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Tick-borne diseases represent major public and animal health issues worldwide. Ixodes
ricinus, primarily associated with deciduous and mixed forests, is the principal vector of
causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently,
abundant tick populations have been observed in European urban green areas, which are
of public health relevance due to the exposure of humans and domesticated animals to
potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, com-
panion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role
in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence
of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected
with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urban-
ized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales
(Anaplasma phagocytophilum, “Candidatus Neoehrlichia mikurensis,” Rickettsia helvetica,
and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venato-
rum, and B. microti ) have also been detected in urban tick populations. Understanding the
ecology of ticks and their associations with hosts in a European urbanized environment
is crucial to quantify parameters necessary for risk pre-assessment and identification of
public health strategies for control and prevention of tick-borne diseases.

Keywords: ticks, Ixodes ricinus, tick-borne pathogens, urban habitats, Europe

INTRODUCTION
Tick-borne infections are arthropod-borne diseases frequently
reported worldwide. Ticks are known to transmit a great vari-
ety of pathogenic agents producing the highest number of human
disease cases compared to other vector-borne diseases in Europe
(1, 2). In general, the eco-epidemiology of zoonotic vector-borne
diseases is very complex. It depends on the interactions of the
vectors with the reservoir hosts and the pathogenic agents, which
are modulated by several abiotic and biotic factors that vary in
space and time. Certain tick-borne infections have recently been
emerging in new regions or re-emerging within endemic sites
and create an increasing concern for public health, food security,
and biodiversity conservation (3–5). Global warming obviously
affects the spread of tick-borne diseases, but climate alone does
not determine the geographical distribution of tick species, their
population densities and dynamics, the likelihood of their infec-
tion with microorganisms pathogenic for humans and animals,

nor the frequency of contacts of humans and domestic animals
with infected ticks (4, 6, 7). Socio-demographic factors, agricul-
tural and wildlife management, deforestation and reforestation,
are known to exert a big impact on the transformation of biotopes,
thus affecting tick host assemblages as well as tick infection rates
(8–10).

Urbanization as one of the socio-demographic factors has
increased worldwide in recent decades (11, 12). Currently, more
than half of the world’s population lives in urban areas, and it is
expected that 70% will live in urban areas by 2050 (13). Nowa-
days, more than 75% of Earth’s ice-free lands show evidence of
alteration as a result of human residence and land use, with less
than a quarter remaining as wildlands. Europe shows the high-
est level of urbanization worldwide (14). Urbanization, due to
restriction of natural areas, is known to dramatically change the
composition of wildlife communities and affect the associated tick
populations. In European cities, public parks, gardens, peri-urban
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Rizzoli et al. Ixodes ricinus in urban areas

FIGURE 1 | Complex factors of the biotic and abiotic environment influence the tick–host–pathogen interaction and consequently the occurrence of
tick-borne diseases in urban and peri-urban environments.

leisure-time areas, and cemeteries became particularly important
places where humans and domesticated animals can encounter
potentially infected questing ticks (2).

Urban areas are highly fragmented environments composed
of a mosaic of patches of various sizes, vegetation, and land-use
types. Urban and peri-urban habitats are generally character-
ized by lower biodiversity of wildlife species compared to natural
ecosystems. Urbanization often produces a certain gradient of
homogenization in densely built-up areas, where synanthropic
species adapted to urban habitats can be found and where species
richness is reduced (15). On the other hand, suburban habitats
are also occupied by native species comprising medium-sized
mammalian predators and ground-foraging, omnivorous, and
frugivorous birds that produce abundant populations there. But
urbanization can also result in variation of animal species com-
position, e.g., by introduction of non-native species that replace
native ones (16, 17).

Majority of the wildlife species commonly found in urban
and peri-urban sites can serve as tick-maintenance hosts and also
as reservoirs of tick-borne pathogens (18, 19). Furthermore, the
majority of these species are generalists and are able to adapt to the
urban and peri-urban environment and reach higher population
densities than in natural sites (12, 20, 21). In urban habitats of
Europe, rodents (mice, voles, dormice, squirrels, and rats), hedge-
hogs, shrews, birds, lizards, and companion animals (dogs and
cats), but in peri-urban areas also medium-sized and larger mam-
mals like foxes, roe deer, and wild boars, play the major role as
tick-maintenance hosts and reservoirs of tick-borne pathogens

(19, 22). Adaptation of wild animals to urban environment can
also lead to increased contacts with humans and to increased
risk of exposure to zoonotic agents. In addition, animal pop-
ulations in urban areas can show genetic differentiation from
wild populations of the same species. Thus urbanization can
alter the biology and population densities of ticks and hosts and
may lead to increased transmission of pathogens between vectors
and urban-adapted hosts (11, 23). Moreover, urbanization is fol-
lowed by increased mobility of humans, intensive long-distance
trade, and new contacts of humans and companion animals with
nature, which may contribute to changing of epidemiological and
epizootiological conditions in urban and peri-urban areas (12)
(Figure 1).

Understanding the ecology of ticks and their association with
various hosts in a changing urban and peri-urban European envi-
ronment is therefore crucial to quantify various parameters nec-
essary for the risk pre-assessment and for the identification of the
best public health strategies for tick-borne disease management
and prevention. The cascade of events including fluctuations in
wildlife community composition and abundance, tick density and
emergence, and spread of tick-borne pathogens in various habi-
tat types in Europe are now being modeled as part of the EU FP7
project EDENext1. In this review, we focus on Ixodes ricinus, one of
the principal vectors of pathogens causing arthropod-borne infec-
tions in Europe, its associations with hosts and pathogens and risk
of infection of humans in urbanized areas.

1http://www.edenext.eu
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IXODES RICINUS – VECTOR OF MULTIPLE PATHOGENS
Ixodes ricinus (Acari: Ixodidae) is the most widespread tick species
in Europe and transmits several viral, bacterial, and protozoan
agents of medical and veterinary importance (8, 24–28).

The distribution area of I. ricinus has significantly expanded
over the past decades. Recently, the species can be found in more
northern areas and habitats at higher altitudes than a few decades
ago (29–31). Increase in abundance, habitat expansion, includ-
ing urbanized areas, and prolongation of the questing activity
periods of I. ricinus, reported in recent years, are attributed to
multiple and interacting factors (19, 26, 32). They include changes
in land cover and land use due to alterations in agriculture and
forestry management, changes in climate, changes in abundance,
and distribution of wildlife due to altering wildlife management,
and shifts in socioeconomic factors affecting the rate of exposure
of humans to infected ticks (25, 26).

Risk factors associated with I. ricinus transmissible diseases
can be divided generally into: (i) those directly related to climate
change (acting on the tick, the host, or their habitats), (ii) those
related to changes in the distribution of tick hosts (which may
be a direct or indirect effect of human intervention), and (iii)
other ecological changes (also commonly influenced by human
intervention) (26).

Ixodes ricinus is primarily associated with shrubs and deciduous
and mixed forests, with a high abundance of small, medium, and
large wild vertebrate hosts. However, as a consequence of chang-
ing land use and wildlife management, persistent tick populations
and high prevalences of infections with tick-borne pathogens have
also been observed in urban and peri-urban sites in many Euro-
pean countries (33–41). Ixodes ricinus is a generalist exophilic tick
species that is able to feed on over 300 different vertebrate species
(42). It has a long-lasting life cycle, involving three active life stages
(larvae, nymphs, and adults) that quest and attach to a host and
feed on blood for a few days before detachment (parasitic life
period) and subsequent molting or laying eggs (females). Each
developmental stage requires its specific microhabitat comprising
various biotic and abiotic factors. The parasitic on-host life of
I. ricinus is limited to 3–5 days (larvae), 4–7 days (nymphs), and
7–11 days (females) of feeding on vertebrate hosts, whereas, the
non-parasitic off-host life period of all developmental stages can
last for several months or years (43). This extremely complex life
cycle makes the tick vulnerable to alterations in habitat structure
and availability of host animals.

In urban and peri-urban areas, the requirement for high relative
humidity (above 80%) for extended periods of time by the off-host
stages restricts the occurrence of I. ricinus to city parks with litter
layers, forest patches, gardens, and cemeteries (22) where the con-
tinuous use of water to maintain the vegetation also increases the
relative humidity. The other limiting biotic factor for I. ricinus in
urban environments is the availability of medium-sized and large
mammals as hosts of the adults, maintaining persistent and inde-
pendent tick populations. Shifts in the tick–host associations to,
e.g., hedgehogs, foxes, hares, domestic dogs, or cats, due to lack
of large mammalian hosts can evoke changes in I. ricinus-borne
pathogen spectrum, prevalence, and distribution. On the other
hand, populations of large animals like deer and wild boar have
become more abundant in large city parks and peri-urban areas

around European cities, leading to the establishment of tick popu-
lations, shift of natural transmission cycles of some pathogens, and
increase of the disease risk for humans and domestic animals (19).

VERTEBRATE HOSTS OF TICKS AND TICK-BORNE
PATHOGENS IN URBAN AREAS
Terrestrial vertebrate hosts are key players in the epidemiology
of tick-borne diseases for at least two reasons. Firstly, they serve
as maintenance hosts for ticks as a food resource and secondly,
as reservoir hosts they are often responsible for the long-term
maintenance of pathogens in both natural and urban habitats.
Although many reports exist about the presence of pathogens in
various hosts or ticks removed from them, the reservoir capacity
for each of the pathogens in many cases remains to be experimen-
tally defined. A reservoir host of tick-borne pathogens must fulfill
certain criteria: (i) it must feed infected vector ticks, at least occa-
sionally; (ii) it must take up a critical number of infectious agents
during an infectious tick bite; (iii) it must allow the pathogen to
multiply and to survive in at least certain parts of its body; and last
but not least (iv) the pathogen has to find its way into other feeding
ticks (44, 45). For this reason, the simple recording of pathogens
(or nucleic acid of them) in a vertebrate host is not sufficient
for classifying that host as a reservoir, but only a candidate reser-
voir when physiological and behavioral features may theoretically
support pathogen amplification and transmission to the vector,
or a simple carrier host, or a dead end host. Similarly, a higher
prevalence in ticks removed from the vertebrate host compared
to prevalence in questing ticks is only a good indication that the
host is a candidate reservoir. However, to unambiguously prove
the reservoir status of a host, xenodiagnostic experiments have to
be carried out. They involve feeding of specific pathogen-free tick
larvae from a laboratory colony on the tested host and the subse-
quent analysis of them for pathogens after their molt into the next
stage. Unfortunately, for most pathogens and hosts, xenodiagnos-
tic experiments have not been performed so far and the key hosts
in the natural (and urban) cycle of tick-borne pathogens remain
to be tested. The few exceptions are some species of mice, voles,
rats, dormice, squirrels, and shrews (see details in Table 1) that
had already been proven reservoirs of some tick-borne pathogens.

Urban environments represent many special ecological char-
acters in the complex communities of pathogens, ticks, and
hosts. From a public and veterinary health perspective, city parks
and peri-urban recreational areas are typical meeting places for
humans (their pets) and ticks. Ticks in this respect serve as a
bridge for pathogens, connecting reservoir hosts with humans.
In addition to the frequent and likely encounter of humans with
ticks, vertebrate host communities also differ substantially in many
urban habitats compared to natural settings. Some important tick-
maintenance and pathogen reservoir hosts (e.g., hedgehogs, squir-
rels, and songbirds) have no or very few natural enemies within
urban environments, thus their populations might reach signifi-
cantly higher densities compared to natural ones (21, 74). Besides
the lack of predators, these urbanized vertebrates can also make
use of man-made structures and anthropogenic food resources,
like waste and pet food. Hedgehogs are one of the most successful
urban adapters reaching up to nine times higher densities in urban
areas than in rural areas (74). In Great Britain, red fox density was
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Rizzoli et al. Ixodes ricinus in urban areas

Table 1 | Most important mammal hosts of I. ricinus and pathogens transmitted by this tick species with urban or peri-urban occurrence.

Order Species Associated I. ricinus stage Associated pathogens Reference

Rodentia Apodemus flavicollis L, N TBEV (42, 46–50)
Borrelia afzelii

Borrelia burgdorferi s.s.

Borrelia spielmanii

Borrelia miyamotoi

Cand. N. mikurensis

Anaplasma phagocytophilum
Babesia microti

Apodemus sylvaticus L, N TBEV (42, 46, 48–52)
Borrelia afzelii

Borrelia burgdorferi s.s.

Borrelia spielmanii

Cand. N. mikurensis

Anaplasma phagocytophilum
Babesia microti

Apodemus agrarius L, N Borrelia afzelii (42, 50, 53)
Cand. N. mikurensis

Anaplasma phagocytophilum
Babesia microti

Myodes glareolus L, N TBEV (42, 48–50, 54, 55)
Borrelia afzelii

Borrelia burgdorferi s.s.

