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Abstract We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL (a QTL denotes a gene with quantitative effect on a trait) on the interval [0, T ]
representing a chromosome. The observation is the trait and the composition of the genome
at some locations called “markers.” We focus on the interference phenomenon, i.e. a recom-
bination event inhibits the formation of another recombination event nearby. We give the
asymptotic distribution of the LRT process under the null hypothesis that there is no QTL
on [0, T ] and under local alternatives with a QTL at t? on [0, T ]. We show that the LRT
process is asymptotically the square of a “linear interpolated and normalized process.” We
prove that under the null hypothesis, the distribution of the maximum of the LRT process
is the same for a model with or without interference. However, the powers of detection are
totally different between the two models.

Keywords Quantitative Trait Locus detection · Likelihood Ratio Test · Gaussian process ·
Chi-Square process.

PACS 62F03 · 62F05 · 62F12 · 62P10

1 Introduction

We study a backcross population:A×(A×B), whereA andB are purely homozygous lines.
We address the problem of detecting a Quantitative Trait Locus, so-called QTL (a gene in-
fluencing a quantitative trait which is able to be measured) on a given chromosome. The trait
is observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, the observa-
tions, which we will assume to be Gaussian, independent and identically distributed (i.i.d.).
The mechanism of genetics, or more precisely of meiosis, implies that among the two chro-
mosomes of each individual, one is purely inherited from A. The other (the “recombined”

Charles-Elie Rabier
Université de Toulouse, Institut de Mathématiques de Toulouse, U.P.S., Toulouse, France
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one), due to crossing-overs, consists of parts originated from A and parts originated from
B.

The chromosome will be represented by the segment [0, T ]. The distance on [0, T ] is
called the genetic distance and is measured in Morgans (see for instance Wu et al. [2007]
or Siegmund and Yakir [2007]). K genetic markers are located at fixed locations t1 =
0 < t2 < ... < tK = T . These markers will help us to find the QTL. X(tk) refers
to the genetic information at marker k. For one individual, X(tk) takes the value +1 if,
for example, the “recombined chromosome” is originated from A at location tk and takes
the value−1 if it is originated from B. We use the Haldane [1919] modeling for the genetic
information at marker locations. It can be represented as follows:X(0) is a random sign and
X(tk) = X(0)(−1)N(tk) where N(.) is a standard Poisson process on [0, T ]. Due to the
independence of increments of Poisson process, this model allows double recombinations
between markers. For instance, if we consider 3 markers (i.e. K = 3), we can have the
scenario X(t1) = 1, X(t2) = −1 and X(t3) = 1, which means that there has been a
recombination between markers 1 and 2, and also a recombination between markers 2 and
3. Obviously, in the same way, we can have the scenario X(t1) = −1, X(t2) = 1 and
X(t3) = −1.

A QTL is lying at an unknown position t? between two genetic markers. U(t?) is the
genetic information at the QTL location. In the same way as for the genetic information
at marker locations, U(t?) takes value +1 if the “recombined chromosome” is originated
from A at t?, and −1 if it is originated from B. The originality of this paper is in the fact
that inside the marker interval which contains the QTL, we do not consider the classical
Haldane model (contrary to Chang et al. [2009] and Azaı̈s et al. [2012]), but we focus on the
model introduced by Rebaı̈ et al. [1995] (see in particular their Section 2) in which double
recombination between the QTL and its flanking markers is not allowed. As a consequence,
under the model considered by Rebaı̈ et al. [1995], if the QTL is lying for instance between
the first two markers (i.e. t? ∈]t1, t2[), we can not have the scenario X(t1) = 1, U(t?) =
−1 and X(t2) = 1. Indeed, this would have supposed that there had been a recombination
between the first marker and the QTL, and also a recombination between the second marker
and the QTL. In particular, the model considers that if we have a recombination between the
QTL and one of its flanking marker, we could not have a recombination between the QTL
and the other flanking marker. In other words, if X(t1) = 1 and U(t?) = −1, then we have
automatically X(t2) = −1. In the same way, if X(t2) = 1 and U(t?) = −1, then we have
automatically X(t1) = −1. Using a particular choice for the recombination probabilities
between the QTL and the markers, we shall prove that the law of U(t?) given its flanking
markers (still assuming that they are located at t1 and t2) is the following (see Section 2 for
the details)

P
{
U(t?) = 1

∣∣X(t1), X(t2)
}

=


1 if X(t1) = 1 and X(t2) = 1
t2−t?
t2−t1 if X(t1) = 1 and X(t2) = −1
t?−t1
t2−t1 if X(t1) = −1 and X(t2) = 1

0 if X(t1) = −1 and X(t2) = −1 .

(1)

Note that when the distance between t? and t1 (resp. t2) increases, it is more likely to have
one recombination between the QTL and the first (resp. second) marker.

