D. L. Achat, M. R. Bakker, L. Augusto, E. Saur, L. Dousseron et al., Evaluation of the phosphorus status of Pdeficient podzols in temperate pine stands: combining isotopic dilution and extraction methods, Biogeochemistry, vol.92, pp.183-200, 2009.

D. L. Achat, L. Augusto, C. Morel, and M. R. Bakker, Predicting available phosphate ions from physical-chemical soil properties in acidic sandy soils under pine forests, J. Soil. Sediment, vol.11, pp.452-466, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644025

D. L. Achat, L. Augusto, A. Gallet-budynek, and M. R. Bakker, Drying-induced changes in phosphorus status of soils with contrasting soil organic matter contents -Implications for laboratory approaches, Geoderma, pp.41-48, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02648276

D. L. Achat, M. R. Bakker, L. Augusto, D. Derrien, N. Gallegos et al., Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties, Biogeosciences, vol.10, pp.18-27, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651178

D. L. Achat, N. Pousse, M. Nicolas, F. Brédoire, A. et al., Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature, Biogeochemistry, vol.127, pp.255-272, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512131

R. Aerts and F. Chapin, The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns, AFNOR: Qualité des sols, vol.1, pp.60016-60017, 1999.

G. I. Ågren, J. Å. Wetterstedt, and M. F. Billberger, Nutrient limitation on terrestrial plant growth -modeling the interaction between nitrogen and phosphorus, New Phytol, vol.194, pp.953-960, 2012.

L. Augusto, M. Turpault, and J. Ranger, Impact of forest tree species on feldspar weathering rates, Geoderma, vol.96, pp.215-237, 2000.

S. A. Barber, Soil nutrient bioavailability -A mechanistic approach, chap, vol.9, pp.201-228, 1995.

N. J. Barrow, A mechanistic model for describing the sorption and desorption of phosphate by soil, J. Soil Sci, vol.34, pp.733-750, 1983.

P. Bengtson, U. Falkengren-grerup, and G. Bengtsson, Relieving substrate limitation-soil moisture and temperature determine gross N transformation rates, Oikos, vol.111, pp.81-90, 2005.

K. M. Bergen, S. K. Hitztaler, V. I. Kharuk, O. N. Krankina, T. V. Loboda et al., Human dimensions of environmental change in Siberia, in: Regional Environmental Changes in Siberia and Their Global Consequences, pp.251-302, 2012.

F. Brédoire, P. Nikitich, P. A. Barsukov, D. Derrien, A. Litvinov et al., Distributions of fine root length and mass with soil depth in natural ecosystems of southwestern Siberia, Plant Soil, vol.400, pp.315-335, 2016.

E. Bünemann, P. Marschner, A. Mcneill, and M. Mclaughlin, Measuring rates of gross and net mineralisation of organic phosphorus in soils, Soil Biol. Biochem, vol.39, pp.900-913, 2007.

E. K. Bünemann, Assessment of gross and net mineralization rates of soil organic phosphorus -A review, Soil Biol. Biochem, vol.89, pp.82-98, 2015.

J. Cernohlávková, J. Jarkovský, M. Ne?porová, and J. Hofman, Variability of soil microbial properties: Effects of sampling, handling and storage, Ecotox. Environ. Safe, vol.72, pp.2102-2108, 2009.

P. J. Chapman, C. A. Shand, A. C. Edwards, and S. Smith, Effect of storage and sieving on the phosphorus composition of soil solution, Soil Sci. Soc. Am. J, vol.61, pp.315-321, 1997.

J. Chlachula, The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia, Quaternary Sci. Rev, vol.22, pp.182-185, 2003.

C. C. Cleveland and D. Liptzin, C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?, Biogeochemistry, vol.85, pp.235-252, 2007.

J. Cooper, R. Lombardi, D. Boardman, and C. Marquet, The future distribution and production of global phosphate rock reserves, Resour. Conserv. Recycl, vol.57, pp.78-86, 2011.

