.05 1
cfn5055 (T) 5B C –0.4 0.2 0.05 0.9
wPt-5346 (0) 5B 1 0.3 0.2 0.06 0.9
gluA1.1.Y.1667 (C) 1A T 0.4 0.2 <0.05 1.1
wPt-7108 (0) 7B 1 –0.4 0.2 <0.01 1.2

a Markers were identified by association genetics and chosen to be in low-linkage disequilibrium. Models were obtained using multiple linear 
regressions with iterative backward elimination of markers with P-values < 0.05. For each marker, the allele used as a reference to calculate the 
coefficient is indicated in brackets.na, not available.
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ecophysiological model were carried out after measuring 
parameters on a mapping population (Reymond et al., 2003; 
Nakagawa et al., 2005; Quilot et al., 2005; Yin et al., 2005; 
Uptmoor et  al., 2011). Direct measurement of parameters 
allows unambiguous identification of parameter vectors but 
is feasible only in the case of mechanistic models for which 
parameters have a clear biological meaning. Only few studies 
have been carried out using optimized parameters (Messina 
et al., 2006; White et al., 2008), which is less demanding on 
phenotyping. However, parameter optimization is generally 
not straightforward and sometimes depends on subjective 

decisions (Mavromatis et  al., 2001) as different parameter 
combinations may equally fit the relationships between 
observations and model predictions. Although this is not an 
issue when the objective is only to predict heading dates, this 
becomes an obstacle when the objective is to link parameters 
to genes.

The dimension of parameter space, which depends on 
the number of parameters to be optimized and the range of 

a

b

Fig. 4. Relationships between optimized and QTL-based predicted Vsat 
(a) and Pbase (b) parameters of a modified version of the Weir et al. (1984) 
phenological model for the 210 genotypes of the calibration data set. Solid 
lines are regression lines and R2 is the percentage of variance explained.

a

b

Fig. 5. Relationships between observed heading dates and heading dates 
predicted with two optimized (a) or two QTL-based (b) parameters (2p 
strategy) for the calibration data set across the autumn-sown experiments 
using a modified version of the Weir et al. (1984) phenological model. 
Symbols are filled in white and grey for winter and spring genotypes, 
respectively. Linear regression (solid) and bisecting (dashed) lines are  
shown. The number of data points (n), the percentage of variance  
explained (R2), and RMSEP are indicated.
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variation of each parameter, contributes to both accurate 
and unambiguous parameterization. Indeed, in the 3p strat-
egy, compensations between Pbase and TTemhe led to multiple 
solutions and parameter vectors could not be unambiguously 
identified. This was not the case when only Vsat and Pbase were 
optimized (2p strategy). Moreover, the restricted param-
eter space used in this study allowed optimizing parameters 
by calculating RMSEP for all the parameter combinations 
(brute-force optimization), an approach that allows a full 
exploration of parameter space. More-complex traits depend-
ing on a higher number of model parameters would prob-
ably need to use optimization algorithms, ideally independent 
of starting values and able to avoid local minima (He et al., 
2011).

The use of phenotypic data recorded under various experi-
mental conditions for which model sensitivity varied greatly 
(Fig.  1) also contributed to unambiguous identification of 
parameter vectors. In this study, wheat genotypes were tested 
under contrasting sowing dates ranging from the usual autumn 
sowings corresponding to local agronomic practices under 
these latitudes to the most extreme spring sowings under which 
winter genotypes did not head due to incomplete vernaliza-
tion. The use of srping-sown experiments, either to reveal the 
strong winter nature of some genotypes that did not head or 
more generally to quantify accurately genetic variation for 
vernalization requirements, assisted in accurately optimizing 
genotype parameters. Other experiments carried out in differ-
ent latitudes or under controlled photoperiodic or vernalizing 
conditions could assist in optimizing genotype parameters if  

the simple ecophysiological model used in this study proved 
valid for these experiments where non-natural rapid changes 
in photoperiod and temperature regimes are created.