This way, inside the marker interval which contains the QTL, we model the interference
phenomenon: a recombination event inhibits the formation of another recombination event
nearby (see for instance McPeek and Speed [1995]). This phenomenon was noticed a long
time ago by geneticists working on the Drosophila (Sturtevant [1915], Muller [1916]). A key
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experiment in this field is the one of Sturtevant which was recalled recently in the tutorial
paper of Lobo and Shaw [2008]. Sturtevant investigated the frequencies of recombinations
between the genes respectively responsible for body color (B), eye color (CO) and rudimen-
tary wings (R), and placed in this order in the genome. Focusing only on the haplotypes
for which a crossover between B and CO was observed, a recombination event between CO
and R was obtained 9 times whereas no recombination between CO and R was observed
60 times. Due to the distance between CO and R on his original map, Sturtevant expected
to observe a higher rate of haplotypes with a recombination between these two genes. As a
result, this experiment reveals the presence of an interference phenomenon. Recent studies
address also this point such as Martini et al. [2006] who focused on interference in yeast.
They found on tetrad data, that when they could not detect a crossover in the interval lys5-
met13, the adjacent met13-cyh2 interval was more likely to contain a recombination event.
In the same way, when there was a recombination event in the interval lys5-met13, the ad-
jacent interval met13-cyh2 was less likely to contain a crossover (cf. p.290 of Martini et al.
[2006]).

Having explained the relevance of the interference model inside the marker interval, we
will show that the overall model which is based on

• Haldane modeling for the genetic information at markers location
• the interference model inside the marker intervals,

is biologically motivated. Indeed, such an overall model is supported by experimental results
reported in the following experimental results. Hillers and Villeneuve [2003] investigated in-
terference in the nematode Caenorhabitis elegans by fusing multiple chromosomes together.
They found that in most of meiosis, the chromosome meT7 which resulted of the fusion
of 3 chromosomes, enjoyed only one crossover whereas three crossovers were expected ac-
cording to the physical distance. They did not find double crossovers in adjacent interval
(cf. intervals 1 and 2 in Figure 2C of Hillers and Villeneuve [2003], 0 crossover among 251
meiotic products assayed), but found double crossovers between non adjacent intervals (cf.
intervals 1 and 3 in Figure 2C, 14 double crossovers among 251 meiotic products assayed).
As a result, they claimed that “the nonindependent behavior of the different intervals im-
plies that when two exchanges occur, they are still governed by an interference mechanism
that acts along the length of meT7 to discourage nearby double exchanges, resulting in a
wide spacing between crossing overs.” In their study, Martini et al. [2006] also mention
that crossovers tend to be widely spaced. In Figure 3A of Youds and Boulton [2011], it is
noticeable that crossover sites “tend to be spaced for appart” on mouse chromosomes.

On the other hand, the same kind of arguments has been used by the statistician com-
munity. In example 11.3 p.248 of the statistical genetics textbook of Wu et al. [2007], the
authors revisited Huang et al. [1997]’s experiment based on 12 rice chromosomes. Note
that this population is equivalent to a backcross population. Wu et al. [2007] limited their
study to chromosome 1. They considered 18 markers (i.e. 17 marker intervals), and per-
formed their QTL analysis using a model which ignores double recombination inside each
marker interval (model described in their Section 11.2.1. p.238). Then, each marker interval
is analyzed independently to other marker intervals, that is to say the authors ignore double
recombination inside a marker interval and another model is used for the genetic information
on markers (Haldane for instance, cf. Figure 5.2 p.251).

In the present study, the overall model considered is the same as the one studied in Rebaı̈
et al. [1994], where the authors extend their previous model (Rebaı̈ et al. [1995]) to a whole
chromosome using Haldane modeling on markers (see their Table 1). Note that in order to
model the interference phenomenon, we could have focused on other models present in the
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literature (e.g. Karlin and Liberman [1979], Stam [1979], King and Mortimer [1990], Foss
et al. [1993]). However, we will see that the model considered in Rebaı̈ et al. [1994] leads
to interesting mathematical results.

We assume an “analysis of variance model” for the quantitative trait:

Y = µ + U(t?) q + σε (2)

where ε is a standard Gaussian random variable.
Indeed, it is well known that there is a finite number of loci underlying the variation in

quantitative traits (e.g. in aquaculture and livestock, see Hayes [2007]). In this study, we will
focus only on one locus (so-called QTL) and on only one quantitative trait. We will study
the concept of QTL mapping: we will look for associations between allele variation at the
QTL and variation in the quantitative trait of interest.

Since only the quantitative trait and the genetic information at marker locations are
available, one observation will be

(Y, X(t1), ..., X(tK)) .

Conditionally on X(t1), . . . , X(tK) , Y obeys to a mixture model with known weights:

p(t∗)f(µ+q,σ)(.) +
{

1− p(t∗)
}
f(µ−q,σ)(.), (3)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the function p(t?)
is the conditional probability that U(t?) = 1 conditionally on the flanking markers (cf.
formula (1) if the flanking markers are located at t1 and t2).

We consider that we have n observations (Yj , Xj(t1), ..., Xj(tK)), j = 1, ..., n
which are i.i.d., with the same distribution as described previously, and we want to test
the presence of a QTL. Since its true location is unknown, we have to consider the location
t? as an unknown parameter t, and the likelihood process will also depend on the parameter
t. The absence of a QTL is given by the null hypothesis H0:“q=0,” and the likelihood ratio
test (LRT) of H0 against its general alternative, has test statistic supt Λn(t), where Λn(t)
is the LRT statistic at location t. This paper gives the exact asymptotic distribution of this
LRT statistic under the null hypothesis and under contiguous alternatives. These distribu-
tions have been given using some approximations under the null hypothesis, by Rebaı̈ et al.
[1995] and Rebaı̈ et al. [1994]. In Cierco [1998], Azaı̈s and Cierco-Ayrolles [2002], Azaı̈s
and Wschebor [2009], Chang et al. [2009] and Azaı̈s et al. [2012], the authors focus on other
recombination models which do not model the interference phenomenon.