D. Cordell, J. Drangert, and S. White, The story of phosphorus: Global food security and food for thought, Global Environ. Chang, vol.19, pp.292-305, 2009.

D. Cordell, A. Rosemarin, J. Schröder, A. Smit, M. Do-carmo-horta et al., Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils, Chemosphere, vol.84, pp.631-638, 2007.

F. Brédoire, What is the P value of Siberian soils?, p.2507

J. I. Drever, The effect of land plants on weathering rates of silicate minerals, Geochim. Cosmochim. Ac, vol.58, pp.2325-2332, 1994.

J. J. Elser, M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole et al., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett, vol.10, pp.1135-1142, 2007.

J. Fardeau, Le phosphore assimilable des sols : sa représentation par un modèle fonctionnel à plusieurs compartiments, Agronomie, vol.13, pp.317-331, 1993.

J. Fardeau, Dynamics of phosphate in soils. An isotopic outlook, Fertil. Res, vol.45, pp.91-100, 1996.

J. Fardeau, C. Morel, B. , and R. , Cinétique de transfer des ions phosphate diu sol vers la solution du sol: paramètres caractéristiques, Agronomie, vol.11, pp.787-797, 1991.

M. Fernández-martínez, S. Vicca, I. A. Janssens, J. Sardans, S. Luyssaert et al., Nutrient availability as the key regulator of global forest carbon balance, Nature Climate Change, vol.4, pp.471-476, 2014.

G. M. Filippelli, The global phosphorus cycle: Past, present, and future, Elements, vol.4, pp.89-95, 2008.

E. Frossard, S. ;. Sinaj, P. , and Z. , The isotope exchange kinetic technique: A method to describe the availability of inorganic nutrients, Isot. Environ. Healt. S, vol.33, pp.61-77, 1997.

E. Frossard, D. L. Achat, S. M. Bernasconi, E. K. Bünemann, J. Fardeau et al., The use of tracers to investigate phosphate cycling in soil-plant systems, Phosphorus in Action, vol.100, pp.59-91, 2011.

F. Gérard, Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils -A myth revisited, Geoderma, vol.262, pp.213-226, 2016.

R. Giesler, T. Petersson, and P. Högberg, Phosphorus limitation in boreal forests: Effects of aluminum and iron accumulation in the humus layer, Ecosystems, vol.5, pp.300-314, 2002.

E. P. Gordov and E. A. Vaganov, Siberia integrated regional study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change, Environ. Res. Lett, vol.5, p.15007, 2010.

P. Groisman and A. J. Soja, Ongoing climatic change in Northern Eurasia: justification for expedient research, Environ. Res. Lett, vol.4, p.45002, 2009.

P. Y. Groisman, T. A. Blyakharchuk, A. V. Chernokulsky, M. M. Arzhanov, L. B. Marchesini et al., Regional Environmental Changes in Siberia and Their Global Consequences, vol.3, pp.57-109, 2012.

S. Güsewell, N : P ratios in terrestrial plants: variation and functional significance, New Phytol, vol.164, pp.243-266, 2004.

S. Güsewell and M. O. Gessner, N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms, Funct. Ecol, vol.23, pp.211-219, 2009.

W. S. Harpole, J. T. Ngai, E. E. Cleland, E. W. Seabloom, E. T. Borer et al., Nutrient co-limitation of primary producer communities, Ecol. Lett, vol.14, pp.852-862, 2011.

M. He and F. A. Dijkstra, Drought effect on plant nitrogen and phosphorus: a meta-analysis, New Phytol, vol.204, pp.924-931, 2014.

L. O. Hedin, Global organization of terrestrial plant-nutrient interactions, P. Natl. Acad. Sci. USA, vol.101, pp.10849-10850, 2004.

P. Hinsinger, IPCC: Climate Change 2013 -The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review, vol.237, pp.173-195, 2001.

C. M. Iversen, Digging deeper: fine-root responses to rising atmospheric CO 2 concentration in forested ecosystems, New Phytol, vol.186, pp.346-357, 2010.