A third condition for a successful gene-based modelling 
approach is to develop a clear and robust genetic determin-
ism to optimized parameter values. Reducing the number 
of parameters to calibrate the model may have led to a dilu-
tion of the genetic effects by increasing the number of genes 
involved in the determinism of each parameter. Among the 
markers associated with Vsat and Pbase, none were common to 
the two parameters, reflecting the fact that the model was able 
to separate the two individual physiological processes linked 
to vernalization and photoperiod. This was not the case when 
Le Gouis et  al. (2012) estimated vernalization requirement 
and photoperiod sensitivity based on differences of head-
ing dates under specific experiments designed to separate 
earliness components, but without using an ecophysiologi-
cal model. In the gene network proposed by Trevaskis et al. 
(2007), vernalization and photoperiod perception are indeed 
independent: exposure to cold temperatures (vernalization) 
induces VRN1 in the leaves, but VRN1 expression at the apex 
remains low until Ppd-D1 is induced by long days. It may also 
be hypothesized that as many genes will be involved in their 
determinism if  the number of parameters is low, a larger pro-
portion of parameter variation may be explained by interac-
tions between markers rather than by marker additive effect. 
In our case, however, bi-locus marker × marker interactions 
were either non-significant or small (approximately 1% of Vsat 
variation explained for the most significant epistatic interac-
tion between Vrn-A1 and Vrn-B1; data not shown).

QTL-based predictions of heading date

From a biological point of view, the values of Vsat and Pbase may 
appear unrealistic, particularly where Vsat exceeds 80 days for 
some genotypes. Two possible explanations are the reduced 
number of parameters used to calibrate the model for differ-
ent genotypes and the formulation of the model itself.

In the 2p strategy, the absence of a parameter represent-
ing genetic variation for earliness per se implied that genetic 
variation for this earliness component would be included into 
Vsat and Pbase. The same approach with three parameters (3p 
strategy) appeared attractive since the three classical com-
ponents of wheat earliness would have been represented by 
three different model parameters. However, comparison of 
the QTL-based predictions obtained with the 2p and 3p strat-
egies clearly showed that the 2p strategy performed better. 
The main objective of the present study was to maximize the 
predictive power of the QTL-based model using temperature 
and photoperiod environmental information, rather than to 
create a model formulation that would specifically coincide 
with actual knowledge of wheat earliness.

A final consideration is that the effect of the Vsat parameter 
may have been distorted due to the model itself. In the origi-
nal model of Weir et al. (1984), the accumulated thermal time 
from emergence to double-ridge is modified by vernalization 
and photoperiod, but the following period from double-ridge 
to heading is only affected by photoperiod. As we could not 

Fig. 6. Relationships between observed heading dates and heading dates 
predicted with two QTL-based parameters (2p strategy) using a modified 
version of the Weir et al. (1984) phenological model for the validation 
data set comprising 88 independent wheat genotypes grown in six 
independent location × sowing date combinations. Linear regression (solid) 
and bisecting (dashed) lines are shown. The number of datapoints (n), the 
percentage of variance explained (R2), and the RMSEP are indicated.
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calibrate this intermediate phase (due to absence of meas-
urements), vernalization affects wheat development from 
emergence to heading in our model. However, despite these 
unrealistic values and its high empiricism, our QTL-based 
model was able to predict genotype variations for heading 
date across contrasting autumn sowings in different locations 
of France (Table 1, Fig. 6).