The main result of the paper (Theorems 1 and 2) is that the distribution of the LRT
statistic is asymptotically that of the maximum of the square of a “linear normalized inter-
polated process.” It is a generalization of the results obtained by Rebaı̈ et al. [1995], Rebaı̈
et al. [1994], where the authors focused only on the null hypothesis and characterized the
process only by its covariance function. The computation of such a maximum is easy due
to the interpolation. Note that recently, for a model without interference, Azaı̈s et al. [2012]
have proved that the LRT statistic is asymptotically that of the maximum of the square of
a “non linear normalized interpolated process.” The second important result (Lemma 1) is
that, under the null hypothesis, the maximum of the square of the “linear normalized inter-
polated process” is the same as the maximum of the square of the “non linear normalized
interpolated process” obtained by Azaı̈s et al. [2012]. As a consequence, the Monte-Carlo
Quasi Monte-Carlo method proposed by Azaı̈s et al. [2012] to compute thresholds is also
suitable for our interference model. So, for our interference model, we have now a method to
compute thresholds suitable whatever the genetic map is. This is not the case of the method
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proposed in Rebaı̈ et al. [1994] based on Davies [1977]. Using simulated data, we will
see that, as expected, our method outperforms Rebaı̈’s method in terms of false positives.
Finally, we will compare the theoretical power of QTL detection, for a model without inter-
ference (Azaı̈s et al. [2012]) and a model with interference (this paper). We will show that
it is largely more powerful to detect a QTL under interference than without interference. To
sum up, we prove that we have exactly the same threshold with or without interference, but
we have a totally different power.

We refer to the book of Van der Vaart [1998] for elements of asymptotic statistics used
in proofs.

2 Main results: two genetic markers

To begin with, we suppose that there are only two markers (K = 2) located at 0 and T : 0 =
t1 < t2 = T . Furthermore, a QTL is lying between these two markers at t? ∈]t1, t2[. Note
that for the sake of clarity, we consider that the QTL is not located on markers. However, the
main result of this section (Theorem 1) can be prolonged by continuity at marker locations.

Let r(t1, t2) be the probability that there is a recombination between the two markers.
Calculations on the Poisson distribution show that:

r(t1, t2) = P(X(t1)X(t2) = −1) =
1

2
(1− e−2|t1−t2|).

We set in addition r̄(t1, t2) = 1− r(t1, t2). We will call rt1(t?) (resp. rt2(t?)) the proba-
bility of recombination between the first (resp. second) marker and the QTL. So,

rt1(t?) = P(X(t1)U(t?) = −1) , rt2(t?) = P(X(t2)U(t?) = −1).

As explained in Section 1, only one recombination is allowed between the QTL and the two
markers. We have:

{X(t1)X(t2) = −1} ⇔
{
X(t1)U(t?) = −1

}
∪
{
X(t2)U(t?) = −1

}
.

Indeed, X(t1)U(t?) = −1 means that there has been a recombination between the first
marker and the QTL, so the second marker is not allowed to recombine with the QTL.
As a consequence, X(t2) = U(t?) and we have X(t1)X(t2) = −1. Same remark for
X(t2)U(t?) = −1 but this time, it is the first marker which is not allowed to recombine
with the QTL.

Note that since {X(t1)U(t?) = −1} ∩ {X(t2)U(t?) = −1} = �, we have

r(t1, t2) = rt1(t?) + rt2(t?). (4)

In the same way as in Rebaı̈ et al. [1995], we choose:

rt1(t?) =
t? − t1
t2 − t1

r(t1, t2) , rt2(t?) =
t2 − t?

t2 − t1
r(t1, t2).

Then, the probability of recombination of the marker and the QTL is proportional to the
probability of recombination of the two markers, and also proportional to the distance be-
tween between the QTL and the marker. Note that formula (4) stands with these expressions
of rt1(t?) and rt2(t?).

Let’s define now

p(t?) = P
{
U(t?) = 1

∣∣X(t1), X(t2)
}
.
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Obviously, since U(t?) takes value +1 or −1, we have

1− p(t?) = P
{
U(t?) = −1

∣∣X(t1), X(t2)
}
.

Since only one recombination is allowed between the QTL and its flanking markers, we
have

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = 1
}

= 1 , P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = −1
}

= 0.

Besides, according to Bayes rules

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P
{
X(t1) = 1

∣∣U(t?) = 1, X(t2) = −1
}
P {U(t?) = 1, X(t2) = −1}

P {X(t1) = 1, X(t2) = −1}

=
rt2(t?)/2

r(t1, t2)/2
=

rt2(t?)

r(t1, t2)
=
t2 − t?

t2 − t1
.

In the same way,

P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = 1
}

=
rt1(t?)

r(t1, t2)
=
t? − t1
t2 − t1

.

As a consequence,

p(t?) = 1X(t1)=11X(t2)=1 +
t2 − t?

t2 − t1
1X(t1)=11X(t2)=−1 +

t? − t1
t2 − t1

1X(t1)=−11X(t2)=1 ,

(5)

and there is agreement with formula (1) of Section 1. As explained in Section 1, condition-
ally on X(t1) and X(t2), Y obeys to the mixture model of formula (3). Note that, using
the formula above for p(t?), and using properties of conditional expectation, it is easy to
check that P {U(t?) = 1} = 1/2, so that U(t?) takes values +1 and −1 with equal proba-
bility. As explained previously, since the location t? of the QTL is unknown, we will have
to perform tests at each position t between the two genetic markers. We will consider only
positions t distinct of the marker locations and the result can be prolonged by continuity on
markers.