H. Jenny, Factors of soil formation, Soil Sci, vol.52, p.415, 1941.

Y. Jiang, Q. Zhuang, S. Schaphoff, S. Sitch, A. Sokolov et al., Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model, Ecol. Evol, vol.2, pp.593-614, 2012.

D. W. Kicklighter, Y. Cai, Q. Zhuang, E. I. Parfenova, S. Paltsev et al., Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia, Environ. Res. Lett, vol.9, p.35004, 2014.

S. Kuo and E. G. Lotse, Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite1, Soil Sci. Soc. Am. J, vol.36, pp.725-729, 1972.

M. Lempereur, N. K. Martin-stpaul, C. Damesin, R. Joffre, J. Ourcival et al., Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change, New Phytol, vol.207, pp.579-590, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638894

G. K. Macdonald, E. M. Bennett, P. A. Potter, and N. Ramankutty, Agronomic phosphorus imbalances across the

F. Brédoire, What is the P value of Siberian soils? world's croplands, P. Natl. Acad. Sci. USA, vol.108, pp.3086-3091, 2011.

H. Majdi and J. Öhrvik, Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden, Glob. Change Biol, vol.10, pp.182-188, 2004.

J. A. Mckeague and J. H. Day, Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils, Can. J. Soil Sci, vol.46, pp.13-22, 1966.

A. J. Miller, E. A. Schuur, and O. A. Chadwick, Redox control of phosphorus pools in Hawaiian montane forest soils, Geoderma, vol.102, pp.219-237, 2001.

H. A. Mooney, B. G. Drake, R. J. Luxmoore, W. C. Oechel, and L. F. Pitelka, Predicting ecosystem responses to elevated CO 2 concentrations, BioScience, vol.41, pp.96-104, 1991.

C. Morel and C. Plenchette, Is the isotopically exchangeable phosphate of a loamy soil the plant-available P?, Plant Soil, vol.158, pp.287-297, 1994.

C. Morel, H. Tunney, D. Plénet, and S. Pellerin, Transfer of phosphate ions between soil and solution: Perspectives in soil testing, J. Environ. Qual, vol.29, pp.50-59, 2000.

D. Muhs, Loess deposits, origins and properties, pp.1405-1418, 2007.

R. J. Norby, E. H. Delucia, B. Gielen, C. Calfapietra, C. P. Giardina et al., Forest response to elevated CO 2 is conserved across a broad range of productivity, P. Natl. Acad. Sci. USA, vol.102, pp.18052-18056, 2005.

R. Oren, D. S. Ellsworth, K. H. Johnsen, N. Phillips, B. E. Ewers et al., Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere, Nature, vol.411, pp.469-472, 2001.

R. Parfitt, Anion adsorption by soils and soil materials, Advances in Agronomy, vol.30, pp.60702-60708, 1978.

K. I. Paul, P. J. Polglase, A. M. O'connell, J. C. Carlyle, P. J. Smethurst et al., Soil nitrogen availability predictor (SNAP): a simple model for predicting mineralisation of nitrogen in forest soils, Aust. J. Soil Res, vol.40, pp.1011-1026, 2002.

J. Peñuelas, J. Sardans, A. Rivas-ubach, and I. A. Janssens, The human-induced imbalance between C, N and P in Earth's life system, Glob. Change Biol, vol.18, pp.3-6, 2012.

J. Peñuelas, B. Poulter, J. Sardans, P. Ciais, M. Van-der-velde et al., Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe, Nat. Commun, vol.4, 2013.

. R-core-team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2015.

I. C. Regelink, L. Weng, G. J. Lair, and R. N. Comans, Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: a mechanistic modelling study, Eur. J. Soil Sci, vol.66, pp.867-875, 2015.

P. B. Reich and J. Oleksyn, Global patterns of plant leaf N and P in relation to temperature and latitude, P. Natl. Acad. Sci. USA, vol.101, pp.11001-11006, 2004.

P. B. Reich, S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West et al., Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide, Annu. Rev. Ecol. Evol. Syst, vol.440, pp.920-924, 2006.