Borrelia miyamotoi

Cand. N. mikurensis

Anaplasma phagocytophilum
Babesia microti

Microtus agrestris L, N TBEV (42, 49–51, 56)
Borrelia afzelii
Babesia microti
Cand. N. mikurensis
Anaplasma phagocytophilum

Microtus arvalis L, N Cand. N. mikurensis (53, 55, 56)
Anaplasma phagocytophilum
Babesia microti

Rattus norvegicus L, N Borrelia afzelii (46, 57)
Borrelia spielmanii

Rattus rattus L, N Borrelia afzelii (46, 50, 57)
Anaplasma phagocytophilum

Eliomys quercinus L, N Borrelia spielmanii (46)

Muscardinus avellanarius L, N Borrelia spielmanii (58)

Glis glis L, N TBEV (42, 51)
Borrelia afzelii

Sciurus carolinensis L, N Borrelia afzelii (42, 59)
Borrelia burgdorferi s.s.

Sciurus vulgaris L, N TBEV (51, 60, 61)
Borrelia burgdorferi s.s.
Borrelia afzelii
Borrelia garinii

Eutamias sibiricus L, N Borrelia burgdorferi s.s. (62)
Borrelia afzelii
Borrelia garinii

(Continued)
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Table 1 | Continued

Order Species Associated I. ricinus stage Associated pathogens Reference

Lagomorpha Lepus europaeus L, N, A Borrelia burgdorferi s.l. (50, 63)

Anaplasma phagocytophilum

Lepus timidus L, N, A Borrelia burgdorferi s.l. (63)

Soricomorpha Sorex araneus L, N TBEV (49–51, 63)

Borrelia burgdorferi s.l.

Anaplasma phagocytophilum

Babesia microti

Sorex minutus L, N Borrelia burgdorferi s.l. (63)

Erinaceomorpha Erinaceus europaeus L, N, A Borrelia afzelii (64–68)

Borrelia spielmanii

Borrelia bavariensis

Anaplasma phagocytophilum

Erinaceus roumanicus L, N, A TBEV (47, 64, 69)

Borrelia afzelii

Borrelia bavariensis

Anaplasma phagocytophilum

Cand. N. mikurensis

Artiodactyla Capreolus capreolus L, N, A Anaplasma phagocytophilum (70)

Babesia venatorum

Cervus elaphus L, N, A Anaplasma phagocytophilum (71)

Dama dama L, N, A Anaplasma phagocytophilum (71)

Carnivora Vulpes vulpes L, N, A Borrelia burgdorferi s.l. (42, 72)

Anaplasma phagocytophilum

Meles meles L, N, A Borrelia afzelii (73)

Borrelia valaisiana

Mammal species that are experimentally proven reservoirs for pathogens are in bold. Borrelia burgdorferi s.l. refers to studies with no species identification

(genotyping) of the spirochetes. L, larva; N, nymph; A, adult.

found at least 10-fold higher in cities than in rural areas (75, 76).
The tendency to preserve green spaces inside cities is not only a
positive aspect to humans but also for many tick-maintenance and
reservoir hosts (12). For these urban dwellers, well established and
dense shrubbery in parks offers shelter and nest sites. Further-
more, higher temperatures, especially during winter (heat island
effect), are highly beneficial (74). All these factors can lead to an
unbalanced vertebrate community that easily provides favorable
ecological conditions for tick and pathogen cycles.

MAMMALS
Rodents are among the most important maintenance hosts for
the subadult stages of I. ricinus (77). Furthermore, as pointed
out by a recent analysis (78), ecologically widespread, synan-
thropic species with high density and fast life history such as
rodents are often the most competent reservoirs for multi-host
pathogens. As a consequence, mice and voles are also known to
be important reservoirs for several pathogenic agents like tick-
borne encephalitis virus (TBEV), Borrelia afzelii, and “Candidatus
Neoehrlichia mikurensis”(Table 1). In addition to well-established
rodent populations in cities, the frequent migration of these ani-
mals between human dwellings and natural environments can

easily bring infected larvae and nymphs of I. ricinus into gardens
and houses (79). Fluctuations in rodent densities are very impor-
tant factors of disease risk (24, 80) with different ecological factors
affecting rodent population dynamics in different parts of Europe.
However, rodent population dynamics are less studied in urban
and peri-urban parks than in natural areas. Rodents can harbor
different endophilic (nidicolous) tick species (e.g., Ixodes trianguli-
ceps and I. acuminatus). These do not pose a direct human hazard
since they do not feed on humans. Their co-occurrence with I.
ricinus on the same rodent, however, can lead to an exchange of
pathogens among different tick species.

Little is known about the role of rats (Rattus rattus and R.
norvegicus) in the urban maintenance of ticks and tick-borne
pathogens. As one of the most efficient urban adapters, despite
the control actions usually undertaken, they might be involved in
the urban maintenance of Lyme borreliosis (LB) spirochetes (46,
57, 77). Other urbanized rodents, like garden dormice (Eliomys
quercinus), hazel dormice (Muscardinus avellanarius) (46, 58)
and hedgehogs (Erinaceus europaeus in Western Europe and E.
roumanicus in Central and Eastern Europe) are also involved in
the urban ecology of LB (Table 1). Hedgehogs have not only a
longer life span compared to rodents but they also have the great
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advantage for ticks being able to feed not only larvae and nymphs
but also a considerable number of adults (21, 81). Thus, they can
easily maintain stable I. ricinus populations in urban areas in the
long run (64).

In some cases, anthropogenic introduction of mammals into
a new area can lead to the emergence of tick-borne pathogens
even previously unknown for that region (12). The gray squirrel
(Sciurus carolinensis) is native to North America, but an inva-
sive species in the UK that has spread across the country and has
largely displaced the native red squirrel (S. vulgaris). This species
is a frequent urban dweller and can be an indirect source of human
tick-borne infections since it has been experimentally shown to be
reservoir for B. afzelii (59). Siberian chipmunks (Eutamias sibiri-
cus) appeared as pets in many European countries but soon these
rodents were recorded in urban parks of Rome (82, 83), Geneva
(84), Brussels, and in and around many other towns (12). Chip-
munks seem to be perfect hosts for subadult I. ricinus (85). Pisanu
et al. (86) showed that these introduced rodents are more heav-
ily infested by I. ricinus than native rodents such as the wood
mouse (Apodemus sylvaticus) and the bank vole (Myodes glareo-
lus). It was also found that the introduced rodent is associated
with three species of B. burgdorferi sensu lato (s.l.), whereas, the
native rodents are associated with only one species (62).

Lagomorphs (hares and rabbits) also inhabit anthropogenic
landscapes and serve as blood sources for ticks (79). The Euro-
pean hare (Lepus europaeus) and the mountain hare (L. timidus)
were shown to be not only effective tick-maintenance hosts but
also reservoirs for B. burgdorferi s.l. (63). The European rabbit
(Oryctolagus cuniculus) belongs to the most invasive mammalian
species and its urban populations can harbor a variety of endo-
and ectoparasites including I. ricinus (87). These lagomorphs can
reach high densities and due to their ability to host adult I. rici-
nus as well, they are able to maintain an infective tick population
even in urban and suburban areas where large mammals are not
necessarily present. This double epidemiological function (tick-
maintenance and reservoir host), which makes them key players
in urban cycles of tick-borne pathogens is unique for lagomorphs
and hedgehogs.

Bats can also carry different stages of I. ricinus ticks, thus they
can also transport ticks to urban areas (88). Species especially
adaptive in human dwellings, e.g., the lesser horseshoe bat (Rhi-
nolophus hipposideros), can serve as tick-maintenance hosts but the
role of these flying mammals in the pathogen life cycles remains
to be clarified (54). Experimental TBEV viremia was shown in the
greater mouse-eared bat (Myotis myotis), which is also a common
urban inhabitant (51).

Among larger mammalian hosts, which can affect the cir-
culation of tick-borne pathogens in peri-urban areas, roe deer
(Capreolus capreolus), wild boar (Sus scrofa), and red foxes (Vulpes
vulpes) are particularly important, because they can host all three
active life stages of I. ricinus, and they increasingly live in urban-
ized areas (89, 90). Studies on roe deer abundance and movements
can provide critical information for predicting tick dispersal and
TBEV hazard (91, 92). Deer density is also suggested to be related
to the LB incidence (31).

Tick density can be influenced by abundance and distribution
of roe deer and red deer (Cervus elaphus) (93–95). Roe deer and red

deer can inhabit a great variety of tick-infested habitats. Roe deer
can even occur in some city parks, e.g., in Munich, Germany (70).
Furthermore, the ability of deer to migrate more than 100 km car-
rying a high number of ticks is also known. This may facilitate the
spreading of ticks to other areas (95, 96) and therefore potentially
also of tick-borne pathogens from one area to another, although
for some pathogen such as Borrelia spp., these species dilute the
infection rate (97).

Wild boar populations have increased in Europe in recent
decades and these animals are well adapted to live in urban and
suburban forest areas (98). This species can provide a significant
contribution to maintaining tick populations, although its role of
reservoir of various tick-borne pathogens is only partially known
(98, 99).

Foxes inhabit most urban areas across Europe and population
increases have been seen in many European countries, e.g., in Great
Britain and Switzerland (100, 101). In a recent study, I. ricinus
was the most frequently detected tick on foxes in Germany, and
all stages of this tick species were found on the animals (90). In
Romania, I. ricinus infested almost 30% of foxes, indicating that
these animals may play a significant role in the epidemiology of
tick-borne diseases (102).

Urbanization largely concentrates humans in an area as well as
a high number of pets (12). Among these, stray dogs represent an
especially effective host for ticks, many of which are I. ricinus adults
(103). They not only roam in large areas connecting natural and
urban habitats, but they also get minimal or no treatment against
ticks. Although we have limited knowledge on dogs’ role in the
maintenance of tick-borne human pathogens (104–106), as effec-
tive hosts for I. ricinus adults they certainly contribute to the size
of tick populations within gardens, parks, and sub-urban areas.
The estimated 100 million free roaming dogs (owned and stray)
living in Europe (107) certainly need to be taken into considera-
tion during urban surveillance and control of ticks and tick-borne
diseases.

BIRDS
Birds play an important role in the introduction of ticks and
associated pathogens into urban areas (108, 109). Birds, espe-
cially ground-feeding song birds, are important maintenance hosts
for larval and nymphal stages of I. ricinus. Common urban bird
species foraging mostly on the ground and low shrub vegetation,
such as common blackbird (Turdus merula), song thrush (Tur-
dus philomelos), and European robin (Erythacus rubecula) were
shown to be frequently infested with I. ricinus (110–112). More
specifically, migratory birds have been shown to carry ticks and
pathogens to large distances (113). However, the knowledge on
the role of migratory birds in favoring the introduction of ticks
and pathogens within new sites is so far very limited (114). Fur-
thermore, earlier onset of spring migration and reproduction with
more active ground-feeding activity of birds in the period of quest-
ing activities of I. ricinus larvae and nymphs may represent an
additional risk factor for TBEV spread (115, 116). A recent study
highlighted that migratory bird species were infested by more ticks
than residents, with urbanized birds being the most parasitized
(117). Thus in case of cities being close to bird resting or breed-
ing sites (like cities and towns located on river banks) there is a
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realistic chance for the introduction and the maintenance of tick-
borne pathogens (12). Birds as carriers of infected ticks probably
play a role in the geographical spread of pathogens, such as Rick-
ettsia helvetica, Anaplasma phagocytophilum, Babesia microti, and
B. venatorum (118–120).

LIZARDS
Lizards have long been known as important hosts for ticks capa-
ble of feeding large amounts of immature I. ricinus (121) and
they can often find suitable habitats in cities. In areas inhab-
ited by lizards they can be as important tick-maintenance hosts
as rodents (122, 123). Compared to rodents, however, lizards are
more suitable hosts for nymphal I. ricinus (as shown by a lower
larva/nymph ratio) (124–126). Sand lizards (Lacerta agilis), com-
mon wall lizards (Podarcis muralis), and green lizards (Lacerta
viridis) are the most common species that can contribute to the
urban maintenance of I. ricinus populations (122, 123, 125).

The role of lizards in the circulation of tick-borne pathogens
has been underestimated compared to that of mammals and birds,
but they have been proved to be reservoirs of LB spirochetes
(122) and might also be involved in the life cycle of other tick-
borne pathogens (124). However, experimental and field studies
are needed to shed light on this epidemiological issue.

PATHOGENS TRANSMITTED BY IXODES RICINUS
Among the pathogens transmitted by I. ricinus, the western Euro-
pean TBEV subtype (TBEV-Eur), causing tick-borne encephalitis
(TBE) (127) and spirochetes of the B. burgdorferi s.l. complex,
the causative agents of human LB (128) have the greatest impact
on human health. I. ricinus can also harbor bacteria of the order
Rickettsiales that are of rising medical and veterinary importance.
Among them, Anaplasma phagocytophilum can lead to granulo-
cytic anaplasmosis in both humans and animals (50); the emerging
pathogen “Candidatus Neoehrlichia mikurensis” can cause severe
febrile illness in immunocompromised patients (129) and fever in
humans without any primary disease (130); rickettsiae of the spot-
ted fever group (SFG) (Rickettsia helvetica, R. monacenis) cause
rickettsioses in humans (131). Protozoans of the genus Babesia,
mainly B. divergens and B. microti, cause babesiosis in humans,
and for B. venatorum pathogenicity to humans is suspected (132).
The role of I. ricinus in transmission of Bartonella species (e.g.,
B. quintana and B. henselae) causing bartonellosis in humans is
suspected (28, 133). Francisella tularensis, causing tularemia, and
the Q fever agent Coxiella burnetii have also been detected in I.
ricinus, but the role of this tick species in the epidemiology of
these diseases is probably not significant (28, 133).