Let θ = (q, µ, σ) be the parameter of the model at t fixed. The likelihood of the triplet
(Y, X(t1), X(t2)) with respect to the measure λ⊗N⊗N , λ being the Lebesgue measure,
N the counting measure on N, is:

Lt(θ) =
[
p(t)f(µ+q,σ)(Y ) + {1− p(t)} f(µ−q,σ)(Y )

]
g(t) (6)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
can be removed because it does not depend on the parameters. By a small abuse of notation
we still denote Lt(θ) for the likelihood without this function. Thus we set

Lt(θ) =
[
p(t)f(µ+q,σ)(Y ) + {1− p(t)} f(µ−q,σ)(Y )

]
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and lt(θ) will be the loglikelihood. Besides, we define the following quantity (with p(t)
given in formula (5)):

u(t) = 2p(t)− 1 .

We first compute the Fisher information at a point θ0 = (0, µ, σ) under which H0 holds.

∂lt
∂q
|θ0 =

Y − µ
σ2

u(t) , (7)

∂lt
∂µ
|θ0 =

Y − µ
σ2

,
∂lt
∂σ
|θ0= − 1

σ
+

(Y − µ)2

σ3
.

After some calculations, we find

Iθ0 = Diag

[
E
{
u2(t)

}
σ2

,
1

σ2
,

2

σ2

]
. (8)

Before introducing our main theorem, let us define the score statistic and the LRT statis-
tic at t. Since the Fisher Information matrix is diagonal, the score statistic of the hypothesis
“q = 0” at t, for n independent observations, will be defined as

Sn(t) =

∂lnt
∂q |θ0√

Var
(
∂lnt
∂q |θ0

) ,

where lnt (θ) denotes the log likelihood at t, associated to n observations.
The LRT at t, for n independent observations, will be defined as

Λn(t) = 2
{
lnt (θ̂)− lnt (θ̂|H0

)
}

,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE under H0.

Our main result is the following:

Theorem 1 Suppose that the parameters (q, µ, σ2) vary in a compact and that σ2 is bounded
away from zero. Let H0 be the null hypothesis q = 0 and define the following local alterna-
tive

Hat? : “the QTL is located at the position t? with effect q = a/
√
n where a 6= 0 ”.

With the previous defined notations,

Sn(.)⇒W (.) , Λn(.)
F.d.−→W 2(.) , supΛn(.)⇒ supW 2(.)

as n tends to infinity, under H0 and Hat? where:

• ⇒ is the weak convergence, F.d.→ is the convergence of finite-dimensional distributions
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• W (.) is the Gaussian process with unit variance such as:

W (t) =
α(t)W (t1) + β(t)W (t2)√

Var {α(t)W (t1) + β(t)W (t2)}

where

Cov {W (t1),W (t2)} = ρ(t1, t2) = exp(−2|t1 − t2|) ,

α(t) =
t2 − t
t2 − t1

, β(t) =
t− t1
t2 − t1

and with expectation:

• under H0, m(t) = 0
• under Hat?

mt?(t) =
α(t) mt?(t1) + β(t) mt?(t2)√
Var {α(t)W (t1) + β(t)W (t2)}

where

mt?(t1) =
a

σ

{
α(t?) + β(t?)ρ(t1, t2)

}
, mt?(t2) =

a

σ

{
α(t?)ρ(t1, t2) + β(t?)

}
.

Note that the functions α(t) and β(t) are different from the ones present in Theorem 2.1 of
Azaı̈s et al. [2012]. Our interpolation is linear whereas the interpolation described in Azaı̈s
et al. [2012] is non linear. Therefore, our process W (.) will be called a “linear normalized
interpolated process.” The proof of Theorem 1 is given in Appendix A.1.

In Azaı̈s et al. [2012], the authors present a lemma called Lemma 2.2, which is very
useful to compute the supremum of the square of an interpolated process. Let us recall this
lemma and the comments following this lemma.

Lemma 2.2 (Azaı̈s et al. [2012]) Let γ1(t) and γ2(t) be two functions such that γi(t)
γ1(t)+γ2(t)

takes every value in [0, 1], i = 1, 2. Let C1 and C2 be two real numbers and 0 < ρ̃ < 1
then

max
t∈[t1,t2]

{γ1(t)C1 + γ2(t)C2}2

γ21(t) + γ22(t) + 2ρ̃γ1(t)γ2(t)
= max

(
C2

1 , C
2
2 ,

C2
1 + C2

2 − 2ρ̃C1C2

1− ρ̃2 1C2
C1
∈ ] ρ̃ , 1

ρ̃
[

)
.

In particular, if C1 and C2 are two random variables defined on the same probability space
with Var(Ci) = 1, i = 1, 2, Cov(C1, C2) = ρ̃ with 0 < ρ̃ < 1 and if γ1(t) and γ2(t) are
two functions as above, the lemma gives the distribution of the maximum on [t1, t2] of the
square of the following normalized interpolated process D(.):

∀t ∈ [t1, t2], D(t) =
γ1(t)C1 + γ2(t)C2√

γ21(t) + γ22(t) + 2ρ̃γ1(t)γ2(t)
.

So, the lemma can be applied to our process W (.) by taking γ1(t) = α(t), γ2(t) = β(t),
ρ̃ = ρ(t1, t2), C1 = W (t1), C2 = W (t2), since β(t)

α(t)+β(t) takes every value in [0, 1]. As a
consequence, the computation of the maximum of our processW 2(.) can be obtained easily
using Lemma 2.2 of Azaı̈s et al. [2012].