W. M. Saunders and E. G. Williams, Observations on the determination of total organic phosphorus in soils, J. Soil Sci, vol.6, pp.254-267, 1955.

D. S. Schimel, Terrestrial ecosystems and the carbon cycle, Glob. Change Biol, vol.1, pp.77-91, 1995.

A. I. Shiklomanov and R. B. Lammers, Record Russian river discharge in 2007 and the limits of analysis, Environ. Res. Lett, vol.4, 2009.

I. M. Shkolnik, E. D. Nadyozhina, T. V. Pavlova, E. K. Molkentin, and A. A. Semioshina, Snow cover and permafrost evolution in Siberia as simulated by the MGO regional climate model in the 20th and 21st centuries, Environ. Res. Lett, vol.5, p.15005, 2010.

J. K. Shuman, N. M. Tchebakova, E. I. Parfenova, A. J. Soja, H. H. Shugart et al., Forest forecasting with vegetation models across Russia, Can. J. Forest Res, vol.45, pp.175-184, 2015.

M. Smurygin, Basic trends of grassland research in the USSR, Proceedings of the 12th International Grassland Congress, pp.76-88, 1974.

A. J. Soja, N. M. Tchebakova, N. H. French, M. D. Flannigan, H. H. Shugart et al., Climate-induced boreal forest change: Predictions vs. current observations, Global Planet, Change, vol.56, pp.274-296, 2007.

R. Strauss, G. Brummer, and N. Barrow, Effects of crystallinity of goethite: I, Preparation and properties of goethites of differing crystallinity, Eur. J. Soil Sci, vol.48, pp.87-99, 1997.

R. Strauss, G. Brummer, and N. Barrow, Effects of crystallinity of goethite: II, Rates of sorption and desorption of phosphate, Eur. J. Soil Sci, vol.48, pp.101-114, 1997.

M. K. Sundqvist, D. A. Wardle, A. Vincent, and R. Giesler, Contrasting nitrogen and phosphorus dynamics across an elevational

F. Brédoire, What is the P value of Siberian soils? 2509 gradient for subarctic tundra heath and meadow vegetation, Environ. Res. Lett, vol.383, p.45013, 2009.

N. M. Tchebakova, G. E. Rehfeldt, and E. I. Parfenova, From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems, vol.22, pp.427-447, 2010.

N. M. Tchebakova, E. I. Parfenova, G. I. Lysanova, and A. J. Soja, Agroclimatic potential across central Siberia in an altered twenty-first century, Environ. Res. Lett, vol.6, p.45207, 2011.

T. S. Tran, M. Giroux, and J. C. Fardeau, Effects of soil properties on plant-available phosphorus determined by the isotopic dilution phosphorus-32 method, Soil Sci. Soc. Am. J, vol.52, pp.1383-1390, 1988.

K. Groenigen, J. Six, B. A. Hungate, M. De-graaff, N. Van-breemen et al., Inorganic and organic phosphate measurements in the nanomolar range, P. Natl. Acad. Sci. USA, vol.103, pp.45-48, 1987.

A. G. Vincent, M. K. Sundqvist, D. A. Wardle, and R. Giesler, Bioavailable Soil Phosphorus Decreases with Increasing Elevation in a Subarctic Tundra Landscape, PLoS ONE, vol.9, p.92942, 2014.

P. M. Vitousek, S. Porder, B. Z. Houlton, and O. A. Chadwick, Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions, Ecol. Appl, vol.20, pp.5-15, 2010.

M. Walbridge, C. Richardson, and W. Swank, Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils, Biogeochemistry, vol.13, pp.61-85, 1991.

T. Walker and J. Syers, The fate of phosphorus during pedogenesis, Geoderma, vol.15, pp.1-19, 1976.

X. Xu, P. E. Thornton, and W. M. Post, A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, Global Ecol. Biogeogr, vol.22, pp.737-749, 2013.

N. Ziadi, J. K. Whalen, A. J. Messiga, and C. Morel, Assessment and modeling of soil available phosphorus in sustainable cropping systems, Advances in Agronomy, pp.85-126, 2013.