TICK-BORNE ENCEPHALITIS VIRUS
Tick-borne encephalitis is the most important tick-borne arbovi-
ral infection of humans in Europe and eastern and central Asia and
is caused by the TBEV (Flaviviridae) (134–136). Ixodes ricinus is
the principal vector for the western European (TBEV-Eur) subtype
of the virus (127, 137). TBE is now endemic in 27 European coun-
tries (138) and its expansion northward and into higher altitudes
has been observed in recent years (137, 139). There is a consider-
able lack of knowledge in the current fine scale spatial distribution
of TBE, including urban areas, thus the risk of infection is still

underestimated, especially considering that about two-thirds of
human TBE infections are asymptomatic (135).

Incidence of TBE in Europe has been changing in a heteroge-
neous manner during the last decades, with spatial expansion in
some areas and decrease in others (140–142). TBE ecology and
epidemiology is expected to be affected considerably by climate
change (143) and other drivers like changing in land-use patterns,
expansion of forest coverage, increase of abandoned areas, and the
creation of new suitable and fragmented landscapes for ticks and
hosts within urban areas. Exposure to infected ticks is dependent
on several and regionally variable socio-economical factors such as
recreational and occupational human activities, public awareness,
vaccination coverage, and tourism (26, 94, 144).

The majority of human TBE infections are acquired through
bites of infected ticks, more rarely by the alimentary route through
consumption of raw milk of infected goats, sheep, or cattle,
or unpasteurized dairy products (145–147). As organic markets
become more popular, city dwellers also have to be aware of the
TBEV infection risk associated with unpasteurized cow and goat
milk and milk products.

Tick-borne encephalitis incidence appears to be increasing,
including urban areas, partially as a result of improvements in the
diagnosis and reporting of TBE cases, but also due to increased
exposure of humans to TBE due to outdoor activities. The risk
of exposure to TBE was found to be relatively high even in the
immediate surroundings of patients’ homes, e.g., in the Czech
Republic (148), and an enhanced surveillance of TBE cases in
Poland revealed that more than 50% of patients resided in urban
areas (149).

Tick-borne encephalitis virus circulates mainly in natural syl-
vatic cycles involving vector ticks and reservoir hosts. However,
due to expansion of urban sites to previously natural habitats and
penetration of small and large wild animals into urban areas, reser-
voir hosts for TBEV as well as large tick-maintenance hosts can be
present also in urban and peri-urban sites and thus ensure circu-
lation of the virus there (150). Ticks remain infected throughout
their life and it is suggested that they are not only vectors, but
also long-term reservoirs of the virus (151). Rodents (A. flavi-
collis, A. sylvaticus, M. glareolus, and M. arvalis, see Table 1) are
important reservoir hosts for TBEV-Eur (152, 153) and proba-
bly may maintain the virus in nature through latent persistent
infection (154, 155). Co-feeding tick to tick transmission of TBEV,
even in the absence of detectable viremia in these rodent species
(156), is crucial to explain the focal distribution of the TBE foci
and their potential variation over time (157). Experimental TBEV
viremia has been demonstrated also in two lizard species (L. viridis
and L. agilis) often occurring in urban areas (51), but field data
on their reservoir competence for TBEV are missing. Migratory
birds may play an important role in the geographic dispersal of
TBEV-infected ticks, which can contribute to the emergence of
new foci of disease, including gardens and urban parks, in case
abiotic conditions and the vertebrate host spectrum are favor-
able for the maintenance of the pathogen (158). Among birds,
thrushes (Turdus spp.) are the most frequently infested with I. rici-
nus ticks and also carry the most frequently infected ticks (159),
however, the prevalence of TBEV-infected bird-feeding ticks is
relatively low.
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Wild and domestic ungulates, carnivores (foxes and dogs), and
hares frequently occurring in peri-urban parks and forest patches
within urbanized areas, are important actors in the dynamics of
TBE, mainly as tick-maintenance hosts and carriers of infected
ticks (160–162). Variation in abundance of roe deer was found to
considerably affect TBE risk, depending on the threshold densities
of tick, rodent, and large vertebrate populations in the area (31,
91, 92, 163). Ungulates probably do not contribute to the amplifi-
cation of the virus, but may serve as sentinels to identify TBE foci
(163, 164).

Accompanying dogs also represent an important risk factor for
humans to acquire TBE. They are accidental hosts, but can become
ill with TBE. In addition, during walking in natural forest or hunt-
ing activities, dogs come in contact with infected ticks and can
carry them home or to urban parks, where they may later infest
humans (165).

In general, data on TBEV prevalence in tick populations and
seroprevalence in reservoir and sentinel hosts in urban areas and
on the circulation of various virus strains in Europe are scarce
(166–169). Furthermore, our knowledge on the mechanism favor-
ing TBEV persistence and amplification in urban sites is very
limited. TBEV infection rate in ticks is usually very low (<1%)
(170–172), but can amount up to 15% in microfoci (173). TBEV-
positive I. ricinus ticks have recently been detected, e.g., in a highly
urbanized region in Southern Poland (estimated pool prevalence
ranging from 0.19 to 1.11% for positive locations), suggesting the
presence of active foci (174). TBEV-infected Dermacentor retic-
ulatus adults were also detected in an urban area (Warsaw) in
Poland, with higher prevalence (3.12%) than in natural areas. But
our knowledge about the importance of this tick species in TBE
epidemiology is still limited (175).

Generally, screening of ticks by PCR cannot be recommended
for assessment of human TBE risk and alternative methods of
environmental TBEV monitoring should be considered, such as
serological long-term monitoring of rodents and other wild and
domestic animals, which would serve as sentinel species (169).

BORRELIA BURGDORFERI SENSU LATO
In little more than 30 years, Lyme borreliosis (LB), which is caused
by the spirochete B. burgdorferi s.l., has risen from relative obscu-
rity to become a global public health problem and a prototype of
an emerging pathogen (176). During this period, we have accumu-
lated enormous progress in knowledge of its phylogenetic diver-
sity, molecular biology, genetics, host interactions, pathogenicity
for humans as well as other vertebrate species, and preventive
measures including vaccine development. But relatively little is
known about public health consequences of LB in terms of eco-
epidemiology issues and risk of acquiring infection in suburban
and urban habitats.

Lyme borreliosis is the most abundant tick-borne disease of
humans worldwide, though it only occurs in the northern hemi-
sphere. LB occurs in North America (from the Mexican border
in the south to the southern Canadian provinces in the north),
the whole Europe, parts of North Africa (Maghreb), and northern
Asia (Russian Siberia and the Far East, Sakhalin, Japan, China, and
Korea). The geographical distribution of LB correlates closely with
the range of the principal vectors, ticks of the I. ricinus complex

(177). LB occurs between approximately 35° and 60°N in Europe,
and between 30° and 55°N in North America. In countries at the
southern limits of the LB range, its incidence decreases rapidly
along the north-to-south gradient (178).

The B. burgdorferi s.l. complex now comprises up to 19 Borrelia
species. Of these, only B. afzelii, B. burgdorferi, and B. garinii are
proven agents of localized, disseminated, and chronic manifesta-
tions of LB in Europe, whereas, B. spielmanii has been detected
in early skin disease, and B. bissettii and B. valaisiana have been
detected in samples from single cases of LB (179, 180). The clinical
role of B. lusitaniae remains to be substantiated.

Principal vectors of B. burgdorferi s.l. in Europe, including
urban and suburban ecosystems, are two tick species: I. ricinus
and I. persulcatus, the latter only occurring in eastern and north-
eastern Europe. Moreover, the occurrence of I. hexagonus in the
urban environment, due to the presence of suitable hosts, such as
hedgehogs, cats, dogs, and foxes in gardens and public parks, could
contribute to transmission of LB (65).

The risk of infection is particularly high in deciduous or mixed
forest ecosystems or woodlands, along with city parks and urban
gardens, especially gardens close to forests (181). The higher risk
of contracting LB in the ecotones between forests and arable fields
(178) or meadows, although higher densities of infected vector
ticks are within forests, is an effect of frequent human presence
along the edges of these habitats (182). Also forest fragmenta-
tion in suburban areas theoretically poses a greater risk due to
enhanced proportion of ecotones (183). Other risks include refor-
estation (with increased population of forest rodents, but also deer,
the principal host of adult vector ticks). For example, in the Czech
Republic Zeman and Januska (184) found that LB risk correlated
with overall population density of game (red deer, roe deer, mou-
flon, and wild boar) regardless of rodent abundance. Nevertheless,
increased populations of reservoir hosts (forest rodents) usually
stimulate the LB incidence.

All activities that increase human contact with ticks present risk
for contracting LB, especially recreational (leisure time) activities
in forested and urban areas (jogging, berry/mushroom picking,
walking, and hiking), seasonal and occasional living by urban res-
idents in country cottages, mowing and clearing of brush around
the home in forested areas and gardening. Ownership of pet dogs
and cats could also present a relative risk for humans when the pets
are frequently parasitized by ticks and the owner tries to remove
the ticks (178, 181). Moreover, outdoor employment and work
(forestry workers, military personnel in the field, farmers, garden-
ers, gamekeepers, hunters, and rangers) are at risk. However, in
most European countries, occupational exposure generally con-
stitutes only 2% of LB cases (185), whereas, permanent residence
in endemic areas with a high prevalence of infectious ticks (e.g.,
forested peri-urban areas) is a serious risk factor for LB.

Small rodents (A. sylvaticus, A. flavicollis, and M. glareolus) are
regarded as the main reservoir hosts of LB pathogens in urban
and suburban habitats across Europe (Table 1). Garden dormice
(E. quercinus) (186) and hazel dormice (M. avellanarius) are espe-
cially competent reservoirs of the human pathogenic B. spielmanii
(46, 58). Important role in the urban maintenance of B. spielmanii
and B. afzelii could also be played by rats (R. norvegicus and R.
rattus) (46, 57, 187). Other key urban players in the maintenance
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of LB spirochetes are hedgehogs (E. europaeus and E. roumanicus)
(64, 65, 188). Red squirrels (S. vulgaris) were found to be heavily
infested by ticks and feeding ticks showed high prevalence of infec-
tion in enzootic areas in Switzerland (60) and might consequently
contribute to maintenance of spirochetes also in urban foci.

Dogs and cats are heavily infested with ticks and might act
as hosts (probably not reservoirs) or sentinels for LB. The risk
of exposure of dogs to numerous vector-borne pathogens has
increased, and close relationship with humans in urban areas poses
new concerns for human public health (106).

Ground-foraging bird species such as blackbird (T. merula),
song thrush (T. philomelos), robin (E. rubecula), and pheasant
(Phasianus colchicus) play a unique role in the epidemiology of LB
and also contribute to the transmission cycle of B. burgdorferi s.l. in
urban and suburban areas (189–192). Due to their specific immu-
nity (complement system), certain bird species are resistant to
some LB spirochetes but susceptible to others (193). They usually
carry B. valaisiana and B. garinii and transmit these spirochetes to
ticks. In 1998, two xenodiagnostic studies clearly defined the reser-
voir role of birds in the epidemiology of LB, one on a passerine
bird, the blackbird (190), the other on a gallinaceous species, and
the pheasant (194). However, the reservoir competence of other
bird species needs to be clarified. A recent study showed that circu-
lation of LB spirochetes is partly maintained by bird-specific tick
species, and bridged by I. ricinus to other host types (195).

The role of lizards in the maintenance of B. burgdorferi s.l. is
still controversial, since several lizard species have been shown to
possess a complement with borreliacidal activity (196). However,
in some areas LB spirochetes are more prevalent in sand lizards (L.
agilis) and common wall lizards (P. muralis) than in rodents (122).
The lizard-associated LB spirochete is B. lusitaniae, a genospecies
previously thought to occur only in Mediterranean and Central
Europe (197), but it was shown that it has a far more widespread
geographical distribution involving the green lizard (L. viridis),
the Balkan wall lizard (Podarcis taurica), and the sand lizard (L.
agilis) (123, 125, 126).

We have reviewed the occurrence of B. burgdorferi s.l. in
host-seeking urban I. ricinus ticks across Europe according to
the literature (Table 2). There are also several additional papers
demonstrating the presence of borreliae in ixodid ticks collected
in (sub)urban areas (198–202). All accessible data show that borre-
liae in I. ricinus ticks collected in urban parks,gardens,or suburban
habitats are prevalent approximately at the same rate as in I. ricinus
ticks living in forests (203). In urban areas, therefore the risk of
contacting LB could be as high as in natural environment.