On the other hand, we have this interesting result:
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Lemma 1 With the previous defined notations, under H0,

max
t∈[t1,t2]

W 2(t) = max
t∈[t1,t2]

Z2(t) ,

where Z(.) is the “non linear normalized interpolated process” obtained by Azaı̈s et al.
[2012].

In other words, under the null hypothesis, according to Lemma 1, the maximum of the
square of the “non linear normalized interpolated process” is the same as the maximum of
the square of the “linear normalized interpolated process.” Note that Lemma 1 stands only
under the null hypothesis and not under the alternative.

Proof of Lemma 1: In order to prove this lemma, we just have to notice that under H0 at
marker locations, we have Z(t1) = W (t1) and Z(t2) = W (t2). Indeed, under H0, the
processes overlap at marker locations since there is no QTL affecting the processes and also
because the recombination model (i.e. Haldane) is the same at marker locations. Then, using
Lemma 2.2 of Azaı̈s et al. [2012], since only the process at points t1 and t2 is involved in
the supremum, the computation of the maximum of Z2(.) and W 2(.) is the same. Note that
it can be proved that the arg max of Z2(.) and the arg max of W 2(.) are different under
some conditions. �

3 Several markers: the “genome scan”

We suppose now that there are K markers 0 = t1 < t2 < ... < tK = T . A QTL is
lying at a position t?. So, in order to find the QTL, we will perform tests at every positions
t on the chromosome. Note that we use the terminology “genome scan” instead of “interval
mapping,” since the “interval mapping” of Lander and Botstein [1989] is usually computed
by geneticists with a model without interference (Haldane [1919]). So, in our case, since we
consider an interference model, it will only be a “genome scan.” We consider values t or t?

of the parameters that are distinct of the markers positions, and the result will be prolonged
by continuity at the markers positions. For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we
define t` and tr as:

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t`, tr).

As explained in Section 1, in order to infer the value of U(t?), we just need to keep the
flanking markers. This means that the information brought by the other markers is useless.
So, we have

P
{
U(t?) = 1

∣∣X(t1), ..., X(tK)
}

= P
{
U(t?) = 1

∣∣X(t?`), X(t?r)
}
.

As a consequence, our problem becomes the same as the one with two genetic markers (see
Section 2). In order to perform our tests at every positions t, we simply have to consider all
the different marker intervals.

Theorem 2 We have the same results as in Theorem 1 except that the following functions
must be redefined:



10 Charles-Elie Rabier

• t1 becomes t` and t2 becomes tr in all the expressions, except in the expressions α(t?)
and β(t?), where t1 becomes t?` and t2 becomes t?r

• mt?(t`) = a ρ(t`, t?`)
{
α(t?) + β(t?)ρ(t?`, t?r)

}
/σ if t? > t`

• mt?(t`) = a ρ(t`, t?r)
{
α(t?)ρ(t?r, t?`) + β(t?)

}
/σ if t? < t`

• mt?(tr) = a ρ(tr, t?`)
{
α(t?) + β(t?)ρ(t?`, t?r)

}
/σ if t? > tr

• mt?(tr) = a ρ(tr, t?r)
{
α(t?)ρ(t?r, t?`) + β(t?)

}
/σ if t? < tr .

The proof is given in Appendix A.2.

4 Application

In this Section, we present some applications of our theoretical study. We first focus on the
null hypothesis and then we will move on to the alternative hypothesis.

4.1 Application to the computation of thresholds

In QTL detection, in order to conclude on the presence of a QTL or not, it is always im-
portant to use an appropriate threshold for the statistical test. The aim is to show from our
theoretical study that we are now able to propose a threshold which gives better perfor-
mances than the classical threshold proposed by Rebaı̈ et al. [1995] and Rebaı̈ et al. [1994]
for the interference model.

Recall that W (.) is our “linear normalized interpolated process” whereas Z(.) is the
“non linear normalized interpolated process” of Azaı̈s et al. [2012]. According to Lemma
1, when we consider only two genetic markers, the maximum of W 2(.) is the same as the
maximum of Z2(.) under the null hypothesis. Since when dealing with several markers,
we just have to consider the different marker intervals, it is easy to check that Lemma 1
still holds when several markers are present. This way, the threshold will be the same for
a model with interference (this paper) and for a model without interference (Azaı̈s et al.
[2012]). In order to compute the threshold, Azaı̈s et al. [2012] propose a Monte-Carlo Quasi
Monte-Carlo (MCQMC) method, based on Genz [1992]. This method is very fast, and the
advantage of MCQMC is that it is more accurate than a simple Monte-Carlo method. We
refer to Azaı̈s et al. [2012] and Genz [1992] for more details.

Let’s explain now the method to compute thresholds, proposed by Rebaı̈ et al. [1995]
and Rebaı̈ et al. [1994]. In Rebaı̈ et al. [1995], the authors consider only two markers. They
propose to use results of Davies [1977] and Davies [1987]. Indeed, in Davies, we can find an
upper bound for a threshold corresponding to the supremum of a stochastic process (Gaus-
sian process or Chi square process) which depends on a nuisance parameter only present
under the alternative. In QTL detection, the nuisance parameter is the position of the QTL.
Note that in Rebaı̈ et al. [1995], the authors use as a scale the recombination units whereas in
this paper, we use the genetic distance. In other words, if we call W ′(.) the process studied
in Rebaı̈ et al. [1995] with only two markers, we have the relationship ∀t ∈ [t1, t2]:

W (t) = W ′
{
r(t1, t2)

t− t1
t2 − t1

}
.
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In their paper, they show that

∂2Cov
{
W ′(t),W ′(t′)

}
∂t′2

|t′=t = − 4 r(t1, t2) {1− r(t1, t2)}[
r(t1, t2)− 4r2(t1, t2) t−t1t2−t1 + 4

{
r(t1, t2) t−t1t2−t1

}2
]2 .