Association genetics did not reveal any novel loci com-
pared to studies on heading date carried out with this plant 
material (Rousset et al., 2011; Le Gouis et al., 2012; Bordes 
et  al., 2013), i.e. in this case and contrary to other studies 
which investigated more complex traits (Reymond et  al., 
2003; Quilot et al., 2005), working on model parameters did 
not identify new chromosomal regions. However, contrary 
to studies carried out on heading date, this approach devel-
oped estimated effects that were independent of the environ-
ment and therefore more useful in prediction of performance 
in environments other than those originally tested. Indeed, 
contrary to classical QTL-analysis studies in which the effect 
of a QTL detected in different environments sometimes var-
ies considerably, even for major genes like Ppd-D1 (Bogard 
et al., 2011), this approach led to a single value for Vsat and 
Pbase taking into account all the environments. Given results 
obtained on a set of independent genotypes and environments 
(Table 1, Fig. 6), the heading dates of any allelic combination 
can be simulated with the QTL-based ecophysiological model 
with a median prediction error of 5.6 days, with the expecta-
tion that predicted heading dates would explain 60% of the 
variation for this trait.

However, as the multiple linear regression models for Vsat 
and Pbase explained only 71 and 68% of the variation of these 
parameters, about one third of their genetic variation remains 
unexplained. The use of genetic markers in linkage disequi-
librium as proxies instead of markers in the causal polymor-
phism may have reduced the ability to predict Vsat and Pbase 
due to possible recombinations. Moreover, the presence of 
multiple alleles for Ppd-B1 and Ppd-D1 could be taken into 
account to improve our estimation of the genotype Pbase value, 
i.e. one improvement would be to use diagnostic markers for 
these genes (Guo et al., 2010; Díaz et al., 2012; Shaw et al., 
2012; Cane et al., 2013). In addition to errors coming from the 
model itself, which is quite simple, the remaining unexplained 
genetic variation may also be attributed to the fact that small-
effect loci could not be detected by association genetics due 
to insufficient size of the panel or insufficient coverage of the 
wheat genome. Contrary to maize, where no major genes but 
approximately 50 small-effect additive QTLs with large poly-
morphism regulate flowering (Buckler et al., 2009), the genetic 
architecture of wheat flowering appears to comprise relatively 
few major genes which have, as in Arabidopsis (Salomé et al., 
2011), a large effect. However, our results show that small-
effect loci are likely to be important in terms of prediction. 
This was shown when using only major genes to model Vsat 
(Vrn-A1, Vrn-B1, and LUMINIDEPENDENS, R2  =  0.61) 
and in particular for Pbase (Ppd-D1, Vrn-A3, R2  =  0.36). 
Identification of additional minor loci would probably 
require a larger association panel and/or higher-resolution 
coverage of the genome. In a study of the same germplasm, 

Le Gouis et al. (2012) estimated genome coverage of about 
60% with 760 markers. Although the number of markers used 
in our study was much higher (1603) and genome coverage 
was therefore expected to be >60%, it is not possible to guar-
antee full genome coverage as the total number of markers 
may have increased without a proportional increase in infor-
mation. High-throughput DNA chips for wheat containing 
thousands of SNPs derived from ISBP would probably assist 
in resolving this issue (Paux et al., 2010).

Conclusions

Prediction of the parameters Vsat and Pbase using 11 and 12 
genetic markers, respectively, allowed simulation of head-
ing date with a median RMSEP of 5.6 days and accounted 
for approximately 60% of the genotypic variation for head-
ing date in an independent data set of 88 genotypes grown 
in six location × sowing date combinations. Contrary to a 
study carried out on heading date, the use of an ecophysi-
ological model allows an estimation of the allelic effects of 
genes independently of the considered environments as long 
as temperature data are available. This represents added value 
for breeders as simulations of heading date carried out for 
different allelic combinations in different environments can 
assist in determining the most suitable allelic combination 
for a given targeted population of environments (i.e. using 
a historical temperature record) and represents a first step in 
the in silico identification of ideotypes (Tardieu, 2003; Chenu 
et al., 2009).

Supplementary material

Supplementary data can be found at JXB online.
Supplementary Figure S1. Values of the Vsat (A) and Pbase 

(B) parameters of a modified version of the Weir et al. (1984) 
phenological model obtained for 210 genotypes after optimi-
zation using 10 different sets of experiments.
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