We should consider that most studies dealing with eco-
epidemiology of LB in patients living in urban areas may have
limitation, because not always the exact location (or area) where
they acquired the vector tick is known. While popular opinion
is that outdoor occupations and hiking are risk activities, several
studies have implied that infection is often acquired near the home,
during gardening and dog walking associated with increased risk
(148, 226–228).

ANAPLASMA PHAGOCYTOPHILUM
Anaplasma phagocytophilum is a small, gram-negative oblig-
ate intracellular alpha-Proteobacterium and infects neutrophilic,

eosinophilic granulocytes, and monocytes of mammals. There, it
replicates within a cytoplasmatic, cell-membrane derived vacuole.
A. phagocytophilum is transmitted by ticks of the I. ricinus complex
in the Northern hemisphere and in European countries mainly by
I. ricinus (50).

The bacterium has been known since the last century to cause
diseases in domestic ruminants (229) and since the 1960s in horses
(230). The first human case was described in the USA in 1994
(231). The causative agents of the diseases were at the time clas-
sified into the granulocytic group of the genus Ehrlichia, which
contained E. phagocytophila as agent of tick-borne fever of rumi-
nants, E. equi as agent of equine granulocytic ehrlichiosis and the
human granulocytic ehrlichiosis (HGE)-agent. In 2001, a reorga-
nization of the order Rickettsiales, based on homologies in the 16S
rRNA gene, reclassified the granulocytic Ehrlichia-group as the
new bacterial species A. phagocytophilum and the respective dis-
eases were then called granulocytic anaplasmosis (232). Clinical
cases are also occurring in dogs and cats, then known as canine
and feline granulocytic anaplasmosis (233, 234).

After the first cases appeared in the US in the 1990s, human
granulocytic anaplasmosis (HGA) has become one of the most
important tick-borne diseases in the US, with an incidence in
2010 of 6.1 cases per 1 million inhabitants2. The first human case
in Europe was described in the 1990s (235), and around 100 cases
have been described since then in several European countries, e.g.,
in Slovenia, Croatia, Czech Republic, Slovakia, Austria, Latvia, the
Netherlands, Norway, Poland, Spain, France, and Sweden (236–
252). Seroprevalence rates in humans in Europe are around 1–20%
and they fluctuate depending on anamnesis, tick exposure, and age
of the patients (253).

Mammalian host species (Table 1) such as wild ruminants (e.g.,
roe deer, red deer, fallow deer, but also mountain ungulates), small
mammals such as rodents and insectivores, but also foxes, bears,
wild boars, birds, and reptiles are infected with A. phagocytophilum
(50). Prevalence rates in wild ruminant species in Europe are gen-
erally high, e.g., ranging in roe deer and red deer from around 12%
to over 85% (70, 254–256). On the other hand, prevalence rates in
small mammals are from 0% to about 20% (50).

Anaplasma phagocytophilum is detected with varying preva-
lences in questing I. ricinus ticks, and has been found in Europe in
nearly 30 countries. The prevalence ranged, for example, in Nor-
way from 0.4 to 17.1%, in Estonia from 3 to 6.5%, in Slovakia
from 1.1 to 8.3%, and in Germany from 1.0 to 17.4% [reviewed
in Ref. (50)]. So far, transovarial transmission has not been shown
in Ixodes ticks. As such, for the current state of knowledge, a
reservoir host is necessary to keep up the endemic life cycle of
A. phagocytophilum in nature.

The discrepancy of a high occurrence of A. phagocytophilum in
ticks and mammals as well as high seroprevalence rates in Europe
in contrast to few clinical cases has been explained by the poten-
tial underdiagnosing of the disease, or the potential occurrence of
less virulent strains in Europe in comparison to the USA. The dis-
crepancy could also be explained by a higher awareness of US
physicians to the disease because in the USA it is a notifiable

2www.cdc.gov/anaplasmosis
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Table 2 | Occurrence of Borrelia burgdorfer i sensu lato in questing Ixodes ricinus ticks in urban and suburban areas in Europe.

Country City/region (habitat), year No. of examined ticks Prevalencea Method Genomic spp. Reference

Czech Republic Prague (U, S) 2,490 N, 143 F, 184 M 2–22% IFA (204)

Prague (U, S) 1994–1997 12,287 3.3–13.3% IFA (205)

Prague 1995–1997 462 N, 173 A 1.9% N, 12.7% A PCR Bg 18, Ba 13 (206)

Brno – outskirts 1988 1,005 3.8% N, 16.4% F,

12.7% M

IFA (207)

Brno (U parks) 1992 34 N, 64 F, 65 M 14.7% N, 29.7% F,

30.8% M

DFM (208)

Brno-Pisárky (S) 1996–1998 643 N, 123 F, 107 M 10.0% N, 13.8% F,

18.7% M

DFM (and

PCR)

(209)

Brno-Pisárky (S) 2002 243 N, 19 F, 22 M 15.8% N + F + M DFM (PCR) Bg 15, Ba 14, Bb 2, Bv 2 (210)

Finland Helsinki (U, S) 303 N, 189 F, 234 M 32.2% N + F + M DFM, PCR,

BSK

Ba 70%, Bg 25% (35)

France Paris (U, S) 360 N, 69 F, 129 M 32% F, 10% N, 20% M PCR Ba/Bv 36%, Bg/Bl

60%, Bm 4%*

(211)

Germany Berlin – West (U, S) 1,414 N, 132 F, 165 M 2.4% N, 9.1% F, 6.1%

M (MIR)

BSK (212)

Bonn (U, S) 2003 865 N, 241 F, 288 M 17.3% N, 26.6% F,

12.5% M

PCR Ba 39%, Bg 28%, Bb

16%, Bv 9%

(36)

Hungary Budapest (parks, forests,

and cemeteries) 2013

240 F 40.8% PCR (213)

Italy Imola (U parks) 2006 10.4% N +A PCR (214)

Lithuania Vilnius (city park) 2005 39 A 25% DFM, PCR Ba, Bg, Ba + Bg (215)

The Netherlands Bijlmerweide (city park)

2000–2002

384 N + F + M 6.8% PCR Ba 10, Bb 1, Bv 1 (38)

Poland Gdansk, Sopot, Gdynia (U, S) 701 N + F + M (164 F,

139 M)

12.4%, 11.6% F, 10.1%

M

PCR (216)

Szczecin (U, S) 193 N, 22 A 17.7% DFM (217)

Warsaw (U, S), 1996 19.2–31.0% IFA (PCR) Bg, Ba, Bv (218)

Warsaw (city parks) 6.1% PCR (219)

Serbia Belgrade (U, S) 1996–2005 10,158 N +A 21.9% N +A DFM (BSK,

PCR)

Ba 75%, Bb 22%, Bg

3%

(220)

Slovakia Bratislava (U, S) 1986–1988 77 7.8% DFM (221)

Košice (U, S) 1991–1995 660 N, 2,904 A 9.2% N, 14.8% A DFM and IFA (222)

Košice, Bardejov (U, S)

2008–2010

670 10.1% PCR Ba, Bg, Bv, Bb (223)

Switzerland Basel (U, S) 2003 172 N, 35 A 16.4% N +A PCR (224)

United Kingdom London (U parks) 65 F 7.7% F PCR (225)

U, urban; S, suburban; Ixodes ricinus: N, nymph; F, female; M, male; A, adult; DFM, dark-field microscopy; IFA, indirect immunofluorescence assay; BSK, cultivation

in BSK II medium; Ba, Borrelia afzelii; Bb, B. burgdorferi s.s.; Bg, B. garinii; Bv, B. valaisiana; Bl, B. lusitaniae; Bm, B. miyamotoi; MIR, minimum infection rate.
aDifferent PCR methods were used that differ in their sensitivity.
*No sufficient discrimination between Bg and Bl and between Ba and Bv.

disease. However, A. phagocytophilum shows also genetic hetero-
geneity and potential differences concerning the potential host
tropisms and pathogenicity (118). A potential human pathogenic
strain of A. phagocytophilum in Europe has been especially sus-
pected to be connected with wild boars. This was confirmed in
recent studies (257, 258).

Several studies have investigated the genetic heterogeneity on
the basis of several genes such as 16S rRNA, groEL heat-shock
protein, major surface protein coding genes, and the ankA gene
(255, 259–261). Several distinct clusters were found where, in
general, strains derived from domestic animals or ruminants clus-
tered together. Roe deer strains often clustered separately from
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Table 3 | Occurrence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in urban and suburban areas in Europea.

Country City/region (habitat) No. of ticks posit./examined Prevalenceb (%) Reference

Austria Graz (RA) 5/518 1 (264)

Czech Republic Dvur Kralove (U forest) 8/138 5.8 (265)

Ostrava (U park) 276 (tested in pools) 9.4 (266)

France Paris (S forests) 2/558 0.7 (211)

Germany Hamburg (U RA) 51/1,400 3.6 (267)

Hannover (U RA) 94/2,100 4.5 (268)

Bavaria (U parks) 500/5,569 9.0 (269)

Bavaria (U parks) 103/2,862 2.9 (270)

Bavaria (U parks) 172/2,800 6.1 (271)

Leipzig (U, S RA) 47/539 8.7 (55)

Hannover (U RA) 52/1,646 3.2 (272)

Hungary Budapest (30 sites: U parks, forests, and cemeteries) 21/240 8.8 (213)

Poland S forests 18/124; 6/46 14.5; 13.0 (273)

Slovakia Bratislava (U, S forests) 10/248 4 (265)

Malacky (U park) 4/101 4 (265)

Košice (U forest) 10/224 4.5 (265)

Bardejov Poštárka (S forest) 2/75 2.7 (40)

Košice Adlerova (S forest) 10/261 3.8 (40)

Jazero (U forest) 5/91 5.5 (40)

Košice (S forests) 1,075 1.4–5.5 (274)

U, urban; S, suburban; RA, recreational area.
aNegative results not shown,
bdifferent PCR and real-time PCR methods were used that differ in their sensitivity.

strains derived from other animals. No evidence was found that
wild ruminants are involved in the transmission cycles of poten-
tially pathogenic strains. This was shown again by a recent multi
locus sequence typing study (262). However, another study found
pathogenic strains associated mostly to ungulates (118).

Furthermore, in a recent large-scale analysis, four A. phago-
cytophilum ecotypes with significantly different host ranges were
identified based on groEL heat-shock protein gene sequences of
various European vertebrate and tick samples (99). So far, all
human cases clustered in ecotype I with the broadest host range
(including domesticated animals, red deer, wild boar, and urban
hedgehogs). Ecotype II was associated with roe deer and some
rodents, ecotype III included only rodents. Birds seem to have a
different enzootic cycle from all these (ecotype IV). Based on pop-
ulation genetic parameters, ecotype I showed significant expan-
sion, which might have occurred through an increase in either the
population of I. ricinus ticks, or in the (often urban) vertebrate
host species, or in both (99).

Only recently, a HGA case of a German patient has been pub-
lished having acquired the infection whilst on holidays hiking in
Scotland (263). This shows that the risk of contracting this infec-
tious agent can also be in leisure time whilst hiking, or even in the
cities whilst being in urban or peri-urban park areas.

In about the last 5 years, considerable research effort has been
undertaken in Europe to investigate the epidemiology of A. phago-
cytophilum, especially in urban areas and high prevalences of this

pathogen have been found with seasonal and geographic variabil-
ity. An overview of recent studies investigating questing I. ricinus in
urban and suburban areas is shown in Table 3. However,when con-
sidering A. phagocytophilum prevalence rates in ticks, the genetic
variability has to be taken into account as not all strains may be
pathogenic to humans.

CANDIDATUS NEOEHRLICHIA MIKURENSIS
“Candidatus Neoehrlichia mikurensis” (Candidatus N. mikuren-
sis) is a tick-borne pathogen, which is probably transmitted by I.
ricinus ticks (24). However, transovarial transmission in this tick
species has not been reported yet.

Currently, the genera Wolbachia, Ehrlichia, Neorickettsia,Aegyp-
tianella, and Anaplasma belong to the rickettsial family Anaplas-
mataceae (232). Most certainly, the new genus “Neoehrlichia” will
be included in this family in future. The pathogens of this fam-
ily are intracellular bacteria transmitted by arthropods and may
cause severe diseases in humans and animals. For at least three of
the five existing genera within this family (Anaplasma, Ehrlichia,
and Neorickettsia) serological cross reactions are not known so far
(275). Candidatus N. mikurensis is an obligate intracellular gram-
negative bacterium, which is characterized by an endothelial cell
tropism but it could not be cultivated in vitro thus far. Therefore,
the status “Candidatus” is still preserved.

A previous study published data on not taxonomically grouped
Ehrlichia DNA in engorged I. ricinus ticks from roe deer in the
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Table 4 | Occurrence of Candidatus N. mikurensis in questing Ixodes ricinus ticks in various habitats in Europe.