Then, since∫ r(t1,t2)

0

√
−∂

2Cov {W ′(t),W ′(t′)}
∂t′2

|t′=t dt = 2 arctan

(√
r(t1, t2)

1− r(t1, t2)

)

and using Davies formula, they find that

P

{
sup

[0,r(t1,t2)]

W ′(t) > c

}
6 Φ(−c) +

e−c
2/2

π
arctan

(√
r(t1, t2)

1− r(t1, t2)

)
,

where Φ is the cumulative distributive function of a standardized normal distribution. Note
that since

P

{
sup
[t1,t2]

W (t) > c

}
= P

{
sup

[0,r(t1,t2)]

W ′(t) > c

}
,

it gives also the threshold for our processW (.). In Rebaı̈ et al. [1994], the authors generalize
their approach to several markers. Their formula adapated to our process W (.) becomes:

P

{
sup

[t1,tK ]

W (t) > c

}
6 Φ(−c) +

e−c
2/2

π

K−1∑
k=1

arctan

(√
r(tk, tk+1)

1− r(tk, tk+1)

)
. (9)

In order to obtain the threshold, we just have to find for which value of c, the right-side of
formula (9) is equal to α/2, and we will obtain the threshold c2 for the supremum of our
process W 2(.). Note that this threshold c2 will only correspond to a level lower or equal
than α, due to the upper bound of formula (9).

Table 1 compares numerically the two approaches to compute thresholds for the inter-
ference model: Azaı̈s et al. [2012] and Rebaı̈ et al. [1994]. For the genetic map, we consider
the same configurations as in Table 1 of Rebaı̈ et al. [1994], that is to say a chromosome
of length T = 1M, different numbers of markers, and a level α equal to 5%. According to
Table 1, we can see that the two approaches give different thresholds. It was expected since
Rebaı̈’s threshold corresponds only to a level lower or equal to 5%. Besides, the more mark-
ers there are, the more different the thresholds are. It is due to the fact that the derivative of
the processW (.) has a jump at each markers location, and Davies [1977] formula is suitable
when the derivative of the process has a finite number of jumps. In other words, the more
markers there are, the less appropriate Rebaı̈’s threshold will be.

To conclude, since the two approaches are based on asymptotic results, we propose to
check the asymptotic validity on simulated data. We simulated under the null hypothesis
and under the interference model, 10000 samples of n = 200 individuals. We analyzed data
using Lemma 2.2 of Azaı̈s et al. [2012] (still suitable here, cf. our Section 2), that is to say
performing LRT on markers and performing only one test in each marker interval if the ratio
of the score statistics on markers fulfilled a given condition. According to Table 1, Azaı̈s’
method always gives a percentage of false positives close to 5% , whereas Rebai’s method is
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too conservative. So, for our interference model, we have now a method to compute thresh-
olds which is suitable whatever the genetic map is, and which does not require the number
of indivuals n to be too large.

Note that in Azaı̈s et al. [2012], using samples generated under a model without interfer-
ence, the authors already highlighted that Rebai’s method was too conservative. However,
since they studied a model without interference and Rebai’s method is for an interference
model, the authors could not conclude if the method was too conservative because the deriva-
tive of the process had too many jumps or because of the two different models (with and
without interference). Here, from our analysis of an interference model, we can now con-
clude that Rebai’s method is too conservative because the derivative of the process has too
many jumps.

4.2 About the power

We focus now on the alternative hypothesis. In our paper, double recombination between
the QTL and its flanking markers is not allowed. This way, we model the interference phe-
nomenon. In Azaı̈s et al. [2012], since the authors don’t model interference, double recom-
bination between the QTL and its flanking markers is allowed. The main difference is that,
for an interference model, the LRT process is asymptotically the square of a linear interpo-
lated and normalized process (i.e.W (.)), whereas for a model without interference, the LRT
process is asymptotically the square of a non linear interpolated and normalized process (i.e.
Z(.)). Table 2 compares the asymptotic power of the two approaches, using these asymp-
totic processes. We consider a = 4 (i.e. the constant for the QTL effect) and 100000 paths
of each process. The different genetic maps studied are detailed in Table 3. First, we con-
sider some sparse maps: map 1, map 2 and map 3. For map 1, we consider a chromosome of
length T = 5M. 11 markers are located on the chromosome and the distance between two
consecutive markers is either 40cM or 60cM. We can see that when the QTL is located at
t? = 80cM and t? = 370cM, there are huge differences of power between the model with
interference and the model without interference. For instance, we have 73.40% chances of
detecting a QTL located at 80cM with interference, whereas we only have 58.13% chances
of detecting the same QTL without interference. This is due to the fact that the mean func-
tions are totally differents between the two asymptotic processes. We obtain the same kind
of conclusions for map 2 and map 3. Map 4 is a more dense map: a chromosome of length
T = 1M and 6 markers equally spaced every 20cM. We can see that there is now only a
slight difference of power. To conclude, in the same way as what has been done in the previ-
ous section, we propose to check the asymptotic validity of our asymptotic results. In Table
4, we consider map 3: a chromosome of length T = 4M and 9 markers equally spaced every
50cM. We simulated 10000 samples of n = 50, n = 100, n = 200, n = 1000 individuals,
according to the interference model. We can see that for n = 200, we are already close to
the asymptotic results. For n = 1000, there is a very good agreement between the empirical
power and the theoretical power. This validates our asymptotic study.