Country No. of sites, habitat No. of ticks examined Prevalencea Reference

Austria U, S, 2002–2003 518 4.2% (264)

Czech Republic U, 2010 69 0.4% (265)

Denmark Three sites, S, sylvatic, 2011(+tick DNA from archive) 79a 3.8% (285)

France Two sites, sylvatic 60 1.7% (282)

Germany Ten sites, U, S 542 8.1% (282)

U, S, 2008–2009 782 24.2–26.6% (52)

Hungary Nine sites, 2007 2,004 n.a. 9 of 35 sites positive (286)

Italy U, S, 2006–2008 138 10.5% (287)

The Netherlands Three sites, sylvatic 180 8.6% (288)

Twenty-one sites, U, S, sylvatic, 2006–2010 5,343 5.6% (289)

The Netherlands/Belgium n. a., 2006–2010 2,375 7% (281)

Russia S, sylvatic, 1997–1998 295 7.1% (277)

Slovakia S, sylvatic, 2006 68 2.9% (290)

Ten sites, U, S, sylvatic, 2008, 2010 670 2.4% (40)

U, S 1.1–4.5% (265)

Spain S, 2013 100 2% (291)

Sweden Four sites, sylvatic, 2010–2011 949 4.5–11% (292)

Switzerland Eleven sites, U, S, 2009–2010 818 6.4% (293)

Four sites, U, S, 2009 1,916 3.5–8% (294)

U, urban; S, suburban.
aDifferent PCR and real-time PCR methods were used that differ in their sensitivity. n.a., not available.

Netherlands (276). This pathogen was then named after the senior
author as “Schotti-Variant” (276). Similar sequencing results were
published for I. ricinus and I. persulcatus ticks from the Baltics
in 2001 (277). Between 1998 and 2001, DNA of a pathogen, sug-
gested to be called Cand. Ehrlichia walkerii spp. nov., was found
in engorged I. ricinus ticks that fed on asymptomatic patients
from Italy (278). In 2003, DNA sequences of this new pathogen
were detected in DNA extracted from I. ricinus ticks from Ger-
many, followed by first investigations on possible reservoir hosts
(279). In 2003, a pathogen was found via examination by con-
ventional PCR in three wild rats (R. norvegicus) in China. This
examination was followed by DNA sequencing of this pathogen,
which was then called the “Rattus Variant” (280). In 2004, DNA
of this “new” pathogen was found in 7 out of 15 brown rats
from a Japanese isle called Mikura (275). The pathogen was pas-
saged in Wistar rats and first investigations on the ultrastructure
and the phylogenetic analysis were done, which lead to the cur-
rently valid taxonomic denomination “Candidatus Neoehrlichia
mikurensis.” The close genetic similarity of the 16S rRNA and
the groEL gene puts Candidatus N. mikurensis in the family of
Anaplasmataceae.

Candidatus N. mikurensis was found widespread in I. rici-
nus throughout Europe (281, 282). It could be detected in Italy,
France, Sweden, Russia, and other European countries (Table 4).

The prevalences ranged between 1 and 11% but focal areas were
found with prevalence rates up to 26.6% (49) (Table 4). Further-
more, Candidatus N. mikurensis was detected in one out of 126
I. ricinus ticks that were collected in Moldavia back in the year
1969 (283) and it was only detected in the genus of Ixodes ticks so
far (284). Positive ticks were not only found in sylvatic and non-
anthropogenic sites but also in urban and peri-urban sites with
human influence in Europe (Table 4).

Previous studies on potential reservoir hosts revealed that
rodents, especially bank voles and yellow-necked mice, but also
common voles (M. arvalis) were infected at high rates, suggesting
a role as reservoir hosts (52, 281, 295, 296), but insectivores were
found to be negative for Candidatus N. mikurensis thus far (52).
Recently, the reservoir role of Apodemus mice (A. flavicollis and A.
sylvaticus) and bank voles (M. glareolus) has unambiguously been
proven in a xenodiagnostic study [(48); Table 1]. Urban hedgehogs
(E. roumanicus) with high density in a Budapest city park were
found to be carriers of Candidatus N. mikurensis, indicating that
non-rodent reservoirs might be also involved in the maintenance
of this pathogen, especially in human dwellings (69). Additionally,
Candidatus N. mikurensis was detected in dogs from Germany
and Nigeria (297, 298).

In the past, the detection of Candidatus N. mikurensis in
rodents and ixodid ticks was an interesting but only incidental
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finding without any medical importance (299). In contrast to this
assumption, it was recently found in humans (50) with immune
deficiency but without being in an occupation group at risk for
tick bites over the last decade. Candidatus N. mikurensis caused
unspecific symptoms such as fever, septicemia, malaise, and weight
loss in these patients (300–302). Until October 2012, the first six
clinical cases of neoehrlichiosis were the only human cases con-
firmed by laboratory diagnostic methods. All of these patients
suffered from a primary disease, were immunocompromised and
came from European countries, such as Germany (301), the Czech
Republic (303), Sweden (302), and Switzerland (300). Neverthe-
less a primary disease is not a necessary precondition to develop
neoehrlichiosis as Candidatus N. mikurensis could be detected in
blood of 7 out of 622 patients from China suffering from fever
(130). The authors of these clinical reports emphasize that these
seven patients were otherwise healthy and did not suffer from
a chronic or immunosuppressive disease. The most recent two
human cases were reported in Switzerland, where both patients
recovered quickly after a treatment with Doxycycline (294). The
data, gained in the last decade, lead to the assumption that Can-
didatus N. mikurensis is an emerging pathogen that might be
found by increasing numbers in ticks from sylvatic and urban
sites, in small mammals and humans in future (281, 304). Fur-
ther investigations are needed on the spread, maintenance, and
potential reservoir hosts to assess the risk potential of Candidatus
N. mikurensis.

RICKETTSIAE
Rickettsiae are Gram-negative, obligate, aerobic, intracellular bac-
terial parasites of eukaryotes that survive freely within the cytosol
of the host cell, and belong to the family Rickettsiaceae and
order Rickettsiales. Rickettsiae are traditionally subdivided into the
typhus and the spotted fever group (SFG). SFG rickettsiae are asso-
ciated with hard ticks (Ixodidae), with the exception of Rickettsia
akari (mite-borne) and R. felis (flea-borne). Hard ticks can trans-
mit them transstadially and transovarially and serve both as vectors
and reservoirs of these pathogens. Vertebrates are suspected to
serve as reservoirs of rickettsiae, but they may also be accidental
hosts and acquire infection by a tick bite (305). However, in a
recent xenodiagnostic experiment infected rodents were not able
to transmit R. helvetica or R. monacensis to I. ricinus larvae (48).

In Europe, R. felis, R. typhi, R. prowazekii, R. akari, R. conorii,
R. slovaca, R. sibirica mongolotimonae, R. raoultii, R. massiliae, R.
aeschlimanni, R. helvetica, and R. monacensis have been impli-
cated in human diseases or reported as emerging pathogens or
isolated from vectors or humans (131, 306–308). Furthermore,
the candidate species “Candidatus Rickettsia kotlanii,” “Candi-
datus Rickettsia barbariae,” or “Candidatus Rickettsia vini” have
been found in ticks in Europe (309–311). Numerous rickettsiae
are regularly associated with ticks and have been called sym-
bionts, microsymbionts, or endosymbionts (living in endocellu-
lar symbiosis). However, their potential for pathogenicity is still
unknown (312).

The presence of tick-borne rickettsiae has been reported from
almost all European countries. The current view on geographic
distribution of Rickettsia species in the world is summarized by
Parola et al. (131).

In Europe, I. ricinus ticks are known to carry mainly R. hel-
vetica and R. monacensis. However, R. massiliae was also detected
in I. ricinus ticks (313). The following rickettsial genotypes were
detected only by molecular tools in I. ricinus ticks collected in
Europe:“Candidatus R. vini”was proposed as a new Rickettsia spp.
detected in I. arboricola and I. ricinus collected from three differ-
ent bird species in Spain (311), Rickettsia spp. strain Davousti,
previously found in Amblyomma tholloni ticks in Africa, was
detected in Ixodes spp. collected from migratory birds in Sweden
(314),“Candidatus Rickettsia moreli” (GenBank accession num-
bers Y08784 and Y08785) was detected in I. ricinus from Spain, and
Rickettsia spp. clone KVH-02-3H7 (GenBank accession number
GQ849216) was detected in I. ricinus in the Netherlands (131).

Rickettsia helvetica was first isolated from I. ricinus in Switzer-
land and it was confirmed to be a new member of the SFG
rickettsiae in 1993 (315, 316). It has been generally accepted that
I. ricinus is the main vector and natural reservoir of R. helvetica.
However, D. reticulatus ticks were found to be infected with R. hel-
vetica in Croatia (317). R. helvetica has been detected in questing
and bird-feeding I. ricinus ticks in at least 24 European countries
(131). The prevalence rates vary from 0.5% in a bird conservation
island named Greifswalder Oie in the Baltic Sea to 66% in the
Netherlands (318, 319). For example, the highest infection rate of
R. helvetica in I. ricinus from Denmark was found in May, followed
by July, August, and October (320). The presence of R. helvetica
was also confirmed in I. ricinus in some urban and peri-urban
sites in Slovakia, the Czech Republic, Germany, Portugal, Serbia,
and Poland (Table 5).

In 1999, R. helvetica was associated with chronic perimyocardi-
tis in sudden cardiac death in Sweden (328). This species has
been cultivated from a patient with subacute meningitis (329).
The hypothetical role of R. helvetica as an etiological agent of sar-
coidosis could not be confirmed (330). The illness is associated
with fever, headache, arthralgia, and myalgias and less frequently
with rash and/or an eschar (331, 332).

Rickettsia monacensis was originally isolated as new species
from I. ricinus collected in a city park in Germany (333). Phylo-
genetic analyses of the 16S rRNA, gltA, and rompA gene sequences
demonstrated its close relationship with Candidatus Rickettsia
spp. IRS3 and Cand. Rickettsia sp. IRS4 isolated from I. ricinus in
north-eastern and south-western Slovakia (334, 335). The preva-
lence rates of R. monacensis in I. ricinus ticks vary from 0.5% in
Germany to 34.6% in Turkey (322, 336). R. monacensis has been
detected in I. ricinus ticks in at least 18 European countries (131).
The presence of R. monacensis was also confirmed in I. ricinus ticks
in some urban and peri-urban sites in Slovakia, the Czech Repub-
lic, Germany, Portugal, Serbia, and Poland (Table 5). In 2005, R.
monacensis was identified as a human pathogen in two patients
in Spain (in June and September) and latter in one patient in
Sardinia, Italy (in April) (337, 338). In addition to fever and flu-
like symptoms, the inoculation eschar was identified in an Italian
patient, and a generalized rash including the palms and soles was
identified in a Spanish patient.

Rickettsia massiliae was originally isolated from Rhipicephalus
sanguineus ticks collected near Marseille, France, in 1992 and then
detected in R. sanguineus, R. turanicus, R. pusillus, R. bursa, and
I. ricinus ticks in France, Greece, Portugal, Switzerland, Spain,

www.frontiersin.org December 2014 | Volume 2 | Article 251 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Epidemiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rizzoli et al. Ixodes ricinus in urban areas

Table 5 | Occurrence of Rickettsia spp. in questing Ixodes ricinus ticks in various habitats in Europe.

Country City/region (habitat) No. examined

ticks

Prevalence of

Rickettsia spp.