5 Conclusion

In this paper, we have presented some theoretical results related to QTL mapping under an
interference phenomenon. We studied, in particular, the asymptotic properties of the test of
the absence of QTL on an interval [0, T ]. First, we have shown that the distribution of the
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LRT statistic is asymptotically that of the maximum of the square of a “linear normalized
interpolated process.” On the other hand, we have proved that under the null hypothesis (i.e.
no QTL on [0, T ]), the maximum of the square of the “linear normalized interpolated pro-
cess” is the same as the maximum of the square of the “non linear normalized interpolated
process” obtained by Azaı̈s et al. [2012] for a model without interference. As a result, in or-
der to compute thresholds, the Monte-Carlo Quasi Monte-Carlo method proposed by Azaı̈s
et al. [2012] is still suitable under interference. Another important result is the following:
although both LRT statistics (i.e. with or without interference) have the same distribution
under the null hypothesis, they do not present the same distribution under the alternative
hypothesis of one QTL located on [0, T ]. Finally, we illustrated our theoretical results us-
ing a simulation study. Under the null hypothesis, we have shown that the Monte-Carlo
Quasi Monte-Carlo method of Azaı̈s et al. [2012] is more efficient than Rebaı̈ et al. [1994]’s
method based on Davies [1977, 1987]. Under the alternative hypothesis, we pointed out that
there is more statistical power to detect a QTL under interference than without interference.

Acknowledgements I thank Jean-Marc Azaı̈s, Céline Delmas, Jean-Michel Elsen and Brigitte Mangin for
fruitful discussions. This work has been supported by the Animal Genetic Department of the French National
Institute for Agricultural Research, SABRE, and the National Center for Scientific Research.

A Appendix: Proofs of theoretical results

A.1 Proof of Theorem 1

As mentioned before, we consider values of t and t?, distinct of marker locations and the result can be
prolonged by continuity on markers.

A.1.1 Study of the score process under the null hypothesis

The study is based on the key lemma:

Lemma 2
u(t) = α(t)X(t1) + β(t)X(t2)

with α(t) = t2−t
t2−t1

and β(t) = t−t1
t2−t1

.

To prove this lemma, use formula (5) and check that both coincide whatever the value of X(t1), X(t2) is.
Now using formula (7), we have

∂lnt
∂q
|θ0=

n∑
j=1

Yj − µ
σ2

uj(t) = 1/σ
n∑
j=1

εjuj(t) =
α(t)

σ

n∑
j=1

εjXj(t1) +
β(t)

σ

n∑
j=1

εjXj(t2) (10)

this proves the interpolation. On the other hand

Sn(tk) =

n∑
j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of central limit theorem implies that these two variables have a limit distribution
which is Gaussian centered distribution with variance(

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance. The weak convergence of the score process, Sn(.), is then a
direct consequence of (10), the convergence of (Sn(t1), Sn(t2)) and the Continuous Mapping Theorem.
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A.1.2 Study of the score process under the local alternative

Under the alternative

Sn(t) =
a

nσ

n∑
j=1

Uj(t
∗)uj(t)√

Var {u(t)}
+

1
√
n

n∑
j=1

εj
uj(t)√

Var {u(t)}
.

The second term has the same distribution as under the null hypothesis and the first one gives the expectation.
We have

E {Sn(t)} =
a E {U(t∗)u(t)}
σ
√

Var {u(t)}
.

According to Lemma 2, we have:

E {U(t∗)u(t)} = α(t) E {X(t1)U(t∗)} + β(t) E {U(t∗)X(t2)} .

So, we need now to calculate E {X(t1)U(t∗)} and E {U(t∗)X(t2)}. We have

P {X(t1)U(t?) = −1} = P {U(t?) = 1 | X(t1) = −1, X(t2) = 1}P {X(t1) = −1, X(t2) = 1}
+ P {U(t?) = 1 | X(t1) = −1, X(t2) = −1}P {X(t1) = −1, X(t2) = −1}
+ P {U(t?) = −1 | X(t1) = 1, X(t2) = 1}P {X(t1) = 1, X(t2) = 1}
+ P {U(t?) = −1 | X(t1) = 1, X(t2) = −1}P {X(t1) = 1, X(t2) = −1}

=
β(t?)r(t1, t2)

2
+ 0 + 0 +

β(t?)r(t1, t2)

2
= β(t?)r(t1, t2) .

As a consequence,

P {X(t1)U(t?) = 1} = 1− β(t?)r(t1, t2) .

As a result,

E {X(t1)U(t?)} = 1− 2β(t?)r(t1, t2) = α(t?) + β(t?)ρ(t1, t2) with ρ(t1, t2) = e−2|t1−t2| .

In the same way, we obtain

E {U(t?)X(t2)} = α(t?)ρ(t1, t2) + β(t?) .

This gives the result.