Identified

species (n)

Reference

Czech Republic Ostrava (U park), 2010 180 N 2.2% (MIR) 14 Rh, 6 Rm (266)

96 A 4.2% (MIR)

Proskovice (mixed forest), 2010 1,114 N 3.5% (MIR)

83 A 2.5% (MIR)

France Paris (S) 360 N, 69 F, 129 M 5.8% Rh (211)

Germany Munich, 2006 961 N 1.0% 138 Rh, 13 Rm (321)

1,900 A 7.3%

Saarland (RA), 2008–2009 36 N 16.7–47.2% 8 Rh (322)

Bavaria/Munich (natural alluvial forest), 2008–2009 79 A 21.5%

Leipzig/Saxony (coal surface-mining area), 2008–2009 28 N 21.4%

100 A 19.0%

98 N 8.2–27.6%

431 A 9.7%

Munich, Regensburg, Ingolstadt, Augsburg, Berg (U

parks), 2009–2010

774 L 2.1–9.8% 15 Rh, 1 Rm (37)

1,190 N 6.8%

2,495 A 7.5% 77 Rh, 4 Rm

244 L –

742 N – 180 Rh, 8 Rm

1,142 A –

Munich, Regensburg, Lake Starnberg (U, S) 24 L 2.2–7.5% 29 Rh,1 Rm (323)

Lake Starnberg and Lake Ammersee, pastures 500 N 5.0%

Augsburg, forest, 2011 889 A 8.7%

140 N 15.7% 9 Rh

225A 13.3%

139 L 2.2–10.1%

120 N 17.5% 9 Rh

79 A 13.9%

Hanover (U park), 2010 31 L 16.0% 268 Rh (268)

1,697 N 25.5%

372 A 30.4%

Poland Warsaw, national parks and natural areas, 2011 1,147 N 442 A 3.7% (MIR) 38 Rh, Rm (41)

5.9% (MIR)

Portugal Alentejo (safari park), 2006–2009 35 A 82.9% 14 Rh, 15 Rm (324)

Serbia Four natural sites, 2 sites (RA), 2007, 2009 26 23.1% 2 Rh, 4 Rm (325)

Slovakia Bratislava (S forest, cemeteries), 2006–2011 445 N 8.3% 61 Rh, 3 Rm (326)

471 A 10.2%

Malacky (U park), 2006–2011 59 N 6.8% 10 Rh, 3 Rm

62 A 14.5%

Martin (U park), 2006–2011 3 N 0

12 A 16.7%

Martinské hole Mts (mountain forest), 2006–2011 276 N 5.4% 6 Rh, 2 Rm

482 A 10.0%

Vojka nad Dunajom (RA), 2011–2012 2 N 0 30 Rh, 3 Rm (327)

280 A 11.7%

U, urban; S, suburban; RA, recreational area; Ixodes ricinus: L, larva; N, nymph; A, adult; MIR, minimum infection rate; Rh, R. helvetica; Rm, R. monacensis.

including islands: Sardinia and Sicily (Italy), the Canary Islands
(Spain), Cephalonia (Greece), and Cyprus (131). R. massiliae
was identified in four I. ricinus ticks removed from humans

at hospitals in Castilla y León, Spain (313). However, to our
knowledge, there are no other studies of this species in urban
areas.
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BABESIA
Ixodes ricinus is the vector of three intraerythrocytic protozoan
parasites circulating in Europe and involved in human babesio-
sis: B. divergens, B. venatorum (originally designated Babesia spp.
EU1), and B. microti. To date, no other Piroplasmida affecting
humans have been reported to be transmitted by this tick species,
even though it feeds on a very large spectrum of hosts, which are
potentially infected by several parasite species including numerous
other Babesia species associated to wildlife or domestic animal dis-
eases. However, the list of potential or known tick-borne pathogens
is constantly evolving, either due to: (i) the description of Babesia
species new for science, (ii) the spread of parasite species previ-
ously unknown in Europe, or (iii) the discovery of a Babesia species
previously restricted to animals but now known to be associated
with humans. Thus, emergence or re-emergence of tick-borne dis-
eases leads to the development of unknown health risks (339).
Therefore, there is a real concern that tick-borne diseases due to
parasites will appear in areas previously free of such diseases, and
there is a real necessity of an epidemiological surveillance of the
parasitic communities hosted, and potentially transmitted by ticks
(340).

Although best known as an animal disease, babesiosis is a
zoonotic disease, classified as emerging by some authors. Approxi-
mately 50 human cases of babesiosis have been reported in Europe,
which is probably underestimated because of a large proportion
of asymptomatic infections, as suggested by seroprevalence stud-
ies (341). Among the Babesia species pathogenic for humans, the
bovine parasite B. divergens is thought to be responsible for most
European cases of human babesiosis (342). However, since 2003,
cases of human babesiosis have also been attributed to B. vena-
torum in Austria, Italy, and Germany (343, 344) as well as to
B. microti in a single case in Germany (341). Whilst the clinical
signs of human babesiosis are usually limited to splenectomized
patients, two human cases (one attributed to B. divergens, the other
to an unknown origin) have been detected in immunocompe-
tent patients in eastern France (345). It is also noticeable that, as
an example, 0.38% of the French population is splenectomized
(346). Moreover, the rising number of HIV-positive individuals
and the increasing population of immunocompromised humans,
especially in urban areas, may therefore lead to boost the number
of human babesiosis cases (341). The proportion of the popu-
lation at risk of Babesia infection is thus higher than previously
suspected and Babesia spp. likely represents real potential agents
of an emerging zoonotic disease and needs increased attention and
vigilance.

Besides transstadial transmission, transovarial transmission
within ticks is characteristic for most Babesia spp. (differentiating
them from Theileria species), which implies that ticks constitute a
real parasite reservoir in the field, facilitating the long-term persis-
tence of Babesia species in the ecosystem (sometimes over several
tick generations) (347). In Europe, infection rates of Babesia spp.
in ticks are usually rather low, but published values range from 0.9
to 20% (341).

Babesia divergens is a bovine parasite transmitted by I. ricinus,
and is thought to be responsible for most cases of human babesio-
sis in Europe (342). This parasite is the most widespread and
pathogenic Babesia species infecting cattle in northern temperate

areas (342). Thus, any urban or peri-urban area where cattle and
I. ricinus are found is potentially at risk. For example, B. divergens
has been found in an I. ricinus tick collected in an urban park in
Germany (37). Recently, the discovery of this parasite in questing
I. ricinus from a forest area in Eastern France (340), as well as in
I. ricinus collected from wild cervids in Belgium (348), may sug-
gest that its geographical distribution is increasing, even within
forested areas without cattle farms, which would require the exis-
tence of reservoir hosts other than cattle. Indeed, it was reported
that B. divergens is also able to infect ungulates (roe deer, fallow
deer, red deer, mouflon, and sheep), splenectomized rats, as well as
non-splenectomized reindeer, sheep, and gerbil [see review in Ref.
(347)]. Thus, this parasite has been shown to have a wider verte-
brate host range than previously thought, leading to a potential
risk not only in rural areas but also in peri-urban ones.

Babesia venatorum, implicated in human cases of babesiosis in
Europe (343, 344), seems to phylogenetically lie in a sister group
with B. divergens (343), and some serological cross-reactivity
between B. divergens and B. venatorum has been reported (349).
Roe deer were strongly suspected to be the wildlife reservoir of
this parasite (350, 351) and its transmission by I. ricinus was val-
idated both in vivo (351, 352) and in vitro (353). In addition,
B. venatorum has been identified in I. ricinus in several Euro-
pean countries including Slovenia (354), Switzerland (355), the
Netherlands (356), Poland (357), Italy (358), Belgium (359), Ger-
many (37), and France (211, 351), with prevalence varying from
0.4 to 1.3%, demonstrating a wide geographical spread across the
continent. Increasing reports of B. venatorum in ticks and wild
ruminants make this parasite an excellent candidate for the emer-
gence of a new zoonotic tick-borne disease, in particular in the
current context of a growing number of wild hosts such as deer.
As roe deer is often found even in suburban or peri-urban parks
(if they are connected to more natural or semi-natural areas such
as forests or rural areas), I. ricinus sampled in such places have
already been reported as infected by B. venatorum (55, 323). This
parasite has been detected in 1.3% of questing I. ricinus collected
in France in a forest located in the South of Paris metropolitan
area in the middle of an urban zone (211). Because of its loca-
tion and the recreational activities available, this forest is visited
by over 3 million people every year, emphasizing the public health
risk. Similarly, the first detection of B. venatorum in Poland has
been reported from ticks collected in an urban area (357), and
a later study performed in recreational areas, corresponding to
peri-urban forest near Warsaw city, showed also the presence of B.
venatorum in questing I. ricinus (360).

Recent molecular phylogenetic investigations have convinc-
ingly established B. microti as forming a distinct and early diverg-
ing clade relative to other Babesia species (including the clade
containing B. divergens and B. venatorum) as well as to Theileria
species (361–363). B. microti is responsible for several hundred
cases reported yearly in the USA in both spleen-intact and asplenic
patient (132). This rodent parasite is known to be transmitted
by I. ricinus, and now seems to be widely established in Europe,
although only one human case has been reported to date (341). The
substantial difference in the human pathogenicity of the North-
American and European B. microti strains need further studies.
It has been identified in I. ricinus in several European countries
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such as Switzerland (364), Poland (365), Hungary (366) Slovenia
(367), Germany (368), the Netherlands (356, 369), Belgium (359),
and France (340). Microtine rodents and probably shrews are the
reservoirs of B. microti (Table 1). Infectious tick bites are most
likely to occur in deciduous woodland and peri-domestic settings
(37, 55, 323). Indeed, this parasite was recovered in questing ticks
from a forest in Poland that was qualified as “one of the most
popular tourist destinations in Poland,” highlighting the risk for
humans during recreational activities (360).

NEW OR NEGLECTED TICK-BORNE PATHOGENS: STILL UNKNOWN
BACTERIAL, PARASITIC, AND VIRAL SPECIES TO BE DISCOVERED?
Due to advances in molecular biology, new species, strains, or
genetic variants of microorganisms are being detected in ticks,
resulting in an ever-increasing list of pathogens capable of infect-
ing domesticated animals and humans. Some of them have been
linked to human or animal diseases only many years after their
first discovery in ticks or animal reservoirs (299). An emblematic
example is that of B. henselae, the agent of Cat Scratch Disease,
known to be transmitted from cat to human by cat scratch (or by
fleas). For years, cases of B. henselae infection had been described
in patients without history of contact with cat without any idea
how these people could be infected. By screening pathogens in
ticks, B. henselae DNA, and RNA were identified in I. ricinus (370–
373). After many years of debate to know whether B. henselae was
or was not a tick-borne pathogen, the direct link between tick
bites, B. henselae, and disease in humans was finally demonstrated
(374). Another striking example is the one of Borrelia miyamo-
toi. This Borrelia species has been isolated for the first time in
Japan in 1995 from Ixodes ticks and has been considered as non-
pathogenic endogenous tick bacteria until the first human cases
of B. miyamotoi infection were reported in Russia in 2011 (375).
Since then, human infections have been described in the USA
and in 2013 in the Netherlands (376–379). In France, B. miyamo-
toi was found to circulate in I. ricinus as well as in the bank
vole M. glareolus (380), and this French genotype was identical
to the genotype isolated from a sick person in the Netherlands.
These findings have important implications for public health,
especially considering that B. miyamotoi-positive ticks and rodents
were collected from different sites in close proximity to human
dwellings. Up to now, no human cases of B. miyamotoi infec-
tions have been reported in most European countries, however,
symptoms caused by B. miyamotoi could easily be confused with
symptoms caused by other pathogens, which are better known
by practitioners, suggesting that surveillance urgently needs to be
improved.

A more recent example of neglected pathogens is a new phle-
bovirus that has been described in humans from northwestern
Missouri, USA independently presented to a medical facility with
fever, fatigue, diarrhea, thrombocytopenia, and leukopenia, and
all had been bitten by ticks 5–7 days before the onset of illness.
Electron microscopy revealed viruses consistent with members of
the Bunyaviridae family. Next-generation sequencing and phy-
logenetic analysis identified the viruses as novel members of the
phlebovirus genus (381). All these examples demonstrate that new
or unexpected tick-borne pathogens are characterized, as soon as
they are looked for, in patients bitten by ticks.

CONCLUSION
Tick-borne diseases in urban and peri-urban areas represent a
rising hazard for public and animal health in Europe. The rapid
global changes that planet Earth is facing, especially due to the
human ecological footprint, are also affecting the ecology and epi-
demiology of infectious diseases, including tick-borne diseases.
The I. ricinus tick being the principal vector of a plethora of viral,
bacterial, and protozoan pathogenic microorganisms is showing
adaptations to new habitats and ecological conditions. Persis-
tent and potentially increasing populations of this tick species
are present in green areas within European cities. Public parks,
small forest patches, gardens, and cemeteries are of increasing
interest as they represent places where humans, companion, and
domestic animals can encounter ticks and be exposed to infected
tick bites. The presence of large vertebrates, that serve as tick-
maintenance hosts and find conditions to survive and reproduce
in the peri-urban environment, reduces the extinction risk of tick
populations. Furthermore, majority of tick-maintenance hosts are
ecologically classified as generalist species and in many cases serve
as reservoirs of a number of emerging zoonotic pathogens, includ-
ing those transmitted by I. ricinus. The combination of urbaniza-
tion, climate change, and alterations in land-use patterns along
with socio-economic factors (outdoor sports and leisure-time
activities, gardening, an increased density of pets, and compan-
ion animals near human settlements) act in creating favorable
conditions for increasing the exposure of humans to ticks, thus
favoring the transmission of tick-borne pathogens in urban and
peri-urban areas.

Risk communication campaigns aimed at implementing pre-
ventive measures against infectious tick bites in urban and
peri-urban habitats therefore deserve particular public health
efforts. However, several knowledge gaps and lack of quantita-
tive ecological, epidemiological, and socioecological data limit
our ability to provide precise quantitative risk pre-assessment.
Therefore, more eco-epidemiological research and surveillance
specifically focused on the occurrence of ticks, their infection
with pathogenic microorganisms as well as on the presence of
tick-maintenance and reservoir vertebrate hosts in urbanized
areas is urgently needed. Only a multidisciplinary “One-Health”
approach integrating research outputs of specialists from different
disciplines (veterinarians, zoologists, ecologists, molecular biol-
ogists, epidemiologists, physicians, sociologists, and public health
experts, etc.), combined with appropriate outreach and dissemina-
tion campaigns, can bring success in making urban and peri-urban
areas safer from infection by tick-borne pathogens.

ACKNOWLEDGMENTS
This study was funded by EU grant FP7-261504 EDENext and is
cataloged by the EDENext Steering Committee as EDENext 251
(see text footnote 1). The contents of this publication are the
sole responsibility of the authors and do not necessarily reflect
the views of the European Commission. Gábor Földvári was sup-
ported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences and NKB and Research Faculty grants from
Faculty of Veterinary Science, Szent István University. The work of
Cornelia Silaghi, Anna Obiegala and Muriel Vayssier-Taussat was
done under the frame of EurNegVec COST Action TD1303.

Frontiers in Public Health | Epidemiology December 2014 | Volume 2 | Article 251 | 16

http://www.frontiersin.org/Epidemiology
http://www.frontiersin.org/Epidemiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rizzoli et al. Ixodes ricinus in urban areas

REFERENCES
1. Sonenshine DE, Roe RM. Chapter 1. Overview. 2nd ed. In: Sonenshine DE, Roe

RM, editors. Biology of Ticks. (Vol. 1), Oxford: Oxford University Press (2014).
p. 3–16.

2. Ginsberg HS, Faulde MK. 10. Ticks. In: Bonnefoy X, Kampen H, Sweeney K,
editors. Public Health Significance of Urban Pests. Copenhagen: World Health
Organization (2008). p. 303–45.

3. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. Impacts
of biodiversity on the emergence and transmission of infectious diseases.
Nature (2010) 468:647–52. doi:10.1038/nature09575

4. Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerg-
ing vector-borne zoonotic diseases. Lancet (2012) 380:1946–55. doi:10.1016/
S0140-6736(12)61151-9

5. Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M,
et al. Ecology of zoonoses: natural and unnatural histories. Lancet (2012)
380:1936–45. doi:10.1016/S0140-6736(12)61678-X

6. Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet
Infect Dis (2009) 9(6):365–75. doi:10.1016/S1473-3099(09)70104-5

7. Estrada-Pena A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J. Effects of
environmental change on zoonotic disease risk: an ecological primer. Trends
Parasitol (2014) 30(4):205–14. doi:10.1016/j.pt.2014.02.003

8. Randolph SE. Tick-borne disease systems emerge from the shadows: the beauty
lies in molecular detail, the message in epidemiology. Parasitology (2009)
136:1403–13. doi:10.1017/S0031182009005782

9. Walsh MG. The relevance of forest fragmentation on the incidence of human
babesiosis: investigating the landscape epidemiology of an emerging tick-borne
disease. Vector Borne Zoonotic Dis (2013) 13(4):250–5. doi:10.1089/vbz.2012.
1198

10. Estrada-Pena A, de la Fuente J. The ecology of ticks and epidemiology of tick-
borne viral diseases. Antiviral Res (2014) 108:104–28. doi:10.1016/j.antiviral.
2014.05.016

11. Bradley C, Altizer S. Urbanization and the ecology of wildlife diseases. Trends
Ecol Evol (2007) 22(2):95–102. doi:10.1016/j.tree.2006.11.001

12. Uspensky Y. Tick pests and vectors (Acari: Ixodoidea) in European towns: intro-
duction, persistence and management. Ticks Tick Borne Dis (2014) 5(1):41–7.
doi:10.1016/j.ttbdis.2013.07.011

13. United Nations. World Urbanization Prospects. The 2007 Revision. New
York, NY: Department of Economic and Social Affairs, Population Division,
United Nations (2008). Available from: http://www.un.org/esa/population/
publications/wup2007/2007WUP_Highlights_web.pdf

14. Ellis EC, Ramankutty N. Putting people in the map: anthropogenic biomes of
the world. Front Ecol Environ (2008) 6(8):439–47. doi:10.1890/070062

15. McKinney ML. Urbanization as a major cause of biotic homogenization. Biol
Conserv (2006) 127:247–60. doi:10.1016/j.biocon.2005.09.005

16. McKinney ML. Effects of urbanization on species richness: a review of plants
and animals. Urban Ecosyst (2008) 11:161–76. doi:10.1007/s11252-007-0045-4

17. Faeth SH, Bang C, Saari S. Urban biodiversity: patterns and mechanisms. Ann
N Y Acad Sci (2011) 1223:69–81. doi:10.1111/j.1749-6632.2010.05925.x

18. Niemelä J. Urban Ecology, Patterns, Processes, and Applications. New York, NY:
Oxford University Press (2011). 392 p.

19. Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases.
Int J Parasitol (2013) 43(12–13):1059–77. doi:10.1016/j.ijpara.2013.06.009

20. Deplazes P, Hegglin D, Gloor S, Romig T. Wilderness in the city: the urban-
ization of Echinococcus multilocularis. Trends Parasitol (2004) 20(2):78–84.
doi:10.1016/j.pt.2003.11.011

21. Földvári G, Rigó K, Jablonszky M, Biró N, Majoros G, Molnár V, et al. Ticks
and the city: ectoparasites of the Northern white-breasted hedgehog (Eri-
naceus roumanicus) in an urban park. Ticks Tick Borne Dis (2011) 2:231–4.
doi:10.1016/j.ttbdis.2011.09.001

22. Dautel H, Kahl O. In: Robinson WH, Rettich F, Rambo GW, editors. Ticks
(Acari: Ixodoidea) and their Medical Importance in the Urban Environment.
Prague: Proceedings of the 3rd International Conference on Urban Pests
(1999). p. 73–82.

23. Comer JA, Paddock CD, Childs JE. Urban zoonoses Caused by Bartonella,
Coxiella, Ehrlichia, and Rickettsia species. Vector Borne Zoonotic Dis (2001)
1(2):91–118. doi:10.1089/153036601316977714

24. Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, Porter SR, et al. A
clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect
Ther (2010) 8(1):33–50. doi:10.1586/eri.09.118

25. Salman M, Tarrés-Call J. Ticks and Tick-Borne Diseases. Geographical Distribu-
tion and Control Strategies in the Euro-Asia region. Wallingford: CABI (2013).
292 p.

26. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George
J-C, et al. Driving forces for changes in geographical distribution of Ixodes rici-
nus ticks in Europe. Parasit Vectors (2013) 6:1. doi:10.1186/1756-3305-6-1

27. Sonenshine DE, Roe RM. Biology of Ticks. 2nd ed. (Vol. 2). Oxford: Oxford
University Press (2014). 491 p.

28. Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pagès F. Monitoring
human tick-borne disease risk and tick bite exposure in Europe: available
tools and promising future methods. Ticks Tick Borne Dis (2014) 5:607–19.
doi:10.1016/j.ttbdis.2014.07.022

29. Daniel M, Materna J, Hönig V, Metelka L, Danielová V, Harčarik J, et al. Vertical
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ticks with Borrelia burgdorferi and Francisella tularensis in Slovakia. [In Slovak:
Štúdium premorenosti klieštov boréliou burgdorferi a francisellou tularensis
na Slovensku]. Bratisl Lek Listy (1990) 91:251–66.

222. Pet’ko B, Peterková J, Tresová G, Prokopčáková H, Čisláková L, Stanko M. Sea-
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G, et al. Candidatus Neoehrlichia mikurensis and its co-circulation with
Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically differ-
ent habitats of Central Europe. Parasit Vectors (2014) 7:160. doi:10.1186/1756-
3305-7-160

266. Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z. Rickettsiae in quest-
ing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis (2014)
5(2):135–8. doi:10.1016/j.ttbdis.2013.09.008

267. May K, Strube C. Prevalence of Rickettsiales (Anaplasma phagocytophilum and
Rickettsia spp.) in hard ticks (Ixodes ricinus) in the city of Hamburg, Germany.
Parasitol Res (2014) 113(6):2169–75. doi:10.1007/s00436-014-3869-x

268. Tappe J, Strube C. Anaplasma phagocytophilum and Rickettsia spp. infections
in hard ticks (Ixodes ricinus) in the city of Hanover (Germany): revisited. Ticks
Tick Borne Dis (2013) 4(5):432–8. doi:10.1016/j.ttbdis.2013.04.009

269. Schorn S, Pfister K, Reulen H, Mahling M, Manitz J, Thiel C, et al. Prevalence
of Anaplasma phagocytophilum in Ixodes ricinus in Bavarian public parks, Ger-
many. Ticks Tick Borne Dis (2011) 2:196–203. doi:10.1016/j.ttbdis.2011.09.009

270. Silaghi C, Gilles J, Höhle M, Fingerle V, Just FT, Pfister K. Anaplasma phagocy-
tophilum infection in Ixodes ricinus, Bavaria, Germany. Emerg Infect Dis (2008)
14:972–4. doi:10.3201/eid1406.061513

271. Overzier E, Pfister K, Thiel C, Herb I, Mahling M, Silaghi C. Anaplasma phago-
cytophilum in questing Ixodes ricinus ticks: comparison of prevalences and
partial 16S rRNA gene variants in urban, pasture, and natural habitats. Appl
Environ Microbiol (2013) 79(5):1730–4. doi:10.1128/AEM.03300-12

272. Schicht S, Junge S, Schnieder T, Strube C. Prevalence of Anaplasma phagocy-
tophilum and coinfection with Borrelia burgdorferi sensu lato in the hard tick
Ixodes ricinus in the city of Hanover (Germany). Vector Borne Zoonotic Dis
(2011) 11(12):1595–7. doi:10.1089/vbz.2011.0699

273. Sytykiewicz H, Karbowiak G, Hapunik J, Szpechcinski A, Supergan-Marwicz
M, Goławska S, et al. Molecular evidence of Anaplasma phagocytophilum and
Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of
Poland. Ann Agric Environ Med (2012) 19(1):45–9.

274. Víchová B, Majláthová V, Nováková M, Stanko M, Hvišcová I, Pangrácová L,
et al. Anaplasma infections in ticks and reservoir hosts from Slovakia. Infect
Genet Evol (2014) 22:265–72. doi:10.1016/j.meegid.2013.06.003

275. Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, et al. Ultra-
structure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in
the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus
ticks. Int J Syst Evol Microbiol (2004) 54:1837–43. doi:10.1099/ijs.0.63260-0

276. Schouls LM, Van De Pol I, Rijpkema SG, Schot CS. Detection and identifi-
cation of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in
Dutch Ixodes ricinus ticks. J Clin Microbiol (1999) 37:2215–22.

277. Alekseev AN, Dubinina HV, Van De Pol I, Schouls LM. Identification of
Ehrlichia sp and Borrelia burgdorferi in Ixodes ticks in the Baltic regions of
Russia. J Clin Microbiol (2001) 39:2237–42. doi:10.1128/JCM.39.6.2237-2242.
2001

278. Sanogo YO, Parola P, Shpynov S, Camicas JL, Brouqui P, Caruso G, et al.
Genetic diversity of bacterial agents detected in ticks removed from asymp-
tomatic patients in northeastern Italy. Ann N Y Acad Sci (2003) 990:182–90.
doi:10.1111/j.1749-6632.2003.tb07360.x

279. von Loewenich FD, Baumgarten BU, Schröppel K, Geissdörfer W, Röllinghoff
M, Bogdan C. High diversity of ankA sequences of Anaplasma phagocytophilum
among Ixodes ricinus ticks in Germany. J Clin Microbiol (2003) 41:5033–40.
doi:10.1128/JCM.41.11.5033-5040.2003

280. Pan HUA, Liu S, Ma Y, Tong S, Sun Y. Ehrlichia-like organism gene found in
small mammals in the suburban district of Guangzhou of China. Ann N Y Acad
Sci (2003) 990:107–11. doi:10.1111/j.1749-6632.2003.tb07346.x

281. Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al.
Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west
Europe. Parasit Vectors (2012) 5:74. doi:10.1186/1756-3305-5-74

282. Richter D, Matuschka FR. “Candidatus Neoehrlichia mikurensis,” Anaplasma
phagocytophilum, and Lyme disease spirochetes in questing European vec-
tor ticks and in feeding ticks removed from people. J Clin Microbiol (2012)
50:943–7. doi:10.1128/JCM.05802-11

283. Movila A, Toderas I, Uspenskaia I, Conovalov J. Molecular detection of tick-
borne pathogens in Ixodes ricinus from Moldova collected in 1960. Ticks Tick
Borne Dis (2013) 4:359–61. doi:10.1016/j.ttbdis.2012.12.004

284. Richter D, Kohn C, Matuschka FR. Absence of Borrelia sp, Candidatus
Neoehrlichia mikurensis, and Anaplasma phagocytophilum in questing adult
Dermacentor reticulatus ticks. Parasitol Res (2013) 112:107–11. doi:10.1007/
s00436-012-3110-8

285. Fertner ME, Mølbak L, Boye Pihl TP, Fomsgaard A, Bødker R. First detection
of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Euro
Surveill (2012) 17(8):20096.