A.1.3 About the LRT process

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1) (11)

under the null hypothesis.
Let us consider a local alternative defined by t∗ and q = a/

√
n. The model with t∗ fixed is differentiable

in quadratic mean, this implies that the alternative defines a contiguous sequence of alternatives. By Le Cam’s
first Lemma, relation (11) remains true under the alternative. This gives the result for the convergence of finite-
dimensional distribution. Concerning the study of the supremum of the LRT process, the proof is exactly the
same as in Azaı̈s et al. [2012] which is based on results of Azaı̈s et al. [2006], Azaı̈s et al. [2009] and Gassiat
[2002]. �
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A.2 Proof of Theorem 2

We recall that we consider values t or t? of the parameters that are distinct of the markers positions, and the
result will be prolonged by continuity at the markers positions.

The proof of the theorem is the same as the proof of Theorem 1 as soon as we can limit our attention to
the interval (t`, tr) when considering a unique instant t. So, underH0, the result is straightforward. However,
under the local alternative, the proof is more complicated than the proof of Theorem 1. Indeed, the location
t? of the QTL and the location t, can belong to a different marker interval.

According to the proof of Theorem 1, under the alternative

Sn(t) =
a

nσ

n∑
j=1

Uj(t
∗)uj(t)√

Var {u(t)}
+

1
√
n

n∑
j=1

εj
uj(t)√

Var {u(t)}
.

As previously, the second term has the same distribution as under the null hypothesis and the first one gives
the expectation. We have

E {Sn(t)} =
a E {U(t∗)u(t)}
σ
√

Var {u(t)}
.

We notice that we have u(t?) = E
{
U(t?) | X(t?`)X(t?r)

}
. Besides, u(t) is a function of X(t`) and

X(tr). As a consequence, by the properties of conditional expectancy, we have

E {U(t∗)u(t)} = E {u(t∗)u(t)} .

According to Lemma 2,

E {u(t∗)u(t)} = α(t?) α(t) E
{
X(t?`)X(t`)

}
+ β(t?) α(t) E

{
X(t?r)X(t`)

}
+ α(t?) β(t) E

{
X(t?`)X(tr)

}
+ β(t?) β(t) E {X(t?r)X(tr)}

= α(t?) α(t) ρ(t`, t?`) + β(t?) α(t) ρ(t`, t?r)

+ α(t?) β(t) ρ(t?`, tr) + β(t?) β(t) ρ(tr, t?r) .

In order to obtain E
{
u(t∗)u(t`)

}
, we just have to use the dominated convergence theorem. As a result

E
{
u(t∗)u(t`)

}
= α(t?) ρ(t`, t?`) + β(t?) ρ(t`, t?r) .

To conclude the proof, we just have to notice that

E
{
u(t∗)u(t`)

}
= ρ(t`, t?`)

{
α(t?) + β(t?)ρ(t?`, t?r)

}
if t? > t`

= ρ(t`, t?r)
{
α(t?)ρ(t?r, t?`) + β(t?)

}
if t? < t` .

In order to obtain E {u(t∗)u(tr)}, we just have to replace t` by tr . This gives the result. �
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number of markers 101 51 41 26 6

Rebai 9.74 9.09 8.88 8.43 6.92
2.69% 3.23% 3.77% 4.04% 4.83%

Azaı̈s et al. 8.41 8.27 8.16 7.91 6.76
5.03% 4.80% 5.32% 5.21% 5.19%

Table 1 Threshold and Percentage of False Positives (10000 samples of n = 200) as a function of the
number of markers and the method considered.The chromosome is of length T = 1 Morgan and the markers
are equally spaced.

Genetic Map t? without interference interference

map 1

0.10 73.35% 79.23%
0.80 58.13% 73.40%
1.30 74.83% 80.26%
3.70 53.00% 70.35%

map 2

0.20 47.02% 66.39%
1.90 71.93% 75.93%
3.35 38.92% 62.19%
5.75 78.12% 80.26%

map 3

0.25 61.77% 74.20%
0.60 75.34% 82.01%
2.80 64.14% 75.77%
3.10 75.31% 81.87%

map 4
0.18 92.59% 93.52%
0.44 91.34% 92.03%
0.70 89.18% 90.45%

Table 2 Asymptotic power of the Interval Mapping as a function of the genetic map, the model considered
and the location of the QTL t? in Morgan (a = 4, σ = 1, 100000 paths).

T K marker locations
map 1 5 11 ∀k = 1, ..., 5 t2k = k − 0.60 and ∀k = 0, ..., 5 t2k+1 = k
map 2 7 15 ∀k = 1, ..., 7 t2k = k − 0.30 and ∀k = 0, ..., 7 t2k+1 = k
map 3 4 9 ∀k = 1, ..., 9 tk = 0.50(k − 1)
map 4 1 6 ∀k = 1, ..., 6 tk = 0.20(k − 1)

Table 3 The different genetic maps considered (K is the number of markers, T is the length of the chromo-
some in Morgan, tk is the location of marker k in Morgan).

t? 0.25 0.60 2.80 3.10
EP for n = 50 63.08% 72.86% 64.77% 73.27%

EP for n = 100 68.88% 77.71% 70.09% 77.17%
EP for n = 200 71.79% 79.87% 73.33% 80.02%

EP for n = 1000 74.24% 81.55% 74.96% 81.64%
Theoretical Power 74.20% 82.01% 75.77% 81.87%

Table 4 Theoretical Power and Empirical Power (EP) under the interference model and as a function of the
location of the QTL, t?, in Morgan (map 3, a = 4, σ = 1, 100000 paths for the Theoretical Power, 10000
samples for EP).