286. Hornok S, Meli ML, Gönczi E, Hofmann-Lehmann R. First evidence of Can-
didatus Neoehrlichia mikurensis in Hungary. Parasit Vectors (2013) 6:267.
doi:10.1186/1756-3305-6-267

287. Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, et al.
Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens:
a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors (2012) 5:61.
doi:10.1186/1756-3305-5-61

288. van Overbeek L, Gassner F, van der Plas CL, Kastelein P, Nunes-da Rocha U,
Takken W. Diversity of Ixodes ricinus tick-associated bacterial communities
from different forests. FEMS Microbiol Ecol (2008) 66:72–84. doi:10.1111/j.
1574-6941.2008.00468.x

289. Coipan EC, Jahfari S, Fonville M, Maassen CB, van der Giessen J, Takken
W, et al. Spatiotemporal dynamics of emerging pathogens in questing
Ixodes ricinus. Front Cell Infect Microbiol (2013) 3:36. doi:10.3389/fcimb.2013.
00036

290. Špitalská E, Boldiš V, Košt’anová Z, Kocianová E, Štefanidesová K. Incidence
of various tick-borne microorganisms in rodents and ticks of central Slovakia.
Acta Virol (2008) 52:175–9.

291. Palomar AM, García-Álvarez L, Santibáñez S, Portillo A, Oteo JA. Detection
of tick-borne ‘Candidatus Neoehrlichia mikurensis’ and Anaplasma phagocy-
tophilum in Spain in 2013. Parasit Vectors (2014) 7:57. doi:10.1186/1756-3305-
7-57

292. Andersson M, Bartkova S, Lindestad O, Raberg L. Co-infection with ‘Candi-
datus Neoehrlichia mikurensis’ and Borrelia afzelii in Ixodes ricinus ticks in
southern Sweden. Vector Borne Zoonotic Dis (2013) 13:438–42. doi:10.1089/
vbz.2012.1118

293. Lommano E, Bertaiola L, Dupasquier C, Gern L. Infections and co-infections
of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western
Switzerland. Appl Environ Microbiol (2012) 78:4606–12. doi:10.1128/AEM.
07961-11

294. Maurer FP, Keller PM, Beuret C, Johab C, Achermann Y, Gubler J, et al. Close
geographic association of human neoehrlichiosis and tick populations carrying
Candidatus Neoehrlichia mikurensis in Eastern Switzerland. J Clin Microbiol
(2013) 51:169–76. doi:10.1128/JCM.01955-12

www.frontiersin.org December 2014 | Volume 2 | Article 251 | 23

http://dx.doi.org/10.1089/vbz.2013.1495
http://dx.doi.org/10.3201/eid1806.110997
http://dx.doi.org/10.1128/AEM.71.10.6418-6422.2005
http://dx.doi.org/10.1186/1756-3305-4-161
http://dx.doi.org/10.1089/vbz.2010.0051
http://dx.doi.org/10.1371/journal.pone.0093725
http://dx.doi.org/10.3201/eid2006.131849
http://dx.doi.org/10.1016/j.ttbdis.2013.10.006
http://dx.doi.org/10.1016/j.ttbdis.2013.10.006
http://dx.doi.org/10.1186/1756-3305-7-160
http://dx.doi.org/10.1186/1756-3305-7-160
http://dx.doi.org/10.1016/j.ttbdis.2013.09.008
http://dx.doi.org/10.1007/s00436-014-3869-x
http://dx.doi.org/10.1016/j.ttbdis.2013.04.009
http://dx.doi.org/10.1016/j.ttbdis.2011.09.009
http://dx.doi.org/10.3201/eid1406.061513
http://dx.doi.org/10.1128/AEM.03300-12
http://dx.doi.org/10.1089/vbz.2011.0699
http://dx.doi.org/10.1016/j.meegid.2013.06.003
http://dx.doi.org/10.1099/ijs.0.63260-0
http://dx.doi.org/10.1128/JCM.39.6.2237-2242.2001
http://dx.doi.org/10.1128/JCM.39.6.2237-2242.2001
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07360.x
http://dx.doi.org/10.1128/JCM.41.11.5033-5040.2003
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07346.x
http://dx.doi.org/10.1186/1756-3305-5-74
http://dx.doi.org/10.1128/JCM.05802-11
http://dx.doi.org/10.1016/j.ttbdis.2012.12.004
http://dx.doi.org/10.1007/s00436-012-3110-8
http://dx.doi.org/10.1007/s00436-012-3110-8
http://dx.doi.org/10.1186/1756-3305-6-267
http://dx.doi.org/10.1186/1756-3305-5-61
http://dx.doi.org/10.1111/j.1574-6941.2008.00468.x
http://dx.doi.org/10.1111/j.1574-6941.2008.00468.x
http://dx.doi.org/10.3389/fcimb.2013.00036
http://dx.doi.org/10.3389/fcimb.2013.00036
http://dx.doi.org/10.1186/1756-3305-7-57
http://dx.doi.org/10.1186/1756-3305-7-57
http://dx.doi.org/10.1089/vbz.2012.1118
http://dx.doi.org/10.1089/vbz.2012.1118
http://dx.doi.org/10.1128/AEM.07961-11
http://dx.doi.org/10.1128/AEM.07961-11
http://dx.doi.org/10.1128/JCM.01955-12
http://www.frontiersin.org
http://www.frontiersin.org/Epidemiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rizzoli et al. Ixodes ricinus in urban areas

295. Vayssier-Taussat M, Le Rhun D, Buffet JP, Maaoui N, Galan M, Guivier E, et al.
Candidatus Neoehrlichis mikurensis in bank voles, France. Emerg Infect Dis
(2012) 12:2063–5. doi:10.3201/eid1812.120846

296. Andersson M, Raberg L. Wild rodents and novel human pathogen Candidatus
Neoehrlichia mikurensis, Southern Sweden. Emerg Infect Dis (2011) 17:1716–8.
doi:10.3201/eid1709.101058

297. Diniz PP, Schulz BS, Hartmann K, Breitschwerdt EB. “Candidatus Neoehrlichia
mikurensis” infection in a dog from Germany. J Clin Microbiol (2011)
49:2059–62. doi:10.1128/JCM.02327-10

298. Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, et al.
Molecular detection and characterization of tick-borne pathogens in dogs and
ticks from Nigeria. PLoS Negl Trop Dis (2013) 7(3):e2108. doi:10.1371/journal.
pntd.0002108

299. Tijsse-Klasen E, Koopmans MPG, Sprong H. Tick-borne pathogen – reversed
and conventional discovery of disease. Front Public Health (2014) 2:73.
doi:10.3389/fpubh.2014.00073

300. Fehr JS, Bloemberg GV, Ritter C, Hombach M, Lüscher TF, Weber R, et al.
Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia
mikurensis. Emerg Infect Dis (2010) 16:1127–9. doi:10.3201/eid1607.091907

301. von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG,
et al. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with
severe febrile illnesses: evidence for a European sequence variant. J Clin Micro-
biol (2010) 48:2630–5. doi:10.1128/JCM.00588-10

302. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C. First case of
human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient
with chronic lymphocytic leukemia. J Clin Microbiol (2010) 48:1956–9.
doi:10.1128/JCM.02423-09

303. Peková S, Vydra J, Kabicková H, Frankova S, Haugvicova R, Mazal O, et al.
Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic
patients: benefit of molecular techniques for rare pathogen detection. Diagn
Microbiol Infect Dis (2011) 69:266–70. doi:10.1016/j.diagmicrobio.2010.10.004

304. Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia”
bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a
review. Infect Genet Evol (2011) 11:1842–61. doi:10.1016/j.meegid.2011.09.019

305. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious
diseases. Clin Microbiol Rev (1997) 10:694–719.

306. Radulovic S, Feng HM, Morovic M, Djelalija B, Popov V, Crocquet-Valdes
P, et al. Isolation of Rickettsia akari from a patient in a region where
Mediterranean spotted fever is endemic. Clin Infect Dis (1996) 22:216–20.
doi:10.1093/clinids/22.2.216

307. Blanco JR, Oteo JA. Rickettsiosis in Europe. Ann N Y Acad Sci (2006)
1078:26–33. doi:10.1196/annals.1374.003

308. Oteo JA, Portillo A. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis
(2012) 3:271–8. doi:10.1016/j.ttbdis.2012.10.035

309. Sréter-Lancz Z, Széll Z, Kovács G, Egyed L, Márialigeti K, Sréter T. Rickettsiae of
the spotted-fever group in ixodid ticks from Hungary: identification of a new
genotype (‘Candidatus Rickettsia kotlanii’). Ann Trop Med Parasitol (2006)
100:229–36. doi:10.1179/136485906X91468

310. Mura A, Masala G, Tola S, Satta G, Fois F, Piras P, et al. First direct detec-
tion of rickettsial pathogens and a new rickettsia, ‘Candidatus Rickettsia bar-
bariae’, in ticks from Sardinia, Italy. Clin Microbiol Infect (2008) 14:1028–33.
doi:10.1111/j.1469-0691.2008.02082.x

311. Palomar AM, Portillo A, Santibánez P, Santibánez S, García-Álvarez L, Oteo
JA. Genetic characterization of Candidatus Rickettsia vini. A new Rickettsia
amplified in ticks from La Rioja, Spain. Ticks Tick Borne Dis (2012) 3:318–20.
doi:10.1016/j.ttbdis.2012.10.025

312. Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerg-
ing infectious threat. Clin Infect Dis (2001) 32:897–928. doi:10.1086/319347

313. Fernandez-Soto P, Perez-Sanchez R, Diaz Martin V, Encinas-Grandes A, Alamo
Sanz R, Perez-Sanchez R, et al. Rickettsia massiliae in ticks removed from
humans in Castilla y Leon, Spain. Eur J Clin Microbiol Infect Dis (2006)
25:811–3. doi:10.1007/s10096-006-0217-9

314. Elfving K, Olsen B, Bergstrom S, Waldenstrom J, Lundkvist A, Sjostedt A, et al.
Dissemination of spotted fever rickettsia agents in Europe by migrating birds.
PLoS One (2010) 5:e8572. doi:10.1371/journal.pone.0008572

315. Burgdorfer W, Aeschlimann A, Peter O, Hayes SF, Philip RN. Ixodes ricinus:
vector of a hitherto undescribed spotted fever group agent in Switzerland. Acta
Trop (1979) 36:357–67.

316. Beati L, Raoult L. Rickettsiae massiliae sp. nov., a new spotted fever
group rickettsia. Int Syst Bacteriol (1993) 43:839–40. doi:10.1099/00207713-
43-3-521

317. Dobec M, Golubic D, Punda-Polic V, Kaeppeli F, Sievers M. Rickettsia hel-
vetica in Dermacentor reticulatus ticks. Emerg Infect Dis (2009) 15:98–100.
doi:10.3201/eid1501.080815

318. Sprong H, Wielinga PR, Fonville M, Reusken C, Brandenburg AH, Borg-
steede F, et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica
and potentially carry flea-borne Rickettsia species. Parasit Vectors (2009) 2:41.
doi:10.1186/1756-3305-2-41

319. Franke J, Meier F, Moldenhauer A, Straube E, Dorn W, Hildebrandt A. Estab-
lished and emerging pathogens in Ixodes ricinus ticks collected from birds on
a conservation island in the Baltic Sea. Med Vet Entomol (2010) 24:425–32.
doi:10.1111/j.1365-2915.2010.00905.x

320. Kantso B, Svendsen CB, Jensen PM, Vennestrom J, Krogfelt KA. Seasonal and
habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks
from Denmark. Ticks Tick Borne Dis (2010) 1:101–3. doi:10.1016/j.ttbdis.2010.
01.004

321. Silaghi C, Gilles J, Höhle M, Pradel I, Just FT, Fingerle V, et al. Prevalence of
spotted fever group rickettsiae in Ixodes ricinus (Acari: Ixodidae) in south-
ern Germany. J Med Entomol (2008) 45:948–55. doi:10.1603/0022-2585(2008)
45[948:POSFGR]2.0.CO;2

322. Silaghi C, Hamel D, Thiel C, Pfister K, Pfeffer M. Spotted fever group Rickettsiae
in ticks, Germany. Emerg Infect Dis (2011) 17:890–2. doi:10.3201/eid1705.
101445

323. Overzier E, Pfister K, Thiel C, Herb I, Mahling M, Silaghi C. Diversity of Babesia
and Rickettsia species in questing Ixodes ricinus: a longitudinal study in urban,
pasture, and natural habitats. Vector Borne Zoonotic Dis (2013) 13:559–64.
doi:10.1089/vbz.2012.1278

324. Milhano N, Lopes de Carvalho I, Alves AS, Arroube S, Soares J, Rodriguez P,
et al. Coinfections of Rickettsia slovaca and Rickettsia helvetica with Borrelia
lusitaniae in ticks collected in a Safari Park, Portugal. Ticks Tick Borne Dis
(2010) 1:172–7. doi:10.1016/j.ttbdis.2010.09.003
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